
Danish Meteorological Institute
Ministry for Climate and Energy

Copenhagen 2012www.dmi.dk/dmi/tr12-20.pdf

Technical Report 12-20

Thread scaling with HBM

Jacob Weismann Poulsen and Per Berg

Danish Meteorological Institute
Technical Report 12-20

Colophone
Serial title:
Technical Report 12-20

Title:
Thread scaling with HBM

Subtitle:

Authors:
Jacob Weismann Poulsen and Per Berg

Other Contributers:

Responsible Institution:
Danish Meteorological Institute

Language:
English

Keywords:
Xeon Phi, parallelisation, code optimization, thread scaling, openMP, load balancing, vectorization,
alignment, memory tuning, cache tuning, NUMA, many-core architecture, profiling, MKL,
tridiagonal solver, Fortran, code quality, ocean model

Url:
www.dmi.dk/dmi/tr12-20.pdf

ISSN:
1399-1388

ISBN:

Version:
1.0

Website:
www.dmi.dk

Copyright:
Danish Meteorological Institute

www.dmi.dk/dmi/tr12-20.pdf

DMI
Technical Report 12-20

1 Introduction 3

2 Benchmark systems 4

3 The MyOV3 testcase 4

4 Serial references 7

5 Memory footprint 10

6 openMP 11

7 Profiling 21

8 Summary 30

9 Out-of-the-box run on the Intel Xeon PhiT 33

10 Musings on potential improvements 34

10.1 The tridiagonal solver . 34
10.2 NUMA . 37
10.3 Vectorization . 38
10.4 Memory latency in momeqs 43
10.5 Improving the vector code generated by the compiler 48
10.6 Load balancing . 51

11 Profiling using the new decomposition 59

12 Conclusion 67

A Appendix: Build instructions 72

B Appendix: Run instructions 73

C Appendix: The work balance with 32 threads 74

D Appendix: Column-wise view on computational work. 74

E Appendix: The work balance with 240 threads 87

www.dmi.dk/dmi/tr12-20.pdf page 1 of 117

DMI
Technical Report 12-20

F Appendix: The work balance with 240 threads - second

round 101

G Appendix: Compiler handling of the momeqs subroutine 109

H Appendix: The PanEU setup 114

www.dmi.dk/dmi/tr12-20.pdf page 2 of 117

DMI
Technical Report 12-20

Thread scaling with HBM

Jacob Weismann Poulsen Per Berg

1 Introduction

This note describes findings from applying the 2.7 release of the HBM code
on the testcase formally known as myov3. The sole focus will be on the
thread scaling of this test case. The purpose of the note is firstly to estab-
lish a foundation for an evaluation of the potential use of many-core archi-
tectures such as the Intel Xeon Phi or the NVIDIA Kepler for the HBM
model, secondly to identity initiatives towards improvements of the thread
scaling and vectorization of the code. Thus, this note is aimed at readers
who wish to work on those subjects. We present our findings as more or less
self-explaining tables and figures. The interested reader should consult our
previous reports [1] and [2] for more in-depth details of the implementation.
We will, however, draw some conclusions on the lessons learned from this
experiment and we will briefly present ideas for performance improvements.

We begin with a summary of important characteristics of the compute nodes
and of the test case that we use throughout this note. Then we describe
the results we obtained on these compute nodes in sections 4 - 7, and we
present a summary of the results in section 8. In section 9 we present re-
sults of running the HBM 2.7 release and the myov3 test case without any
modifications at all on a many-core architecture. In section 10-11, based
on our findings, we discuss how the performance of the HBM code can be
improved. Finally, we draw some conclusions in section 12.

Acknowledgement: We wish to express our gratitude to Michael Green-
field, Larry Meadows and Karthik Raman from Intel for investigating the
performance of the code on the Xeon Phi coprocessor and for the fruitful
discussion that we have had with them during these investigations. Thanks!
We are grateful to our language lawyer Bill Long from Cray for excellent
clarifications on the Fortran language details. Moreover, thanks are due to
Peter Thejl from DMI for helping with the regression analysis using IDL. Fi-

www.dmi.dk/dmi/tr12-20.pdf page 3 of 117

DMI
Technical Report 12-20

nally, we would like to thank Maria Grazia Giuffreda from CSCS for granting
us access to some of their systems.

2 Benchmark systems

Throughout this note we will present results from runs conducted on vari-
ous systems. Table 1 summarizes the characteristics of the individual CPU-
based nodes that we used. The systems are either local at DMI (Cray XT5
and a standalone server) or present at CSCS1 where we have used the Cray
XE6 system known as the Monte Rosa system and the Intel Xeon based
system called Piz Julier. We have used as many different compilers as we
had access to on the various systems. The suite of compilers include some
well-known brands as well as a few less known. The names of the compilers
and specific version number of each compiler on each system are shown in
table 2. As can be seen from table 2, the pool of available compilers varies
from system to system, so we can unfortunately not perform a full-scale
cross-system, cross-compiler analysis of the code and testcase, but we are
still able to report some pretty interesting findings for some popular compil-
ers which are available on the tested systems. The specific compiler flags we
used are listed in table 3 for the IEEE builds and in table 4 for the TUNE
builds. Note that TUNE in this context means nothing but adding some
generally reasonable optimization flags and IEEE means nothing but adding
generally reasonable non-optimization flags.

3 The MyOV3 testcase

In the present paper, all tests are performed using one single testcase. This
testcase constitutes the upcoming MyOcean Version 3 setup which we plan
to run fully operational at DMI from 1st April 2013. The setup is modified
slightly from the case presented as Variant0 in [2] in the following ways: In
the Baltic Sea, the horizontal resolution is now 1 n.m.2, there is 122 lay-
ers with a top-layer thickness of 2 meter and vertical resolution of 1 meter
down to 100 meters depth, and we have also tried to improve both initial
field and the bathymetry. Moreover, in Øresund in the Inner Danish Water
domain, the bathymetry has been modified and the bottom friction has been
increased in order to improve the prediction of storm surges in Copenhagen.

1http://www.cscs.ch/service compute resources/index.html
21 nautical mile = 1852 meters.

www.dmi.dk/dmi/tr12-20.pdf page 4 of 117

DMI
Technical Report 12-20

XT5 DMI Xeon DMI XE6 CSCS Xeon CSCS

Nickname Monte Rosa Piz Julier

CPU vendor AMD Intel AMD Intel

CPU Microarchitecture K10 (10h) Nehalem Bulldozer (15h) Westmere

CPU model Istanbul 2431 Xeon X7550 Interlagos 6272 Xeon E5649

GHz 2.4 GHz 2.0 GHz 2.1 GHz 2.53 GHz

Sockets 2 4 2 2

HyperThreading/Module no yes yes yes

Cores/Modules per socket 6/ 8/ /8 6/

Threads total 12 64 32 24

Memory 16 Gb 128 Gb 32 Gb 48 Gb

L3 cache (shared) 6 Mb 18 Mb 16 Mb 12 Mb

L2 cache (per core) 512 Kb 256 Kb 2/2 Mb 256 Kb

D1 cache 64 Kb 32 Kb 16 Kb 32 Kb

Technology 45 nm 45 nm 32 nm 32 nm

TDP 75 W 130 W 115 W 80 W

SIMD size 128 bits 128 bits 256 bits 128 bits

Table 1: Node specifications for the systems used throughout this note.
TDP: thermal design power, the maximum amount of power the cooling
system is required to dissipate. Note that for AMD, the L2 is exclusive of
D1 and the L3 is non-inclusive. For Intel, the L2 is non-inclusive and the L3
is inclusive of L1 and L2. The coherency protocol used in AMD is MOESI
whereas Intel uses MESIF.

www.dmi.dk/dmi/tr12-20.pdf page 5 of 117

DMI
Technical Report 12-20

XT5 DMI Xeon DMI XE6 CSCS Xeon CSCS

gfortran 4.5.3 4.6.3 4.5.3 4.3.4

intel 12.0.4.191 12.1 12.1.2.273

pgi 12.6.0 12.9-0 12.5.0 11.10.0

cray 7.4.1.112 8.0.6

pathscale 3.2.99

sun 12.2 12.3

open64 4.2.4 5.0

openuh 3.0.26

nag 5.3.1(907)

lahey 8.10b

Table 2: List of compilers and compiler versions used in this study. Note
that the gfortran version (4.6.3) present on the Intel Xeon system at DMI is
buggy and the code was patched to allow a work-around for the bug reported
here: http://gcc.gnu.org/bugzilla/show bug.cgi?id=55314.

Compiler IEEE flags

gfortran -fsignaling-nans -fno-reciprocal-math -ftrapping-math

-fno-associative-math -fno-unsafe-math-optimizations

intel -O0 -traceback -fp-model precise -fp-stack-check -fpe0

pathscale -fno-unsafe-math-optimizations

-OPT:IEEE arithmetic,IEEE arith=1 -TENV:simd imask=OFF

pgi -O0 -Kieee -Ktrap=fp -Mchkstk -Mchkfpstk -Mnoflushz

-Mnofpapprox -Mnofprelaxed

cray -O1 -Ofp0 -K trap=fp

open64 -fno-unsafe-math-optimizations -TENV:simd imask=OFF -g -Wl,-z,muldefs

openuh -fno-unsafe-math-optimizations -TENV:simd imask=OFF -g -Wl,-z,muldefs

sun -O0 -ftrap=%all,no%inexact -fsimple=0 -fns=no

nag -O0 -ieee=stop -nan

lahey -O0 -Knofsimple -Knofp relaxed --trap

Table 3: List of compiler flags chosen for the IEEE builds in this study.

www.dmi.dk/dmi/tr12-20.pdf page 6 of 117

DMI
Technical Report 12-20

Compiler TUNE flags

gfortran -O3 -funroll-loops -ffast-math -fdump-ipa-inline

-finline-functions -finline-limit=5000

intel -O2

pathscale -O3

pgi -fastsse -Mipa=fast,inline

cray -O2 -Oipa5

open64 -O3 -LNO:simd verbose=on -LNO:vintr verbose=on

openuh -O3 -LNO:simd verbose=on -LNO:vintr verbose=on

sun -O3 -vpara

nag -O4 -mismatch all -ieee=full -Bstatic -time

lahey --O3 --sse2

Table 4: List of compiler flags chosen for the TUNE builds in this study.

Another difference is that we needed to increase the update frequency for
tracer advection, tracer diffusion, turbulence and thermodynamics from ev-
ery third to every second main time step. Therefore care must be taken
when comparing scaling and timing: The myov3 case presented here will
appear to run slower than the Variant0 case in [2], and scaling is expected
to be poorer due to more frequent entries into notoriously bad-scaling rou-
tines of the tflow module. Table 5 summarizes the setup and figure 1 shows
how the four sub-domains nest to each other. The computational intensity
for this setup is Ir = 60.6 (cf. section 3.5 in [2]).

4 Serial references

First, we have conducted serial runs on our local XT5 system to get some
proper references on the results. Table 6 summarizes the result of cross-
comparing the statistics on prognostic model variables found in the logfiles
produced by these 6 hour simulations. Moreover, figure 2 shows the serial
performance obtained using the different compilers with the two (IEEE and
TUNE) classes of compiler flags and figure 3 shows the timings with TUNE
flags only making it easier to see which compiler generated the fastest binary
on the same system.

www.dmi.dk/dmi/tr12-20.pdf page 7 of 117

DMI
Technical Report 12-20

NS IDW WS BS

approximate resolution [n.m.] 3.0 0.5 1.0 1.0

mmx [N/S] 348 482 149 720

nmx [W/E] 194 396 156 567

kmx [layers] 50 77 24 122

gridpoints [mmx*nmx*kmx] 3375600 14697144 557856 49805280

iw2 [surface wetpoints] 18908 80884 11581 119334

iw3 [wetpoints] 479081 1583786 103441 6113599

wetpoint ratio [iw3/gridpoints] 14.2% 10.8% 18.5% 12.3%

ϕ [latitude] 65◦ 52′ 30′′N 57◦ 35′ 45′′N 55◦ 41′ 30′′N 65◦ 53′ 30′′N

λ [longitude] 04◦ 07′ 30′′W 09◦ 20′ 25′′E 06◦ 10′ 50′′E 14◦ 35′ 50′′E

∆ϕ 0◦ 3′ 00′′ 0◦ 0′ 30′′ 0◦ 1′ 00′′ 0◦ 1′ 00′′

∆λ 0◦ 5′ 00′′ 0◦ 0′ 50′′ 0◦ 1′ 40′′ 0◦ 1′ 40′′

dt [sec] 25 12.5 25 12.5

maxdepth [m] 696.25 78.00 53.60 398.00

min ∆x [m] 3787.40 827.62 1740.97 1261.65

CFL 0.797 0.790 0.626 0.910

Ir 1.8 12.0 0.4 46.3

Table 5: The testcase termed myov3. The Ir number for the setup is 60.6.

www.dmi.dk/dmi/tr12-20.pdf page 8 of 117

DMI
Technical Report 12-20

NS (ε/δ) IDW (ε/δ) WS (ε/δ) BS (ε/δ)

Avg salinity 1.17e-06 / 3.36e-08 8.35e-07 / 4.78e-08 7.58e-08 / 2.26e-09 6.36e-08 / 9.55e-09

RMS for salinity 1.11e-06 / 3.19e-08 1.33e-06 / 6.74e-08 7.44e-08 / 2.22e-09 6.08e-08 / 8.67e-09

STD for salinity 1.77e-06 / 1.62e-06 1.27e-06 / 1.37e-07 2.50e-08 / 1.18e-08 8.06e-08 / 3.67e-08

Avn temp 3.87e-06 / 3.37e-07 1.23e-06 / 7.32e-08 1.55e-07 / 8.78e-09 9.98e-08 / 1.19e-08

RMS for temp 5.36e-06 / 4.29e-07 1.22e-06 / 6.87e-08 1.75e-07 / 9.71e-09 2.26e-07 / 2.10e-08

STD for temp 4.64e-06 / 9.46e-07 9.74e-07 / 1.63e-07 3.05e-07 / 8.50e-08 2.36e-07 / 3.53e-08

Min salinity 2.80e-12 / 5.47e-11 0.00e+00 / 0.00e+00 0.00e+00 / 0.00e+00 0.00e+00 / 0.00e+00

Max salinity 3.93e-10 / 1.11e-11 9.49e-06 / 2.73e-07 5.34e-10 / 1.52e-11 1.95e-07 / 1.04e-08

Min temp 1.68e-10 / 2.85e-11 2.35e-06 / 9.50e-07 3.99e-07 / 4.03e-08 3.00e-13 / 1.40e-12

Max temp 3.09e-07 / 1.20e-08 9.01e-09 / 3.51e-10 1.20e-12 / 4.55e-14 1.74e-08 / 6.59e-10

Min u 1.06e-03 / 4.01e-04 1.16e-05 / 1.44e-05 2.52e-07 / 1.59e-07 2.22e-06 / 2.96e-06

Max u 5.77e-03 / 3.20e-03 1.65e-05 / 2.46e-05 3.58e-11 / 5.22e-11 8.97e-05 / 1.85e-04

Min v 1.68e-03 / 6.54e-04 1.13e-05 / 1.13e-05 2.01e-10 / 2.33e-10 3.25e-06 / 6.33e-06

Max v 5.46e-04 / 3.25e-04 1.33e-04 / 1.98e-04 4.38e-07 / 2.22e-07 2.41e-06 / 2.98e-06

Avg z 2.83e-06 / 2.31e-05 5.31e-07 / 2.90e-06 1.36e-06 / 5.05e-06 4.83e-08 / 1.82e-07

RMS for z 5.64e-05 / 1.02e-04 9.66e-07 / 4.86e-06 1.09e-06 / 1.91e-06 7.92e-08 / 2.92e-07

STD for z 5.79e-05 / 1.07e-04 1.61e-06 / 2.07e-05 1.94e-06 / 3.85e-06 1.72e-07 / 3.08e-06

Min z 9.04e-05 / 3.08e-05 4.27e-06 / 2.51e-04 1.03e-05 / 9.88e-06 8.69e-07 / 6.84e-06

Max z 4.96e-04 / 2.04e-04 1.15e-05 / 2.60e-05 1.07e-10 / 5.09e-11 1.05e-07 / 1.36e-07

Table 6: Worst case differences on statistics on prognostic model variables
between the 18 serial runs (the 9 compilers on the Cray XT5 system, 2
classes of compiler flags) of the myov3 setup. Simulation length is 6 hours.

www.dmi.dk/dmi/tr12-20.pdf page 9 of 117

DMI
Technical Report 12-20

Figure 1: Nesting of the four domains in the MyO V3.0 case.

5 Memory footprint

It is important that the testcase will fit into the relatively (compared to
CPUs) small memory size present on accelerators today. That is, we should
ensure that our testcase will fit into say 6 Gb of memory. Table 7 shows the
memory footprint of the myov3 testcase using various compilers and various
configure options. Hence, we conclude that from a memory capacity point
of view this testcase is indeed suitable for accelerator experiments.

www.dmi.dk/dmi/tr12-20.pdf page 10 of 117

DMI
Technical Report 12-20

Figure 2: This plot shows the serial timings from IEEE and TUNE runs
for the various compilers present at our local XT5 system. Note that there
are some IEEE runs that did not make it within the walltime specified.
Simulation length is 6 hours.

6 openMP

Table 8 shows the deviations in statistics of prognostic model variables that
we see when we cross compare all logfiles generated across compilers, com-
piler flags and the four systems used in this note. Note that the differences
across all runs does not differ much from the differences that we saw across
the 18 serial runs on the XT5 system.

Figure 4 shows the openMP scaling on the Cray XE6 at CSCS when the
code was build with configure option --enable-openmp and configure option
--enable-openmp --enable-mpi, respectively. The differences in runtimes
between binaries built with these two sets of configure options are shown in
figure 5, i.e. deviations are mostly relatively small though there are some
peaks. Taking into account that configure option --enable-mpi is mem-
ory neutral (see table 7) as well as the fact that our previous studies on
our local XT5 shows that binaries build with this option runs faster due
to the more NUMA friendly initializations (not shown here) tells us that
nothing is lost by building with our default configuration --enable-openmp

www.dmi.dk/dmi/tr12-20.pdf page 11 of 117

DMI
Technical Report 12-20

Tune openMP Tune openMP MPI Tune

gfortran 3700 Mb 4199 Mb 4199 Mb

pgi 3702 Mb 4191 Mb 4191 Mb

intel 3871 Mb 4388 Mb 4388 Mb

cray 4698 Mb 5199 Mb 5199 Mb

Table 7: Memory footprint on XE6 for various compilers and various config-
ure options. Note that for these compilers the memory requirement increases
when openMP is included but it does not increase further when MPI is in-
cluded in the build.

NS (ε/δ) IDW (ε/δ) WS (ε/δ) BS (ε/δ)

Avg salinity 1.34e-06 / 3.85e-08 1.19e-06 / 6.78e-08 1.76e-07 / 5.26e-09 8.15e-08 / 1.22e-08

RMS for salinity 1.28e-06 / 3.68e-08 1.67e-06 / 8.46e-08 1.74e-07 / 5.18e-09 8.99e-08 / 1.28e-08

STD for salinity 1.78e-06 / 1.63e-06 1.43e-06 / 1.55e-07 3.38e-08 / 1.60e-08 1.37e-07 / 6.24e-08

Avg temp 3.87e-06 / 3.37e-07 1.82e-06 / 1.09e-07 3.73e-07 / 2.11e-08 1.48e-07 / 1.76e-08

RMS for temp 5.36e-06 / 4.29e-07 1.65e-06 / 9.31e-08 3.52e-07 / 1.95e-08 2.71e-07 / 2.52e-08

STD for temp 4.64e-06 / 9.46e-07 1.28e-06 / 2.15e-07 3.05e-07 / 8.50e-08 2.66e-07 / 3.98e-08

Min salinity 3.20e-12 / 6.25e-11 0.00e+00 / 0.00e+00 0.00e+00 / 0.00e+00 0.00e+00 / 0.00e+00

Max salinity 3.93e-10 / 1.11e-11 9.49e-06 / 2.73e-07 5.37e-10 / 1.53e-11 1.95e-07 / 1.04e-08

Min temp 2.24e-10 / 3.80e-11 4.75e-06 / 1.92e-06 3.99e-07 / 4.03e-08 4.00e-13 / 1.86e-12

Max temp 5.25e-07 / 2.05e-08 1.36e-08 / 5.30e-10 3.10e-12 / 1.18e-13 1.74e-08 / 6.59e-10

Min u 1.14e-03 / 4.30e-04 1.47e-05 / 1.82e-05 2.91e-07 / 1.84e-07 3.51e-06 / 4.69e-06

Max u 7.65e-03 / 4.25e-03 1.65e-05 / 2.46e-05 4.62e-11 / 6.73e-11 9.31e-05 / 1.92e-04

Min v 1.78e-03 / 6.96e-04 1.47e-05 / 1.46e-05 1.30e-09 / 1.50e-09 3.37e-06 / 6.57e-06

Max v 6.69e-04 / 3.98e-04 1.52e-04 / 2.25e-04 4.43e-07 / 2.25e-07 3.51e-06 / 4.34e-06

Avg z 8.95e-06 / 7.31e-05 5.71e-07 / 3.12e-06 1.36e-06 / 5.05e-06 6.08e-08 / 2.29e-07

RMS for z 7.16e-05 / 1.29e-04 9.66e-07 / 4.86e-06 1.09e-06 / 1.91e-06 8.80e-08 / 3.25e-07

STD for z 7.20e-05 / 1.33e-04 1.61e-06 / 2.07e-05 1.94e-06 / 3.85e-06 1.72e-07 / 3.08e-06

Min z 9.14e-05 / 3.11e-05 1.04e-05 / 6.14e-04 1.03e-05 / 9.88e-06 9.63e-07 / 7.58e-06

Max z 9.99e-04 / 4.11e-04 1.67e-05 / 3.76e-05 4.76e-10 / 2.26e-10 1.72e-07 / 2.22e-07

Table 8: Worst case differences on statistics on prognostic model variables
between all the runs in this note. That is, between 10 compilers, serial build
(TUNE+IEEE), openMP build (TUNE), openMP+MPI build (TUNE) of
the myov3 setup on the 4 systems. imulation length is 6 hours.

www.dmi.dk/dmi/tr12-20.pdf page 12 of 117

DMI
Technical Report 12-20

Figure 3: This plot shows the serial timings from the TUNE runs for the
various compilers present at our local XT5 system. Simulation length is
6 hours.

--enable-mpi. On the XE6 system we obtained a consistent Amdahl scal-
ing with threads of approximately 97% across compilers as shown in figure 4
and 6.

On the 24 cores Intel Xeon system at CSCS we obtained consistent scaling
using the two compilers present, cf. figure 7. For the pgi compiler this cor-
responds to an Amdahl scaling with threads of approximately 98% as shown
in figure 8.

We also ran the application on our local Intel Xeon system using the six com-
pilers listed in table 2. The performance obtained using 64 hyperthreads is
listed in table 9, from where the major conclusion is that not all compil-
ers can generate code that exploit the HyperThreading feature. Taking the
fastest of the compilers from this table (intel), we demonstrate in figure 9
that with our current decomposition heuristics we are indeed able to parti-
tion the workload sufficiently well so that we can feed every 64 threads with
a well-balanced computational workload.

www.dmi.dk/dmi/tr12-20.pdf page 13 of 117

DMI
Technical Report 12-20

Compiler Timing [sec]

intel 614.5

pgi 697.2

gfortran 709.2

open64 1102.8

openuh 1281.2

sun 1474.9

Table 9: The obtained timings for doing a 6 hour simulation on the local 4
socket Intel Xeon system using all 64 hyperthreads. Note that the timings
obtained on this system are the fastest that we have obtained in this study
but the standalone server is also the one with most threads.

www.dmi.dk/dmi/tr12-20.pdf page 14 of 117

DMI
Technical Report 12-20

Figure 4: openMP scaling of myov3 using different compilers at the XE6
system. Simulation length is 24 hours Upper: The code was build with con-
figure option --enable-openmp. Lower: The code was build with configure
option --enable-openmp --enable-mpi and 1 MPI task was used when
running it. We have used -cc cpu -ss for all but intel2 where we have
used -cc numa node -ss.

www.dmi.dk/dmi/tr12-20.pdf page 15 of 117

DMI
Technical Report 12-20

Figure 5: Differences in runtime of myov3 when building with config-
ure option --enable-openmp versus when build with configure option
--enable-openmp --enable-mpi but using only a single MPI task when
running it. This is the differences between the upper and lower parts of
figure 4 so negative values implies means that the MPI build is faster than
the pure openMP build. Note that the overhead introduced when having
MPI support build into the binary is sometimes more than compensated for
by the more complete NUMA awareness in the MPI build but not always
and it seems to be highly compiler dependent. Simulation length is 6 hours.

www.dmi.dk/dmi/tr12-20.pdf page 16 of 117

DMI
Technical Report 12-20

Figure 6: Upper: openMP scaling of myov3 using the cray compiler on
the cray XE6 system. Note that the scaling follows Amdahl scaling of 97%.
Lower: openMP speedup of myov3 using the Cray compiler on the Cray XE6
system. The code was build with configure option --enable-openmp and
--enable-openmp --enable-mpi, respectively, and the simulation length
was 24 hours.

www.dmi.dk/dmi/tr12-20.pdf page 17 of 117

DMI
Technical Report 12-20

Figure 7: OpenMP scaling of myov3 on the Intel Xeon system at CSCS.
Note that the runs for each compiler above gave rise to identical md5sums
for the binary output files (restart and tempdat). Simulation length is
24 hours.

www.dmi.dk/dmi/tr12-20.pdf page 18 of 117

DMI
Technical Report 12-20

Figure 8: Upper: openMP scaling of myov3 using the PGI compiler on the
Intel Xeon system at CSCS. Lower: openMP speedup of myov3 using the
PGI compiler on the Intel Xeon system at CSCS. Note that the scaling
follows Amdahl scaling of 98%. The code was build with configure option
--enable-openmp. Simulation length is 24 hours.

www.dmi.dk/dmi/tr12-20.pdf page 19 of 117

DMI
Technical Report 12-20

Figure 9: Running the application (build with Intel compiler) with 64 hy-
perthreads on the local Intel Xeon system. The figure shows that we can
keep all 64 threads busy while running this case, e.g. all the green numbers
in the upper part of this screen dump (which indicate the actual load) are
at 100%.

www.dmi.dk/dmi/tr12-20.pdf page 20 of 117

DMI
Technical Report 12-20

7 Profiling

In this section we will look at some profiles from running with 32 threads and
we will try to explain why we do see some balance issues when running with
32 threads on the AMD Interlagos. Note that appendix C provides detailed
information on the decomposition of each nested subdomain in the myov3
setup. Before we head dive into the profiles we better summarize how we
thread decompose the workload today: The current decomposition heuristic
used for openMP is to give a well-balanced distribution of the number of
3D wetpoints handled by each thread and this strategy has been sufficient
in studies done in the past. We do decomposition by running through the
surface wetpoints of each nested area one by one in north-south direction,
summing up the column lengths, possibly continuing to the next constant
longitude grid line until we have reached the the number for an even-split,
and then start to decompose for the next thread. This tends to give long,
slim thread domains, but it should be remembered that it is meant to work
well in our default configuration including openMP threads on MPI tasks
in which we apply semi-optimal I-slices for the MPI task decomposition,
cf. chapter 4 in [1]. Fortunately, both decompositon heutristics into openMP
threads and into MPI tasks works well individually and together, though it
is - as always - possible to find room for improvements.

We have seen in real cases that balancing the distribution of the number of
3D wetpoints between threads means a lot to the performance. Below we
list some of the issues that in theory matters too but that we do not take
into account with the current heuristic:

• The number of 2D wetpoints handled by each thread.

• The size of the invisible halo among the threads, i.e. the water column
dependencies and the surface point dependencies.

• The extra work related to points that are located at nesting borders
or at open boundaries.

• Irregular dynamics on top of the overall geometry is not taken into
account, e.g. sea ice is typically not present in all wetpoints but only
in geographically isolated sub-areas.

• The applied decomposition heuristic assumes that the work required
to handle 150 water columns in shallow area (say all with a single

www.dmi.dk/dmi/tr12-20.pdf page 21 of 117

DMI
Technical Report 12-20

layer) should be equivalent to the work required to do a single water
column with 150 layers, which most likely will not be the case.

• The number of land points adjacent to the wetpoints of the thread is
not taken into account.

And please note that some of the issues above may differ in severeness from
one nested subdomain to the next.

On NUMA systems it is also important that variables are proper NUMA ini-
tialized. The configure option --enable-openmp --enable-mpi will ensure
that all HEAP variables are properly NUMA initialized ([1], section 4.3.1)
except for the temporary work arrays defined and used in the tflowmodule,
but needless to mention adding MPI support does add some overhead too.
The configure option --enable-openmp will ensure that the variables that
are permuted due to cache layout ([1], section 2.6) are proper NUMA ini-
tialized but the rest are not. Please consult page 43-52 in [1] for the details
on the current decomposition heuristic.

Table 10 and table 11 show the statistical properties of the openMP de-
composition using 32 threads and this is summarized in balance scores in
table 12.

iw3 Ideal Mean Attained Mean Min Max

NS 479081 14971 14971 14494 (32) 15016 (29)

IDW 1583786 49525 49525 49022 (32) 49582 (31)

WS 103441 3232 3232 3027 (32) 3251 (04)

BS 6113599 191022 191022 190019 (32) 191113 (22)

Table 10: Statistics for the openMP decompositions based on attempted
even-split of 3D wetpoints (iw3) for testcase myov3 using 32 threads.

In [1] we define a balance score C∗ and in table 12 we show the balance
attained in each subdomain as well as a weighted balance score for the
whole setup for different aspects that may influence the work balance. Note
that while the 3D balance indeed looks very good the other quantities do not
and our profiles will show whether or not we are bound by the 3D loops only.

www.dmi.dk/dmi/tr12-20.pdf page 22 of 117

DMI
Technical Report 12-20

iw2 Ideal Mean Attained Mean Min Max

NS 18908 590 589 458 (31) 982 (30)

IDW 80884 2527 2526 1520 (32) 4336 (02)

WS 11581 361 360 195 (01) 2058 (32)

BS 119334 3725 3724 2324 (17) 7679 (31)

Table 11: Statistics for the resulting 2D decompositions based on attempted
even-split of 3D wetpoints (iw3) for testcase myov3 using 32 threads. Note
that the span between minimum and maximum is significantly larger than
in the statistics in table 10.

iw3 iw2 halo3d halo2d

C∗(NS) 1.0360 2.144 8.62 10.77

C∗(IDW) 1.0114 2.853 8.20 7.30

C∗(WS) 1.0740 10.554 12.96 2.23

C∗(BS) 1.0058 3.304 65.90 29.54

C∗ 1.0066 3.2227 52.315 24.350

Table 12: Balance score per area and weighted score for the whole setup
when using 32 threads. Note that the iw3 balance is very good but if any
of the other ones matter then it will become apparent from the profiles.

www.dmi.dk/dmi/tr12-20.pdf page 23 of 117

DMI
Technical Report 12-20

Time% | Time | Imb. | Imb. | Calls |Group

| | Time | Time% | | Function

| | | | | Thread=HIDE

100.0% | 3767.695307 | -- | -- | 107341.0 |Total

|--

| 97.3% | 3667.158358 | -- | -- | 54102.0 |USER

||---

|| 24.6% | 927.745279 | 41.856098 | 6.0% | 5184.0 |cmod_hydrodynamics_solvemomeq_.REGION@li.226

|| 20.8% | 784.850460 | 52.688824 | 9.0% | 5184.0 |cmod_hydrodynamics_solvemomeq_.REGION@li.180

|| 15.6% | 586.732307 | 0.009920 | 0.0% | 1728.0 |tflow_tflow_int_.REGION@li.2628

|| 6.5% | 243.956971 | 1.308561 | 0.7% | 1728.0 |tflow_tflow_int_.REGION@li.2668

|| 4.5% | 168.541357 | 0.283303 | 0.2% | 1728.0 |tflow_tflow_int_.REGION@li.2682

|| 3.7% | 140.791619 | 0.518234 | 0.5% | 1728.0 |tflow_tflow_int_.REGION@li.2799

|| 3.5% | 131.634795 | 4.961334 | 5.0% | 5184.0 |cmod_hydrodynamics_solvemasseq_.REGION@li.486

|| 2.8% | 105.742824 | 0.490209 | 0.6% | 5184.0 |cmod_hydrodynamics_solvemomeq_.REGION@li.139

|| 2.5% | 95.703736 | 0.961210 | 1.3% | 1728.0 |tflow_tflow_int_.REGION@li.2713

|| 2.2% | 84.581404 | 0.000000 | 0.0% | 1.0 |main

|| 2.0% | 75.494925 | 3.348184 | 5.9% | 5184.0 |cmod_hydrodynamics_solvemasseq_z_.REGION@li.546

|| 2.0% | 74.831109 | 0.339240 | 0.6% | 1728.0 |tflow_tflow_int_.REGION@li.2651

|| 1.8% | 68.932854 | 1.028196 | 2.0% | 1728.0 |tflow_tflow_int_.REGION@li.2695

|| 1.8% | 66.923226 | 1.308783 | 2.6% | 432.0 |MAIN_.REGION@li.1671

|| 1.3% | 49.653645 | 3.761034 | 10.1% | 864.0 |MAIN_

||===

| 2.7% | 100.536864 | -- | -- | 53236.0 |OMP

||---

|| 1.1% | 42.602801 | 0.000000 | 0.0% | 5184.0 |cmod_hydrodynamics_solvemomeq_.REGION@li.180(ovhd)

|| 1.0% | 38.771718 | 0.000000 | 0.0% | 5184.0 |cmod_hydrodynamics_solvemomeq_.REGION@li.226(ovhd)

||===

| 0.0% | 0.000085 | 0.000000 | 0.0% | 3.0 |PTHREAD

|==

Figure 10: openMP profile of a 6 hour simulation of myov3 using 4 openMP
threads on Cray XE6. The compiler is PGI and the flags are Tune flags.

As mentioned before we are using temporary work arrays in the tflow mod-
ule and none of these are properly NUMA initialized. There are 9 of these
temporary work arrays each of size max(iw3(:)) times the number of com-
ponents. This is for sure a serious candidate for explaining the balance
problems we see in the tflow module.

Looking more carefully into the profile whose summaries are found in fig-
ures 10 - 12 it seems that the im-balance issue in the tflow module splits
the threads into three categories: The most expensive, the mid-expensive
and the less expensive. This deeper analysis is not shown here but with 32
threads it turns out that if each thread has a number in [1:32], then the most
expensive are: 8, 7, 5, 6, 18, 19, 15, 10, the mid-expensive are: 27, 22, 29, 13, 20, 32, 26, 24,
and the rest of the threads fall into the less expensive class. The cost ratio
between these three classes is 6 : 5 : 3. The same applies when building with
configure option --enable-openmp --enable-mpi but the most expensive
are now: 5, 11, 14, 8, 4, 10, 19, 9, the mid-expensive are: 29, 22, 30, 20, 27, 25,
31, 17. Note that thread 6 is in the most expensive class for the configure
option --enable-openmp and in the least expensive class for the configure
option --enable-openmp --enable-mpi.

www.dmi.dk/dmi/tr12-20.pdf page 24 of 117

DMI
Technical Report 12-20

Time% | Time | Imb. | Imb. | Calls |Group

| | Time | Time% | | Function

| | | | | Thread=HIDE

100.0% | 1331.867084 | -- | -- | 107369.0 |Total

|---

| 83.7% | 1114.233231 | -- | -- | 54102.0 |USER

||--

|| 12.0% | 160.021646 | 0.013380 | 0.0% | 1728.0 |tflow_tflow_int_.REGION@li.2628

|| 11.8% | 157.350077 | 14.912513 | 9.8% | 5184.0 |cmod_hydrodynamics_solvemomeq_.REGION@li.180

|| 11.8% | 156.511866 | 12.410528 | 8.2% | 5184.0 |cmod_hydrodynamics_solvemomeq_.REGION@li.226

|| 8.4% | 111.499725 | 27.934333 | 25.9% | 1728.0 |tflow_tflow_int_.REGION@li.2668

|| 7.1% | 94.116555 | 0.000000 | 0.0% | 1.0 |main

|| 5.4% | 72.519601 | 16.623970 | 23.7% | 1728.0 |tflow_tflow_int_.REGION@li.2682

|| 4.8% | 63.515905 | 14.377835 | 23.4% | 1728.0 |tflow_tflow_int_.REGION@li.2695

|| 4.1% | 54.786552 | 9.764342 | 18.4% | 5184.0 |cmod_hydrodynamics_solvemasseq_.REGION@li.486

|| 4.0% | 53.540016 | 13.009681 | 25.1% | 1728.0 |tflow_tflow_int_.REGION@li.2713

|| 3.4% | 45.732918 | 10.138852 | 22.9% | 5184.0 |cmod_hydrodynamics_solvemasseq_z_.REGION@li.546

|| 3.1% | 40.837477 | 1.570945 | 4.0% | 1728.0 |tflow_tflow_int_.REGION@li.2651

|| 2.8% | 37.846599 | 5.317232 | 14.5% | 1728.0 |tflow_tflow_int_.REGION@li.2799

|| 2.1% | 27.332082 | 2.627632 | 9.9% | 5184.0 |cmod_hydrodynamics_solvemomeq_.REGION@li.139

||==

| 16.3% | 217.631541 | -- | -- | 53236.0 |OMP

||--

|| 3.9% | 52.144284 | 0.000000 | 0.0% | 1728.0 |tflow_tflow_int_.REGION@li.2668(ovhd)

|| 2.3% | 31.235419 | 0.000000 | 0.0% | 1728.0 |tflow_tflow_int_.REGION@li.2682(ovhd)

|| 2.3% | 30.109563 | 0.000000 | 0.0% | 1728.0 |tflow_tflow_int_.REGION@li.2695(ovhd)

|| 1.8% | 23.924006 | 0.000000 | 0.0% | 1728.0 |tflow_tflow_int_.REGION@li.2713(ovhd)

|| 1.3% | 17.287265 | 0.000000 | 0.0% | 5184.0 |cmod_hydrodynamics_solvemasseq_z_.REGION@li.546(ovhd)

|| 1.2% | 16.499356 | 0.000000 | 0.0% | 5184.0 |cmod_hydrodynamics_solvemomeq_.REGION@li.180(ovhd)

|| 1.2% | 15.662973 | 0.000000 | 0.0% | 5184.0 |cmod_hydrodynamics_solvemomeq_.REGION@li.226(ovhd)

||==

| 0.0% | 0.002313 | 0.000000 | 0.0% | 31.0 |PTHREAD

|===

Figure 11: openMP profile of a 6 hour simulation of myov3 using 32 openMP
threads on Cray XE6. The compiler is PGI and the flags are Tune flags.

www.dmi.dk/dmi/tr12-20.pdf page 25 of 117

DMI
Technical Report 12-20

Time% | Time | Imb. | Imb. | Calls |Group

| | Time | Time% | | Function

| | | | | Thread=HIDE

100.0% | 93.175635 | -- | -- | 6007.0 |Total

|--

| 86.8% | 80.877350 | -- | -- | 2987.0 |USER

||---

|| 31.0% | 28.869857 | 0.000000 | 0.0% | 1.0 |cmod_main_

|| 8.8% | 8.164287 | 0.205307 | 2.6% | 288.0 |solvemomeq$cmod_hydrodynamics_.REGION@li.232

|| 6.8% | 6.317070 | 1.603754 | 26.2% | 96.0 |tflow_int$tflow_.REGION@li.2671

|| 6.5% | 6.020506 | 0.001036 | 0.0% | 96.0 |tflow_int$tflow_.REGION@li.2632

|| 5.9% | 5.452354 | 0.062519 | 1.2% | 288.0 |solvemomeq$cmod_hydrodynamics_.REGION@li.182

|| 4.5% | 4.179901 | 0.932946 | 23.0% | 96.0 |tflow_int$tflow_.REGION@li.2685

|| 3.8% | 3.578811 | 0.826012 | 23.8% | 96.0 |tflow_int$tflow_.REGION@li.2698

|| 3.4% | 3.189101 | 0.587932 | 19.0% | 288.0 |solvemasseq$cmod_hydrodynamics_.REGION@li.488

|| 3.3% | 3.065106 | 0.748358 | 25.2% | 96.0 |tflow_int$tflow_.REGION@li.2720

|| 2.7% | 2.553021 | 0.582473 | 23.6% | 288.0 |solvemasseq_z$cmod_hydrodynamics_.REGION@li.557

|| 2.5% | 2.371613 | 0.090853 | 4.0% | 96.0 |tflow_int$tflow_.REGION@li.2654

|| 2.2% | 2.085787 | 0.298207 | 14.8% | 96.0 |tflow_int$tflow_.REGION@li.2803

|| 1.8% | 1.651546 | 0.195964 | 12.2% | 288.0 |solvemomeq$cmod_hydrodynamics_.REGION@li.147

||===

| 13.2% | 12.296385 | -- | -- | 2985.0 |OMP

||---

|| 3.3% | 3.032194 | 0.000000 | 0.0% | 96.0 |tflow_int$tflow_.REGION@li.2668(ovhd)

|| 1.9% | 1.751958 | 0.000000 | 0.0% | 96.0 |tflow_int$tflow_.REGION@li.2695(ovhd)

|| 1.9% | 1.732608 | 0.000000 | 0.0% | 96.0 |tflow_int$tflow_.REGION@li.2682(ovhd)

|| 1.5% | 1.390799 | 0.000000 | 0.0% | 96.0 |tflow_int$tflow_.REGION@li.2713(ovhd)

|| 1.1% | 0.986007 | 0.000000 | 0.0% | 288.0 |solvemasseq_z$cmod_hydrodynamics_.REGION@li.546(ovhd)

||===

| 0.0% | 0.001892 | 0.000000 | 0.0% | 31.0 |PTHREAD

| 0.0% | 0.000008 | 0.000000 | 0.0% | 4.0 |SYSCALL

|==

Figure 12: openMP profile of a 6 hour simulation of myov3 using 32 openMP
threads on Cray XE6. The compiler is cray and the flags are Tune flags.

In tables 23 - 26 in appendix C we show how the work of the myov3 testcase
is distributed among the threads and how much work there is in each sub-
domain, and in figure 44 - 47, also in appendix C, we have tried to illustrate
how the thread decomposition has resulted in 32 sub-domains for each of
the four nested domains and how the cost classes are distributed when the
configure option is --enable-openmp.

With these tables and figures we should be able to (partially) explain the
observed classification if we can assume that the cost class of a thread is
mainly determined by how much that particular thread needs data in the
halo residing on other threads (since each thread has very nearly equally
many 3D wetpoints). Attempting to analyse why a thread falls into a par-
ticular cost class we have in figure 13 shown an example of the halosize
side-by-side the relative cost (using configure option --enable-openmp) of
each thread, but it is not easy to see any clear correlation, e.g. it is not im-
mediately evident why thread No. 32 is in the mid-expensive class instead
of the less-expensive class, and why say thread Nos. 16 and 17 are not in the

www.dmi.dk/dmi/tr12-20.pdf page 26 of 117

DMI
Technical Report 12-20

most expensive class. Thus, other factors must play a more important role
here. The fact that we see an inconsistent split into the three classes using
different configure options also calls for a more detailed profiling before we
can complete the analysis.

Figure 13: Example of total halosize (blue) and relative cost (red) for
each of the 32 threads. Both quantities are in arbitrary units to make
them fit on the same graph. The configure option for obtaining the cost is
--enable-openmp.

It is much more intuitive to find thread No. 32 in the least expensive class as
we do with configure option --enable-openmp --enable-mpi than in the
mid-expensive class as we do with --enable-openmp and we have reached
the conclusion that the tools used to conduct this profiling may impact the
results too much to make it reliable.

Another thing that matters is the column length which in the code appears
as the length of the inner-most loops3 as well as the size of the tri-diagonal
system of equations that are used so often throughout the model4. In fig-

3cf. section 2.3 in [1] for a description of the cache layout, permutation and loop
structure of the HBM code.

4cf. chapter 3 in [2] for discussions on our use of tri-diagonal linear systems of equations
in the HBM code.

www.dmi.dk/dmi/tr12-20.pdf page 27 of 117

DMI
Technical Report 12-20

USER / solvemomeq$cmod_hydrodynamics_.REGION@li.232$

Time% 8.8%

Time 8.164287 secs

Imb. Time 0.205307 secs

Imb. Time% 2.6%

Calls 35.274 /sec 288.0 calls

PAPI_L1_DCM 38.686M/sec 315861606 misses

PAPI_TLB_DM 0.183M/sec 1495726 misses

PAPI_L1_DCA 897.357M/sec 7326629429 refs

PAPI_FP_OPS 401.716M/sec 3279882360 ops

Average Time per Call 0.028348 secs

CrayPat Overhead : Time 0.0%

User time (approx) 8.165 secs 17145873450 cycles 100.0% Time

HW FP Ops / User time 401.716M/sec 3279882360 ops 2.4%peak(DP)

HW FP Ops / WCT 401.716M/sec

Computational intensity 0.19 ops/cycle 0.45 ops/ref

MFLOPS (aggregate) 401.72M/sec

TLB utilization 4898.38 refs/miss 9.567 avg uses

D1 cache hit,miss ratios 95.7% hits 4.3% misses

D1 cache utilization (misses) 23.20 refs/miss 2.899 avg hits

Figure 14: Zooming in on the momeqs profile from the openMP profile of
a 6 hour simulation of myov3 using 32 openMP threads on Cray XE6. The
compiler is cray and the flags are Tune flags.

ures 48-51 in appendix D we have shown the distribution of column lengths
for the each nested domain. These figures demonstrate clearly - once again
- what we already knew, namely that our problem is highly irregular. In
tables 13 and 14 we present a statistical summary of those distributions.
The results are given for scalar equations, kh, and for u− and v−equations,
khu and khv, respectively. Note that the most frequent length in the Baltic
Sea domain is 101 with more than 3000 occurrences for all three column
lengths, and that the second and third most frequent lengths are 1 and 102
for scalar equations while they are 102 and 1 for u and v. The mean and
median lengths for the Baltic Sea domain is only approximately half of the
most frequent lengths. In the other domains the most frequent lengths are
much shorter, e.g. in the second largest domain, the inner Danish Waters,
they are 10-12, and the shallow Wadden Sea domain is dominated by one-
layer cases which is necessary due to extensive flooding and drying. This
diversity makes a general strategy towards vectorization more challenging
and we will need to think carefully what we plan to do.

www.dmi.dk/dmi/tr12-20.pdf page 28 of 117

DMI
Technical Report 12-20

NS IDW WS BS

kh khu khv kh khu khv kh khu khv kh khu khv

mean 25.3 24.7 24.6 19.6 18.9 18.9 8.9 8.6 8.7 51.3 49.9 49.8

median 25 24 24 17 16 16 9 9 9 48 46 46

std 13.3 13.6 13.6 13.9 13.9 13.9 6.0 6.1 6.1 34.7 34.5 34.5

Table 13: Statistical summary of the column lengths of each nested area.
The values of mean, median and standard deviation are shown for each
domain for scalar equations, kh, and for u− and v−equations, khu and khv,
respectively.

Domain k kh khu khv

NS 41 1164 1159 1134

39 949 890 915

42 745 714 707

IDW 12 3329 3215 3233

11 3246 3196 3185

10 3068 3040 3044

WS 1 2386 2338 2371

16 867 865 856

9/15 676/ /656 /654

BS 101 3215 3083 3029

1/102 2637/ /2452 /2468

102/1 2510/ /2443 /2460

Table 14: The three most frequent column lengths, k, in each nested area
and how often these occur. For each value of k we show the corresponding
frequency for scalar equations, kh, and for u− and v−equations, khu and
khv, respectively.

www.dmi.dk/dmi/tr12-20.pdf page 29 of 117

DMI
Technical Report 12-20

8 Summary

We have tried to summarize the performance numbers attained on the dif-
ferent systems in table 15. Please note that we consider our local XT5 with
a maximum of 12 threads too small to enter this comparison in a fair way;
the interested reader may consult [1] for scaling studies on the XT5.

DMI Xeon CSCS XE6 CSCS Xeon

Compiler Timing [sec] Compiler Timing [sec] Compiler Timing [sec]

intel 614.5 intel 956.3 pgi 1067.5

Table 15: This table summarizes the fastest time obtained by the various
compiler and configure options on each of the three system that we used for
thread scaling studies.

In the previous reports that we have concluded the intel compiler had prob-
lems in keeping up with the performance attained by the other compilers
on this code but this time we investigated it further and found that the real
problem was due to the pinning done by aprun on the AMD-based Cray
systems used here (XT5 and XE6). With the intel compiler one needs to
use -cc numa node (or explicit pinning) and not the usual -cc cpu when
launching with aprun. As revealed above, the intel compiler is actually the
one that generates the fastest code on both AMD hardware and Intel hard-
ware5.

It is worth mentioning that with the TUNE flags chosen we see binary iden-
tical results across the different number of threads 1, . . . , 32 on Monte Rosa
and across the different number of threads 1, . . . , 24 on Piz Julier for all com-
pilers but the cray compiler. If we build with the cray compiler using -O1

-Oipa5 instead of -O2 -Oipa5 then we see a slight degradation in perfor-
mance but then we get binary identical results across the different number
of threads with this compiler too; this was also mentioned in [2].

It is interesting to note that we still scale when hitting the limit of 64 threads
(as set by the hardware systems available for the present report). Having
said that, we also see that the increase in the update frequency for tracer
advection, tracer diffusion, turbulence and thermodynamics have strong im-

5Please note that the intel compiler was not available on the CSCS Xeon, cf. table 2

www.dmi.dk/dmi/tr12-20.pdf page 30 of 117

DMI
Technical Report 12-20

plications for the overall performance (compare with e.g. the one-node re-
sults from chapter 6 in [2]). It is clear that we should work on improving
both the serial performance and the scaling (as revealed in the profiles we do
now see balance issues at higher thread counts) of the tflow components.
This issue has not been so obvious in the previous studies, but we can only
imagine that it becomes even more significant when we add more tracers by
e.g. including the bi-geo-chem-model.

Finally, we have found a page thrashing issue in cmod hydrodynamics.f90

in the openMP block starting at line 486 when using the pgi generated bi-
nary, i.e. we do not have a sufficient amount of data references per TLB
miss in this region. This is another issue that we ought to deal with for a
future release of the HBM code.

We have shown that the application does indeed scale with threads and we
have shown that the testcase chosen does indeed fit into a relatively limited
amount of memory found on the accelerators and the coprocessors today.
From that perspective the code and the testcase is a good candidate for
experiments on say some of the emerging many-core architectures.

However, we have also shown that our openMP speedup for this particular
testcase on the Intel Xeon architecture is limited to a factor of maximum
somewhere between 33 and 506. We have shown that we can attain a speedup
of 18 on the Xeon system using 12 cores and 24 hyperthreads. That is if we
assume similiar speedup characteristics then in order to be competitive with
Xeon each thread on alternative hardware will need to run at a speed that
is between 1/2 (assuming attainable speedup on alternative hardware is 36)
and 1/3 (assuming attainable speedup on alternative hardware is 54) of the
Xeon speed. For the Intel Xeon Phi architecture this is not very likely given
that the most expensive subroutine does not vectorize well, cf. appendix G.
It should not come as a big surprise by now, but in conclusion we need to
work on the HBM code in order to benefit from an architecture like the Xeon
Phi architecture and probably even more so to benefit from an architecture
like the NVIDIA Kepler GPU (see also our preliminary study on a GPU
port in [2]).

Taking the HBM code as a ”shelf product”, i.e. as is, without preparing the

6corresponding to a parallel fraction of the code between 97% and 98% running on a
large number of threads.

www.dmi.dk/dmi/tr12-20.pdf page 31 of 117

DMI
Technical Report 12-20

code, we will make a very crude projection on the performance we could
hope for on a many-core architecture: Assume that the cores on the many-
core architectures are running at say 1.0GHz and this is to be compared
with the Xeon Westmere at 2.53GHz. Each many-core thread then operates
2.53 times slower than each Westmere thread. Moreover, assume that we
do not really exploit the longer vector width on the many-core architecture
(which is a reasonable assumption since we have not previously worked se-
riously towards vectorization) nor the higher memory bandwidth. Finally,
assume that the thread speedup that we indeed can sustain is more likely
30 (rather than the 36-54 mentioned above) then we should expect that the
many-core architecture at most can be 2.53 ∗ 18/30 ≈ 1.5 times slower than
the Westmere in order to be competitive. This crude estimate should be
taken with a grain of salt and it only states that it would be a big surprise
to us if any of the many-core architectures would outperform or even come
close to the performance attained at the Xeon Westmere system with this
code and this testcase.

Having said that, we strongly believe that we could make some adjustment
to the HBM code in order to improve the per-thread performance and thus
make it better suited for the emerging many-core architectures.

By conducting the analysis for this report we have learned that decent thread
scaling is a necessary but certainly not a sufficient condition for competitive
performance on many-core architectures and once again we have reached
the conclusion that real performance is gained by doing code improvements
that makes the generated binary exploit the hardware that it is supposed to
run on.

www.dmi.dk/dmi/tr12-20.pdf page 32 of 117

DMI
Technical Report 12-20

9 Out-of-the-box run on the Intel Xeon PhiT

Michael Greenfield from Intel kindly offered to run the 2.7 release of the code
on a Xeon PhiT system. The system used was a 2 socket server with IntelR©

Xeon R© processor E5-2670 (8C, 2.6GHz. 115W) pre-production IntelR© Xeon
PhiT coprocessor (SE10X B1, 61 core, 1.1GHz, 8GB @ 5.5GT/s) running
the gold software release. Thus, it is possible run with up to 240 threads7 on
the coprocessor. The out-of-the-box speedup is shown in figure 15 and note
that the attained over-all (i.e. across all thread counts) speedup is close to
99.25% which came as a pleasant surprise to us. For low thread counts the
speedup is even higher, close to 99.5%. Moreover, note the linear (i.e. 100%)
speedup for thread counts from 60 and up to 240 which is quite unusual.
This is a good start but as the analysis in the previous section showed this is
not yet sufficient to compete with the CPU performance. One should keep
in mind that good scaling may be due to slow performance and the absolute
performance is not impressive at all.

Figure 15: Attained speedup on the Xeon Phi without any changes to the
code.

7240 = (61-1)*4. One core is used by the Intel Xeon Phi operating system.

www.dmi.dk/dmi/tr12-20.pdf page 33 of 117

DMI
Technical Report 12-20

10 Musings on potential improvements

Table 16 and table 17 show the statistical properties of the openMP de-
composition using 240 threads and this is summarized in balance scores in
table 18. It is evident from those tables that our decomposition is not ideal
at this high thread count; the distribution of wetpoints is not uniform across
the threads and there are even empty threads in some domains. In order to
really gain from the nice scaling demonstrated above we must improve the
vectorization of this code on each thread and the load balancing across the
threads. This section will outline some ideas on how we could improve these
and other issues.

iw3 Ideal Mean Attained Mean Min Max

NS 479081 1996 2004 0 (240) 2042 (230)

IDW 1583786 6603 6603 3334 (240) 6674 (66)

WS 103441 431 435 0 (240) 448 (1)

BS 6113599 25469 25469 16691 (240) 25572 (129)

Table 16: Statistics for the openMP decompositions based on attempted
even-split of 3D wetpoints (iw3) for testcase myov3 using 240 threads.

iw2 Ideal Mean Attained Mean Min Max

NS 18908 78 78 -1 (240) 164 (219)

IDW 80884 337 336 128 (240) 689 (17)

WS 11581 48 47 -1 (238) 381 (235)

BS 119334 496 495 283 (126) 1468 (229)

Table 17: Statistics for the resulting 2D decompositions based on attempted
even-split of 3D wetpoints (iw3) for testcase myov3 using 240 threads. Note
that the ratio between minimum and maximum is significantly larger than
in the statistics in table 16.

10.1 The tridiagonal solver

As described in [2] a tridiagonal solver is used intensively in this model. The
algorithm applied today is the double-sweep algorithm which is inherently
serial and thus will not vectorize. On Istanbul this means a theoretical loss

www.dmi.dk/dmi/tr12-20.pdf page 34 of 117

DMI
Technical Report 12-20

iw3 iw2

C∗(IDW) 2.099 5.58

C∗(BS) 1.597 5.45

C∗ 1.70 5.48

Table 18: Balance score per area and weighted score for the partial setup
consisting of the two larger subdomains amounting to more than 96% of the
total number of 3D wetpoints when using 240 threads.

of performance of a factor of 2. On SandyBridge and Interlagos the theo-
retical loss is a factor of 4. Moreover, on the Xeon Phi the theoretical loss
in performance is a factor of 8 and will probably be even higher with future
versions of Xeon Phi.

There do exist parallel algorithms for solving a tridiagonal systems and one
could hope that some of the lapack libraries (MKL, ACML, libsci, ESSL,
pdlib, scsl, ...) would have such an implementation. Having tried to investi-
gate available libraries we must conclude that only MKL8 and ESSL9 seem
to have a tridiagonal solver that assumes diagonal dominance and thus that
have the potential to compete with the simple double-sweep algorithm that
we use today.

We better do a back-of-the-envelope estimate of the call frequency of the
tridiagonal solver in the code today, that is in:

• The momentum equations, default momeqs.f90

• vertical tracer diffusion, tflow.f90

• k- and ω-equations in turbulence, turbmodels.f90

For the momentum equations, there is one call per u column and one per
v column having more than 2 layers and one time per local timestep. Let
Nu and Nv be the number of these columns and let Nt = ∆t/∆ti with ∆t

8http://software.intel.com/en-us/articles/intel-math-kernel-library-documentation,

page 693ff.
9http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/index.jsp?

topic=%2Fcom.ibm.cluster.essl.doc%2Fesslbooks.html.

www.dmi.dk/dmi/tr12-20.pdf page 35 of 117

DMI
Technical Report 12-20

being the main timestep and ∆ti being the local timestep for subdomain
i10. Then the number of calls for a 6 hour simulation will be

6H

∆t

narea∑

i=1

[(Nu +Nv)Nt]i

We can calculate the exact numbers for Nu and Nv from figure 48-51 in
appendix D but a fair estimate, i.e. something less than the total number
of surface wetpoints, is sufficient here so we can use 90% as a reasonable
approximation and do some calculations using the numbers from table 511:

777.6 ∗ (18908 ∗ 2 ∗ 1 + 80884 ∗ 2 ∗ 2 + 11581 ∗ 2 ∗ 1 + 119334 ∗ 2 ∗ 2) = 670 mill

That is, 670 million times for a 6 hour simulation.

The tridiagonal solver is inlined in tflow mp diffusion for the vertical
tracer diffusion (once per water column with 2 or more layers, the inner
loop is the number of tracers, nc, long). Inlining with the nc-loop inner-
most prevents a lot of unnecessary calls. A conservative assumption is that
approximately 95% of all surface point have 2 or more layers, thus the num-
ber of calls become12:

410.4 ∗ (18908 + 80884 + 11581 + 119334) = 94.7 mill

If we exline the solver then for the myov3 testcase without any extra tracers
the frequency of calls will be something like 189 mill times for a 6 hour
forecast and it will be 1042 mill times for a myov3 with 9 ergom tracers.
To be effectively useful, a library solver should outperform our originally
in-lined solver over nc components by so much that it compensates for the
nc calls per water column and the increased book-keeping by not having the
nc-loop as the innermost loop. It is doubtful if a library solver can do that
in the situation with only two tracers, salinity and temperature, which have
different diffusion coefficients and therefore a different system matrix. But
for say the 9 ergom tracers which have one and the same diffusion coefficient
and therefore can share the system matrix, it is very likely that a library

10Our nesting implementation requires that ∆t is an integer multiple of ∆ti, cf. chapter
3 in [1].

11With (6 ∗ 3600/25) ∗ 0.9 = 777.6.
12With (6 ∗ 3600/25) ∗ 0.5 ∗ 0.95 = 410.4.

www.dmi.dk/dmi/tr12-20.pdf page 36 of 117

DMI
Technical Report 12-20

solver can do a great job.

Finally, the same double-sweep algorithm is also used in turbmodels (twice
per water column with 2 or more layers). The turbulence model is not called
as often as momeqs, typically only every second main time step, so the fre-
quency will be like for the vertical tracer diffusion above.

It also seems worth to discuss the size of the system matrix: The distribu-
tion of kh, khu, khv on the BS domain is shown in figure 51. Note that a
size of 100 seems quite normal in this subdomain.

It is very simple to conduct experiments with library solvers in the momen-
tum equations code (default momeqs.f90) and in the k- and ω-equations in
the turbulence code (turbmodels.f90) where all we need to do is to substi-
tute the call to the local TriSolv with a call to ddtsvb13 and ensure that all
resulting s(:) references from TriSolv are substituted with d(:) instead.
Moreover, note that ddtsvb expects that dl and du have dimension N-1 so
we need to shift a before calling ddtsvb like this:

do ii=1,keu-1

a(ii) = a(ii+1)

enddo

It is more involved to apply the library function in the vertical tracer dif-
fusion (tflow.f90) since the trisolver is inlined in the code today and the
vertical tracer diffusion is also intermixed with the horizontal diffusion. One
need to do something like outlined in figure 16 to conduct this experiment.

10.2 NUMA

As revealed in section 7 there are temporary work arrays in the tflow mod-
ule that are not probably NUMA initialized. Moreover, there are some places
where we have used an inconsistent version of domp get domain. It is triv-
ial to ensure consistent usage of domp get domain and we will do that but
we do not expect a big gain since the places where we use it inconsistently
are not significant in the profiles. As for the temporary arrays in tflow

we could either introduce domain tailored work arrays and NUMA initialize
these accordingly or we could use the most compute intensive subdomain to
NUMA initialize the work arrays. We have chosen the latter approach since

13This is for MKL. For ESSL, it would be dgtnpf.

www.dmi.dk/dmi/tr12-20.pdf page 37 of 117

DMI
Technical Report 12-20

0) split horizontal and vertical diffusion.

1) exline the solver in diffusion in tflow.f90 and use the original trisolver

2) use loop splitting in diffusion so that we solve in three steps:

s,

t,

the nc-2 additional tracers

for the nc-2 additional tracers we should setup a,b,c and call trisolver

in a nc-2 loop

3) substitute trisolver call for s and t

From: call TriSolv(s, a, b, c, d, k)

To: call ddtsvb (k, 1, a, b , c , d, k, info)

4) substitute trisolver call for the nc-2 additional tracers

From:

do n=3,nc

call TriSolv(s, a, b, c, d, k)

enddo

To: call ddtsvb (k, nc-2, a, B , c , d, k, info)

Figure 16: The plan for preparing tflow for the MKL solver.

the first will require a lot of extra memory and we may easily just move the
problem from a NUMA problem to a page-thrashing problem.

Another thing that one could consider in this context would be to ensure
that all HEAP arrays are aligned at say page boundaries. Some compilers
allow one to specify alignments when doing the allocations but this is not
part of the standard. Other compiler have flags that allow one to have arrays
spanning more pages aligned at page boundaries.

10.3 Vectorization

In [1] we explained how one should express the k-loop to allow the compiler
to vectorize it, cf. figure 17. This works fine for point-local computations,
i.e. for loops that does not need to inspect neighbouring cells, but this is
unfortunately not the most common situation. In this section we will ex-
plain how one can prepare the innermost k-loops so that one can get them
vectorized even when neighbouring cells are needed.

For instance, looking at tflow mp c rin rout, we have loops with memory
access patterns like shown in figure 18.

That is, from point mi we look down (md), to the west (mw) and towards
north (mn). In other places/other loops it is me (east) and ms (south) in-
stead but the argumentation that follows below is the same.

www.dmi.dk/dmi/tr12-20.pdf page 38 of 117

DMI
Technical Report 12-20

! unroll k=1

surfacewetpoints: do iw = 1,iwet2

! all surface wet-points (1,i,j) are reached here

! access here is stride-1, allowing vectorization

... u_permuted(iw) ...

enddo

surfacewetpointloop: do iw = 1,iwet2

if (kh(iw) <= 1) cycle surfacewetpointloop

i = ind(1,iw)

j = ind(2,iw)

do mi = mmk_permuted(2,i,j),mmk_permuted(kh(iw),i,j)

! all deeper wet-points (k,i,j) are reached here

! access here is CLEARLY stride-1

... u_permuted(mi) ...

enddo

enddo

Figure 17: Fragment of the present code showing how one can vectorize
point-local computation.

do k=2,kb-1

mi = m(k, i, j)

mw = m(k, i, j-1)

mn = m(k, i-1,j)

md = m(k+1,i, j)

dh = dt/h_new(mi)

humi = hx(mi)*u(mi)*facx *dh

humw = hx(mw)*u(mw)*facx *dh

hvmi = hy(mi)*v(mi)*facy1*dh

hvmn = hy(mn)*v(mn)*facy2*dh

hwmi = w(mi)* dh

hwmd = w(md)* dh

do ic=1,nc

t8(ic,mi)= max(humi*t1(ic,mi),zero) - min(humw*t1(ic,mw),zero) &

- min(hvmi*t2(ic,mi),zero) + max(hvmn*t2(ic,mn),zero) &

+ max(hwmi*t3(ic,mi),zero) - min(hwmd*t3(ic,md),zero)

t7(ic,mi)= - min(humi*t1(ic,mi),zero) + max(humw*t1(ic,mw),zero) &

+ max(hvmi*t2(ic,mi),zero) - min(hvmn*t2(ic,mn),zero) &

- min(hwmi*t3(ic,mi),zero) + max(hwmd*t3(ic,md),zero)

enddo

enddo

Figure 18: Fragment of the present code where the compiler cannot see that
it can vectorize.

www.dmi.dk/dmi/tr12-20.pdf page 39 of 117

DMI
Technical Report 12-20

With respect to mw and mn (or me and ms) we should just pick zeroes from
the temporary work arrays (t*) when index goes below the sea bed in the
neighbour columns, meaning we could waste a lot of memory accesses be-
sides that the loops obviously do not vectorize as described above. We know
that mi and md are stride-1 by construction14 and we know how to hint the
compiler about this stride-1 access, which is done successfully at several but
far from all places in the code today, so we should do this everywhere. More-
over, we know that mw and mn are stride-1 too, and we can easily hint the
compiler if we split the k-loop into more loops (three in the present case).
An example is sketched in figure 19.

one loop running over u-columns to the west with hints on stride-1:

mw0 = m(2,i,j-1) - 2

mi0 = m(2,i,j) - 2

do k=2,min(kb-1,khu(m(1,i,j-1)))

mw = mw0 + k

mi = mi0 + k

md = mi + 1

...

do ic=1,nc

t8(ic,mi) = ...

...

a similar loop over v-columns north:

mn0 = m(2,i-1,j) - 2

do k=2,min(kb-1,khv(m(1,i-1,j)))

mn = mn0 + k

...

do ic=1,nc

...

and finally one which collects a possible remainder but which does not

contain neither mw nor mn:

do k= ..., kb-1

mi = mi0 + k

md = mi + 1

...

do ic=1,nc

...

Figure 19: Outline of how the loop from figure 18 can be rewritten into
three loops with hints on stride-1.

Thus we can turn the indirect addressed loop into a loop that clearly do
memory access with stride-1, both in the k-loop and in the ic-loop, provid-
ing the compiler with sufficient information for proper optimization. Actu-
ally, this idea is not new, we have already implemented it in masseqs.f90.
Our plan is now to carry this idea out through the entire code.

Another example is shown in figure 20 where we demonstrate how subloops

14For a thorough description of our data structures, indexing and cache layout, please
consult chapter 2 in our previous report [1].

www.dmi.dk/dmi/tr12-20.pdf page 40 of 117

DMI
Technical Report 12-20

in tflow c delta can be vectorized.

Original code:

call domp_get_domain(1, nbpz, nbpzl, nbpzu)

do n=nbpzl,nbpzu

i = krz(1,n)

j = krz(2,n)

...

kbvs = khv(m(1,i, j))

do k=1,kbvs

t5(1:nc,m(k,i,j))=t(1:nc,m(k,i,j))-t(1:nc,m(k,i+1,j))

enddo

enddo

Can be rewritten like:

call domp_get_domain(1, nbpz, nbpzl, nbpzu)

do n=nbpzl,nbpzu

i = krz(1,n)

j = krz(2,n)

...

kbvs = khv(m(1,i, j))

kbvsi = khv(m(1,i+1, j))

! unroll k=1:

k = 1

t5(1:nc,1) =t(1:nc,1)-t(1:nc,m(1,i+1,j))

! k > 1

if (kbvs > 1) then

koff = m(2,i, j) - 2

koffi = m(2,i+1,j) - 2

do k=2,min(kbvs,kbvsi)

t5(1:nc,koff+k) =t(1:nc,koff+k)-t(1:nc,koffi+k)

enddo

do k=min(kbvs,kbvsi)+1,kbvs

t5(1:nc,koff+k) =t(1:nc,koff+k)

enddo

endif

enddo

Figure 20: Outline of how the loops in tflow c delta can be written into
more compiler friendly loops.

Finally, we notice that the tflow module is not handled very well in terms
of vectorization due to the many references to nc - the number of tracers -
and this number is determined at runtime so the compiler has no chance to
make the right choices for the loops (typically array assignments) involving
nc. In practice nc will be either 2 or 11 so we could make this a static choice
instead, e.g. during the configure process.

As another example, let us look at the compute-intensive subroutine momeqs.
Today, this subroutine does not vectorize well, cf. appendix G. Recall that
this subroutine sets up and solves the momentum equations which end up
with a tridiagonal system of equations:

aisi−1 + bisi + cisi+1 = di, i = 1, . . . , n, a1 = 0, cn = 0

We can work on the setup of the system or the solver itself. The solver was
dealt with in a previous subsection 10.1, so we now confine ourselves to deal

www.dmi.dk/dmi/tr12-20.pdf page 41 of 117

DMI
Technical Report 12-20

with the setup of the system which is actually rather involved.

Before we consider to interchange loops and not have k as the innermost
loop let us see if we could vectorize some of the k loops in the setup of the
equation system above. The setup of the left-hand side of the equation,
i.e. the assignment of a(:), b(:) and c(:) can be partly vectorized (all
but the loop-carried dependency) without much effort. There is at least one
compiler that can see this even when expressed as we do it today, cf. fig-
ure 21. Alternatively, it can be rewritten as outlined in figure 22 whereby
all compilers should be able to see it. Please consult appendix G for the
details.

a(1) = zero

do k=1,keu-1

tmp = one/tm(k)

a(k+1) = -dt*(avv(mmi+k-1)+avv(mme+k-1))/(tm(k)+tm(k+1))

a(k) = a(k) *tmp

c(k) = a(k+1)*tmp

b(k) = one - (a(k) + c(k))

enddo

a(keu) = a(keu)/tm(keu)

b(keu) = one - a(keu)

c(keu) = zero

Figure 21: The original fragment of the code for setting up a,b,c for the
u-equation.

do k=1,keu-1

tmp2 = -dt*(avv(mmi+k-1)+avv(mme+k-1))/(tm(k)+tm(k+1))

a(k+1) = tmp2

c(k) = tmp2/tm(k)

enddo

do k=1,keu-1

tmp = a(k)/tm(k)

a(k) = tmp

b(k) = one - (tmp + c(k))

enddo

a(keu) = a(keu)/tm(keu)

b(keu) = one - a(keu)

c(keu) = zero

Figure 22: The simple rewrite of the code for setting up a,b,c for the
u-equation allowing all compilers to vectorize the two loops.

The setup of the right-hand side of the equation is the more involved part.
It takes approximately 80 code lines to reach the definition:

d(k) = umi + fti*vst - ucon + uaus - upress - usrf

This is all done in one large k-loop but we could split it so that the two
compute-intensive parts of the loop could vectorize. We would need to

www.dmi.dk/dmi/tr12-20.pdf page 42 of 117

DMI
Technical Report 12-20

unroll k=1 and we would need to split the remaining k=2,keu loop into a
vector candidate loop k=2,keu min and a remainder loop k=keu min+1,keu.
Note that we need some extra book-keeping, namely arrays keu min(:) and
kev min(:) that give us the upper bound on the k-subloop where all the
east, west,... neighbours exists. If we know that they exists then we can do
stride-1 access in these points too, cf. figure 23.

Alternatively, we can take the same approach as used in tflow and split
the loop into many thin subloops that all will vectorize. This approach is
outlined in figure 24 and in figure 25.

In appendix G we show how different compilers handle the different ver-
sions of the code and one should note that with the second approach all
compilers are capable of generating vector code for the loops. However,
there is no guarantee that the compiler generates good vector code nor that
the generated vector code is actually chosen at runtime. One of the things
that may prevent good vector code is lack of alignment information at build
time. Thus, we probed alignment information at runtime and saw that all
arguments passed onto momeqs were indeed properly aligned when using
this compiler option -align array64byte so we tried to use the alignment
directives below to hint the compiler about this at build time:

!DIR$ ASSUME_ALIGNED U: 64

!DIR$ ASSUME_ALIGNED UN: 64

... for all array arguments

Alas, we were not able to measure any effects of this and we made the con-
clusion that the relatively poor performance on the Xeon Phi is not due
to lack of vectorization in the computationally expensive subroutines. In
subsection 10.5 we discuss what we could do to improve the vector code
generated.

10.4 Memory latency in momeqs

We found that the momeqs rewrites did indeed improve the performance on
the Xeon Phi but we were not able to measure any benefits on the two CPU
based systems so in search for an explanation we did a rough estimate of
the memory required per outer-loop iteration in momeqs. If we have a cache
latency issue then we generally expect that a larger number of cores will
reduce the problem since a larger number of cores generally mean a larger

www.dmi.dk/dmi/tr12-20.pdf page 43 of 117

DMI
Technical Report 12-20

do k=1,1

! unroll k=1

enddo

mik = mm(2,i ,j)

nnk = mm(2,i-1,j)

ssk = mm(2,i+1,j)

nek = mm(2,i-1,j+1)

eek = mm(2,i ,j+1)

sek = mm(2,i+1,j+1)

! THE COMPILER SHOULD BE ABLE TO VECTORIZE THIS LOOP

do k=2,khumin

mi = mik+(k-2)

nn = nnk+(k-2)

ss = ssk+(k-2)

ne = nek+(k-2)

ee = eek+(k-2)

se = sek+(k-2)

umi = u(mi)

vst = qrt*(v(nn) + v(ne) + v(mi) + v(ee))

upress = (press(ee)-press(mi))*ttx/(rho(ee)+rho(mi))

d(k) = umi + fti*vst - upress - usrf

urd_v(k) = umi*txi

vrd_v(k) = vst*ty

enddo

do k=2,khumin

all the iff stuff

! compute uaus0_v(k)

enddo

! THE COMPILER SHOULD BE ABLE TO VECTORIZE THIS LOOP

do k=2,khumin

mi = mik+(k-2)

nn = nnk+(k-2)

ss = ssk+(k-2)

ne = nek+(k-2)

ee = eek+(k-2)

se = sek+(k-2)

! Horizontal eddy viscosity:

ehmi = eddyh(mi) + eddyh(ee) + eddyh(ss) + eddyh(se)

ehnn = eddyh(mi) + eddyh(ee) + eddyh(nn) + eddyh(ne)

uaus_v(k) = dtd*uaus0_v(k) &

+ ((eddyh(ee)*stretch(ee)-eddyh(mi)*stretch(mi))*txi &

+(ehnn *shear (nn)-ehmi *shear (mi))*fy &

+(eddyd(ee)*div (ee)-eddyd(mi)*div (mi))*fxh)

d(k) = d(k) - ucon_v(k) + uaus_v(k)

enddo

do k=khumin+1,keu

remaining k’s ! as today

enddo

Figure 23: Fragment of the code for setting up d for the u-equation. First
approach with three relatively thick inner loops, two of which should vec-
torize.

www.dmi.dk/dmi/tr12-20.pdf page 44 of 117

DMI
Technical Report 12-20

do k=1,1

! unroll k=1

enddo

mik = mm(2,i ,j)

nnk = mm(2,i-1,j)

ssk = mm(2,i+1,j)

nek = mm(2,i-1,j+1)

eek = mm(2,i ,j+1)

sek = mm(2,i+1,j+1)

! THE COMPILER SHOULD BE ABLE TO VECTORIZE ALL LOOPS BELOW

do k=2,keu

mi = mik+(k-2)

ee = eek+(k-2)

d(k) = - (press(ee)-press(mi))*ttx/(rho(ee)+rho(mi)) - usrf

enddo

do k=2,keu

mi = mik+(k-2)

umi = u(mi)

d(k) = d(k) + umi

urd_v(k) = umi*txi

enddo

do k=2,keu

mi = mik+(k-2)

vst = qrt*v(mi)

d(k) = d(k) + fti*vst

vrd_v(k) = vst*ty

enddo

do k=2,keu

ee = eek+(k-2)

vst = qrt*v(ee)

d(k) = d(k) + fti*vst

vrd_v(k) = vrd_v(k) + vst*ty

enddo

do k=2,min(keu,kh(mm(1,i-1,j)))

vst = qrt*v(nnk+(k-2))

d(k) = d(k) + fti*vst

vrd_v(k) = vrd_v(k) + vst*ty

enddo

do k=2,min(keu,kh(mm(1,i-1,j+1)))

vst = qrt*v(nek+(k-2))

d(k) = d(k) + fti*vst

vrd_v(k) = vrd_v(k) + vst*ty

enddo

.... to be continued

Figure 24: Fragment of alternative code for setting up d for the u-equation.
Second approach with many thin subloops, part I.

www.dmi.dk/dmi/tr12-20.pdf page 45 of 117

DMI
Technical Report 12-20

do k=2,keu

mi = mik+(k-2)

ee = eek+(k-2)

ehmi = eddyh(mi) + eddyh(ee)

uaus = ((eddyh(ee)*stretch(ee)-eddyh(mi)*stretch(mi))*txi &

+(-ehmi *shear (mi))*fy &

+(eddyd(ee)*div (ee)-eddyd(mi)*div (mi))*fxh)

d(k) = d(k) + uaus

enddo

! THE COMPILER SHOULD BE ABLE TO VECTORIZE ALL LOOPS BELOW

do k=2,min(keu,kh(mm(1,i-1,j)))

nn = nnk+(k-2)

ehnn = eddyh(mik+(k-2)) + eddyh(eek+(k-2)) + eddyh(nn)

d(k) = d(k) + ehnn*shear(nn)*fy

enddo

do k=2,min(keu,kh(mm(1,i-1,j+1)))

d(k) = d(k) + eddyh(nek+(k-2))*shear(nnk+(k-2))*fy

enddo

do k=2,min(keu,kh(mm(1,i+1,j)))

d(k) = d(k) - eddyh(ssk+(k-2))*shear(mik+(k-2))*fy

enddo

do k=2,min(keu,kh(mm(1,i+1,j+1)))

d(k) = d(k) - eddyh(sek+(k-2))*shear(mik+(k-2))*fy

enddo

do k=2,keu

d(k) = d(k) + dtd*(u(eek+(k-2)) - two*u(mik+(k-2)))

enddo

do k=2,min(keu,kh(mm(1,i-1,j)),kh(mm(1,i-1,j+1)))

d(k) = d(k) + dtd*(u(nnk+(k-2)) - u(mik+(k-2)))

enddo

do k=2,min(keu,kh(mm(1,i+1,j)),kh(mm(1,i+1,j+1)))

d(k) = d(k) + dtd*(u(ssk+(k-2)) - u(mik+(k-2)))

enddo

do k=2,min(keu,kh(mm(1,i,j-1)))

d(k) = d(k) + dtd*u(wwk+(k-2))

enddo

! THE LOOP BELOW IS THE ONLY ONE THAT WILL NOT BE VECTORIZED

do k=2,keu

urd = urd_v(k)

vrd = vrd_v(k)

....

aurd = abs(urd)

avrd = abs(vrd)

if (urd >= zero) then

j2 = j-1

else

j2 = j+1

endif

if (vrd >= zero) then

i4 = i+1

else

i4 = i-1

endif

if (aurd >= avrd) then

i1 = i

j3 = j2

else

i1 = i4

j3 = j

endif

d(k) = d(k) - aurd*(u(mm(k,i1,j))-u(mm(k,i1,j2))) &

- avrd*(u(mm(k,i,j3))-u(mm(k,i4,j3)))

enddo

Figure 25: Fragment of alternative code for setting up d for the u-equation.
Second approach with many thin subloops, part II.

www.dmi.dk/dmi/tr12-20.pdf page 46 of 117

DMI
Technical Report 12-20

amount of cache memory available to the application. Is this what we see
and can we do some rewrites that allow us to improve this part ?

Let us try to estimate the number of bytes we need per outer-loop iteration.
Let us confine ourselves to deal with the arrays that are part of the inner-
most k-loop. That is for u:

avv*2, press*2, rho*2, eddyh*6, eddyd*2, shear*2, div*2, stretch*2,
hx*1, u*9, v*4, a*1, b*1, c*1, d*1

and for v:

avv*2, press*2, rho*2, eddyh*6, eddyd*2, shear*2, div*2, stretch*2,
hy*1, v*9, u*4, a*1, b*1, c*1, d*1

If we isolate u and v then we have 2*38 arrays in total in the innermost loop
so if the k-loop tripcount is 100 then we need: (38 arrays * 8 bytes/element
* 100 iterations) ≈ 60kb for the arrays in the innermost k-loops per outer
iteration. This exceeds the total size of D1 (32kb) on both Xeon X7550
and Sandy Bridge. The size of D1 on the Xeon Phi is 32kb per core so the
issue is even more serious here. Thus, momeqs will be very expensive to run
on the Xeon Phi, especially when we run with more than one thread per core.

We will now briefly discuss how we could improve this. First, there are a few
of the arrays that do not change every timestep, e.g. rho, press and avv

and we should consequently be able to reduce the total number of compu-
tations where these arrays are involved and only redo them when required.
Second, we could consider handling some of the computations more locally
either outside the subroutine when the arrays are formed or as a first step in
momeqs before entering the other innermost loop. Third, we could mix the
handling of u and v so that we ensure that common arrays (most of them
are common but not all the directional indices are common) are used just
after each other so that the relevant cachelines are not moved back to L2
before we need them again. Finally, we could consider storing some of the
coefficient arrays using real(4) instead of real(8).

Note that in the myov3 setup, rho, press and avv are only changed ev-
ery fourth step for the two largest subdomains BS and IDW. Both rho and
press are set in cmod dens and press is only used in momeqs. Thus, we
should be able to pass this information onto momeqs in only one single ar-

www.dmi.dk/dmi/tr12-20.pdf page 47 of 117

DMI
Technical Report 12-20

ray and we should only redo the computations involving these arrays solely
every fourth step and not in every step as we do today.

The arrays shear, div and stretch are set in deform and used in momeqs

and smagorinsky. Today they are recomputed in every step, but it is worth
analysing whether or not we really need to recompute them so often. More-
over, one could improve locality by doing deform and smagorinsky just after
each other instead of having the turbulence in between them. One could also
prepare the momeqs computations with these 5 and store the results in two
new arrays, one for u and one for v, and pass these into momeqs instead
of the 5 original arrays and thereby reduce the D1 pressure in momeqs and
further improve locality for the 5 arrays.

The array eddyh is set in smagorinsky and used there and later in momeqs

and in the horizontal diffusion in tflow. The array eddyd is set in smagorinsky
and only used there besides later in momeqs. For these two arrays, as for
arrays shear, div and stretch above, it also makes good sense to analyze
whether or not we really need to re-compute them at every step.

An educated guess is that we would do fine with the two horizontal eddy
viscosity terms, eddyh and eddyd, as well as the three deformation terms,
shear, div and stretch, being calculated at the same frequency as the ver-
tical eddy viscosity, avv, i.e. only every fourth step for the largest domains
in the myov3 case.

We certainly intend to pursue these considerations when time permits it.

10.5 Improving the vector code generated by the compiler

A bird’s-eye view on how the subroutines are tied together reveals that the
implementation use pointer arrays as actual arguments and assumed-shape
arrays as dummy arguments, cf. figure 26. There are two reasons explaining
the current organization.

Firstly, it was a desire not to have neither the number of sub-domains nor
the sizes of the sub-domains hard-coded, and thus we were aiming at a
rank-2 data structure supporting a number of entries, determined at run
time, each with a different number of elements, also determined at runtime;
pointers in derived types as show in figure 26 was at that time the only

www.dmi.dk/dmi/tr12-20.pdf page 48 of 117

DMI
Technical Report 12-20

subroutine foo(a)

implicit none

real(8), intent(out) :: a(0:)

! ...

end subroutine foo

type cmr1

real(8), pointer :: p(:) => null()

end type

type(cmr1), pointer :: a(:)

allocate(a(narea))

do ia=1,narea

allocate(a(ia)%p(0:ub(ia)))

enddo

do ia=1,narea

call foo(a(ia)%p)

enddo

Figure 26: A code snapshot illustrating the way the sparse arrays are de-
clared and passed around throughout the implementation.

way to achieve this since the F90/F95 standard did not support allocatables
in derived types. Allocatable derived type components were added by a
TS (Technical Specification) that was published between f95 and f2003 and
that TS was incorporated into F2003. Secondly, one would like to have MPI
support added to the code. We tried to kill two birds with one stone, and by
using pointers one could easily let MPI global arrays and MPI local arrays
be the same thing in serial builds and purely openMP builds and then have
them mean different things in the hybrid openMP+MPI build or in the pure
MPI build. One could have handled it with allocatables instead as outlined
in figure 27 and we could do that without having to change any subroutine
calls in the code but that would incur a performance penalty on the serial
and the pure openMP builds and that was not an option at the time when
this was introduced.

There are at least three problems (as seen from a performance perspective)
with the current approach with pointers, namely:

• Compilers will generate code that allows for aliasing.

• Compilers will not be able to deduce that the actual arguments point
to contiguous memory. In general, when passing pointers, compilers
have to allow for non-unit strides.

• Compilers need to inspect the dope vectors at runtime and see if the
actual argument is indeed contiguous and then pass the address of the
array. This causes run-time overhead and we know (by definition) that
this check is not needed but we do not expose this knowledge to the
compiler.

www.dmi.dk/dmi/tr12-20.pdf page 49 of 117

DMI
Technical Report 12-20

subroutine foo(a)

implicit none

real(8), intent(out) :: a(0:)

! ...

end subroutine foo

type cmr1

real(8), allocatable :: p(:)

end type

type(cmr1), allocatable :: a(:)

allocate(a(narea))

do ia=1,narea

allocate(a(ia)%p(0:ub(ia)))

enddo

do ia=1,narea

call foo(a(ia)%p)

enddo

Figure 27: A code snapshot illustrating how one could have dealt with the
first desire without using pointers. Note that having allocatable components
of derived types is a F2003 feature but most F95-compliant compilers have
implemented this extension.

The first problem could be dealt with using compiler flags. There are several
compilers that have flags for this.

The second problem could in theory also be dealt with using compiler flags
but very few compilers have such flags today. In practice, the second prob-
lem is more involved to deal with in a portable fashion. One could try to use
the attribute contiguous introduced in the F2008 standard but not all com-
pilers support this today, or we could consider switching to explicit bound
specification or assumed-size specification of dummy arguments. Both of
these ideas would make the code less portable unless we handle it during
the build configure process. The F77 specification is tricky to use because
we would then rely highly on the compiler implementations. By using this
syntax one will force the compiler to ensure that all dummy arguments are
indeed contiguous and there are at least two ways of accomplishing this.
One is to inspect the dope-vector at runtime and if the actual argument is
contiguous, the address of the array is passed, otherwise a compiler tempo-
rary is created, the non-contiguous array is copied and the address of the
copy is passed. We know that the latter will not happen and the address
of the array is passed and things will work fine. Another approach (i.e. an-
other implementation) is to do the copy-in/copy-out constructions at build
time but these copy-in/copy-out constructions will fail for intent(out) and
intent(inout) dummy arguments due to the exlined openMP constructs
used throughout the code, c.f. figure 28.

www.dmi.dk/dmi/tr12-20.pdf page 50 of 117

DMI
Technical Report 12-20

subroutine foo ...

...

call domp_get_domain(kh, 1, iw2, nl, nu, idx) ! openMP decomposition

do nsurf=nl,nu

i = ind(1,nsurf)

j = ind(2,nsurf)

! all threadlocal wet-points (:,:,:) are reached here

...

enddo

...

end subroutine foo

...

!$OMP PARALLEL DEFAULT(SHARED)

call foo(...)

call bar(...)

!$OMP BARRIER

call baz(...)

!$OMP END PARALLEL

...

Figure 28: F77-syntax for dummy arguments in foo would rely on the usage
of dope-vectors at runtime and would break if copy-in/copy-out construc-
tions were generated at build time. It is unlikely that the compiler will keep
track of which thread changes what and be able to do the copy-out upon
return correctly.

The third problem could be reduced by heavy use of inlining but in sum-
mary there are very good reasons to reconsider the current design and get
rid of the pointers. The pure openMP builds are no longer our default
builds and if a rewrite will potentially improve the performance of the hybrid
openMP+MPI build and incur a performance penalty on the pure openMP
builds then we can accept it.

10.6 Load balancing

In this subsection we will pose various approaches to improve the thread
load balance. We will not repeat the relevant background information on
the balance problem already described at page 43-52 in [1] and in section 7
in the present report so please study these before reading this section.

Larry Meadows from Intel has kindly profiled the application and demon-
strated that we have load balancing issues at 240 threads, cf. figure 29 where
he shows the time spend in libiomp515 for one of the most expensive sub-
routines; the large deviations across the threads indicate that we have load
balance problems. It can be a little difficult to understand and analyse from
these raw measurements, so as a start, a simplified illustration of the overall

15The time spend in libiomp5 is the thread waiting time.

www.dmi.dk/dmi/tr12-20.pdf page 51 of 117

DMI
Technical Report 12-20

balance issue is given in figure 30 where we have tried to sort the threads
according to their total time spend in libiomp5.

Figure 29: Thread imbalance issue measured on the Xeon Phi. This plot
was generated by Larry Meadows and it shows the thread imbalance issue
on the Xeon Phi for a part of the most expensive subroutine. The y-axis is
the time in libiomp5. Along the x-axis are the parallel regions so there is
a bar for each of the 240 threads.

We will not be able to improve this situation unless we understand what
we observe, i.e. we need to analyse and relate the numbers emerging from
the profile with that of the decomposition defined by the current heuris-
tic. Appendix E contains information on the decomposition that emerges
when using 240 threads and we have sorted the numbers in various ways
and also plotted the numbers from the decomposition as well as from the
profile. Moreover, we look at the numbers on a per area basis as well as
total numbers. The reason for this is due to the two main kinds of openMP
constructions that we have in the code today, cf. figure 31.

We may also try to use regression analysis to relate the profile statistics
to the decomposition statistics. Thus, let nt be the thread number, and
let iw3(nt) be the number of 3D wetpoints on thread number nt, h3(nt)
be the numbers of 3D halo wetpoints on thread number nt, iw2(nt) be the
number of surface wetpoints on thread number nt and finally h2(nt) be the
number of surface halo wetpoints on thread number nt. Moreover, during
the analysis it turned out that it was more handy to use the reciprocal of the

www.dmi.dk/dmi/tr12-20.pdf page 52 of 117

DMI
Technical Report 12-20

Figure 30: Thread imbalance issue measured on the Xeon Phi. Left: The y-
axis is again the time spend in libiomp5 as in figure 29, but in the present
plot the data has been sorted and the x-axis is the index 1:240 from the
sorting (i.e. the pool of threads permuted). The green line indicates an even
split of the work and represents a perfectly balanced application, so it is
clear that there is a lot of room for improvement here. Right: Same as on
the left plot but instead of y we have plotted 1/y to emulate the thread load
based on the thread waiting time, and the x-axis is the index 1:240 from
sorting 1/y.

measured time in libiomp5 than the raw measurement. We will denote the
reciprocal value by LP (nt). If we confine ourselves to the four parameters
and apply linear regression we find that the measured load profile LP (nt)
can be expressed as

LP (nt) = a0 + a1 ∗ iw3(nt) + a2 ∗ h3(nt) + a3 ∗ iw2(nt) + a4 ∗ h2(nt)

with a0 = −0.079180444 and with

a1 = 2.2999119e − 06± 3.8542153e − 07 with significance: 5.9672636
a2 = 7.6242388e − 08± 6.8580936e − 08 with significance: 1.1117140
a3 = 3.9998704e − 05± 4.0261109e − 06 with significance: 9.9348243
a4 = 5.8200283e − 07± 1.1396806e − 06 with significance: 0.51067189

The Pearson correlation coefficient between LP (nt) and the result of the

regression analysis L̂P (nt) is 0.83407898. The significance is defined as the
value of ai divided by its uncertainty, whereby we surprisingly conclude that
it seems that we can exclude the halo parameters without loosing significant

www.dmi.dk/dmi/tr12-20.pdf page 53 of 117

DMI
Technical Report 12-20

construction1:

!$OMP PARALLEL DEFAULT (shared) PRIVATE(ia)

do ia=1,narea

call foo(iw2(ia), iw3(ia),....)

call bar(iw2(ia), iw3(ia),....)

...

enddo

!$OMP END PARALLEL

construction2:

do ia=1,narea

call foo(ia,...)

call bar(ia,...)

enddo

and within foo and bar we have constructions like

!$OMP PARALLEL DEFAULT (shared)

call baz(...)

call quux(...)

!$OMP END PARALLEL

...

Figure 31: The two main kinds of openMP constructions. With the first kind
we need to analyse the numbers across all the domains and with the second
kind we need to analyse the numbers on a per domain basis.

information. With only the two most significant parameters (iw3, iw2) we
get a0 = −0.077383095 and

a1 = 2.5610786e − 06± 3.7290310e − 07 with significance: 6.8679466
a3 = 3.4530795e − 05± 1.5460429e − 06 with significance: 22.334953

with a Pearson correlation coefficient of 0.82903764. We have compared the
linear models and the measured profile in figure 32.

The difference between observation and models does not seem to be noise
exclusively, there are indeed some systematic discrepancies, so we should be
able to improve the descriptive model further. For instance, the model does
not take outliers into account. As an example, the largest peak at threads
17-18 is not caught by the model, neither is the small peak at threads 12-13,
while the significant peak at threads 228-230 is. Seeking an explanation
we dig into appendix E and find from table 29 and figure 55 that threads
228-230 indeed have high values of iw2(nt) in the largest BS domain, and
our model will weight LP (nt) high here. On the other hand, neither threads
17-18 nor 12-13 are particularly important in BS. But as seen from table 29
and figure 53 these threads have high values of iw2(nt) in the IDW domain,
but not so high as the typical BS iw2(nt)-values so we must dig deeper to
explain. From table 29 we see that especially threads 17-18-19 have a very
large 2D halo size, h2(nt), in IDW, both compared to iw2(nt) at the same
threads in IDW and as compared to the h2(nt) values in BS, so we might

www.dmi.dk/dmi/tr12-20.pdf page 54 of 117

DMI
Technical Report 12-20

expect a relatively huge cacheline fight with neighbour threads here. Being
based on the total numbers, our regression model can of course not describe
such per-area behavior. At the moment we will, however, consider the above
regression analysis as sufficient for a first shot towards improving load bal-
ancing and see how far that will take us.

Figure 32: The measured load profile LP (nt) (white curve) and the lin-
ear model (red curve) emerging from the regression analysis with all four
parameters (top) and with only two parameters (bottom).

Now let us see how we can use this model to design a better thread decom-
position heuristic. Let NT denote the total number of threads, say 240.
Let nt again be the thread number and let us define a load balance number
LB(nt) for each thread number, nt ∈ 1, 2, . . . , NT , as:

LB(nt) = a0 + a1 ∗ iw3(nt) + a2 ∗ h3(nt) + a3 ∗ iw2(nt) + a4 ∗ h2(nt)

www.dmi.dk/dmi/tr12-20.pdf page 55 of 117

DMI
Technical Report 12-20

Assume that the best we can do is to strive for an even-split of LB(nt)
across all threads, i.e. LB(nt) ≈ c, with c ∈ R being the constant

c =
1

NT

NT∑

nt=1

LB(nt)

The original heuristic used a1 = 1 and ai = 0 for i 6= 1 and worked quite
well for lower thread counts, but as shown in table 31 in appendix E, this
is not a fully sufficient approach for 240 threads. Note that for the current
testcase we actually see that h3(nt) becomes larger than iw3(nt) at many
threads. Let us try to incorporate these observations into a refined thread-
decomposition.

The complication with the formula above is that we do not know the values
of iw3(nt), h3(nt), iw2(nt) and h2(nt) beforehand. That is, we do not know
these numbers before we have constructed the actual decomposition. But
when we have decided a decomposition we can calculate all four of them. A
practical approach thus seems to be through iterations

LB(nt; it) = a0 + a1 ∗ iw3(nt; it− 1) + a2 ∗ h3(nt; it− 1) + . . . , it = 1, 2, ...

starting from an initial guess which is the distributions that we have from
our old heuristics, i.e. where iw3(nt; 0), h3(nt; 0), iw2(nt; 0) and h2(nt; 0) are
the ones obtained from an (nearly) even-split of iw3. The decomposition of
iteration #it is constructed so that we obtain an (nearly) even distribution
of the load across all threads, i.e. we attempt to have

c(it) =
1

NT

NT∑

nt=1

LB(nt; it)

on each thread.

We can most easily do the decomposition on a per area basis. For the values
of coefficients ai that describe LB(nt; it) for each area we can take the val-
ues of the corresponding coefficients obtained from our regression analysis
shown above for the total setup. We may then iterate for as long as we want
to, or until LB(nt; it) for each area has converged sufficiently well. Remem-
ber, finding the perfect solution is NP-complete and the iterative approach
described above is nothing but a reasonable heuristic based on LP and LB;

www.dmi.dk/dmi/tr12-20.pdf page 56 of 117

DMI
Technical Report 12-20

we are merely trying to improve what we already had.

The results from our first attempt with this iterative decomposition genera-
tor is shown in figure 33. After just two iterations LB(nt; it) did not change
any more in any domain. The figure shows oscillations of much smaller
magnitude than the original (i.e. the red curves in figure 32). Our imple-
mentation of the decomposition heuristic described above now resulted in a
slightly too high LB(240) (before it was much too low). In a second attempt
we made the distribution of LB(nt) across the threads a little more uniform
and thus we got rid of the peak at 240 threads, see figure 34. Now the range
of variations has dropped by a factor of approximately 100 compared to
what we started off with (i.e. the red curves in figure 32). We must remem-
ber the inherent obstacle for generating a perfectly smooth decomposition
across all threads and that is that the two quantities iw3(nt) and h3(nt) will
always be incremented in chunks of water columns.

0 50 100 150 200 250
0.043

0.0435

0.044

0.0445

0.045

0.0455

Figure 33: The calculated load balancing distribution LB(nt) from the iter-
ative decomposition generator with coefficients ai from the linear regression
model.

We trust that the method described above can solve the balance problems
but we need to tune the parameters and in order to do so we probably need
a few iterations, i.e. we need to:

REPEAT:

www.dmi.dk/dmi/tr12-20.pdf page 57 of 117

DMI
Technical Report 12-20

0 50 100 150 200 250
0.0432

0.0433

0.0434

0.0435

0.0436

0.0437

0.0438

Figure 34: The calculated load balancing distribution LB(nt) from the
slightly modified iterative decomposition generator with coefficients ai from
the linear regression model.

run with new heuristic

get profile numbers LP(nt)

use LP(nt) to adjust the parameters used in the heuristic

The first run using the new heuristic improved the overall performance by
7% so it seems worth to take a couple of iterations to refine this.

It should be mentioned that the whole analysis above builds on two assump-
tions that we need to elaborate on, namely i) that the thread load numbers
are reproducible and rather accurate, and ii) that the total load can also be
used as a measure for the per-domain load. If i) we can not obtain reliable
load profiles, or ii) we cannot use the estimated coefficients from the total
profile on a per-domain basis, the outcome will likely fail to perform better.
The latter assumption will not always hold if we turn towards other setups,
cf. appendix H and this is something we need to address eventually too.
Maybe we should aim at doing constructions like the first shown in figure 31
so that we can use heuristics that works across all subdomains and thus al-
lows an even split also in cases where the size of the individual subdomains
differs a lot.

www.dmi.dk/dmi/tr12-20.pdf page 58 of 117

DMI
Technical Report 12-20

11 Profiling using the new decomposition

In this section we will analyse the profile emerging from the run of the ex-
periment termed ex49-ni which was the first experiment using the iterative
decomposition strategy described in section 10.6. Appendix F provides some
detailed information for the decomposition used in this experiment. Please
note that while the profile measurements in the previous section was the
time spend in libiomp5 we here measure the time spend by each thread;
this should make it more easy to understand what is going on and to relate
observations to model quantities. The profile is summarized in figures 35
and 36 and in table 19. The whole run took 108 seconds of which 100 sec-
onds were in parallel blocks and the remaining 8 seconds was spend in serial
blocks. The serial blocks amounts to approximately 7% so this is an obvious
candidate for improvement but this is not the topic of this section.

Figure 35: Thread imbalance issue measured on the Xeon Phi using experi-
ment ex49-ni. Note that the difference between the most expensive thread
and the mean load is close to 6 seconds which amounts to approximately
5% (total runtime for ex49-ni was 108 seconds).

From table 20 and from figure 37 we conclude that the 4 parameters that we
have focused on thus far are not sufficient to describe the measurements done
this time. We do not know if the measurements are indeed reproducible nor
do we know if the explanation of these measurements should be found in
the hardware and/or in the system software layer or within the model code
and the current setup itself.

Figure 36 shows that the balance issues are present in subroutine momeqs

www.dmi.dk/dmi/tr12-20.pdf page 59 of 117

DMI
Technical Report 12-20

OMP block Sum Min Max Mean STD

solvemomeq@226:244 5837.57 20.932358 26.234004 24.3232 0.739329

solvemomeq@180:199 3424.5 13.162706 15.447899 14.2687 0.498905

tflow int@3131:3145 2438.94 5.941498 11.700183 10.1622 0.773837

tflow int@3169:3173 2197.71 6.855576 11.700183 9.15715 0.750696

tflow int@3183:3187 1249.91 3.290676 6.215722 5.20795 0.541285

solvemomeq@139:169 762.34 2.376599 4.113345 3.17642 0.338692

tflow int@3322:3350 689.58 2.010968 3.656307 2.87325 0.341147

tflow int@3214:3313 653.931 1.919561 3.290677 2.72471 0.265658

solvemasseq@489:510 590.128 1.736746 3.016454 2.45887 0.245811

tflow int@3154:3159 525.686 1.279707 2.833638 2.19036 0.308214

solvemasseq z@550:564 502.834 1.462523 2.833639 2.09514 0.297923

tflow int@3196:3200 463.528 1.371115 3.199269 1.93137 0.307214

MAIN@1230:1237 459.232 1.1883 2.74223 1.91347 0.284378

MAIN@1720:1732 363.62 0.731261 2.193784 1.51508 0.255605

MAIN@1609:1634 245.795 0.548446 1.553931 1.02415 0.211014

MAIN@1068:1112 200.64 0.457038 1.279708 0.835999 0.170794

MAIN@993:1014 57.0384 0 0.548446 0.23766 0.108733

solvemomeq@297:307 23.5832 0 0.457038 0.0982634 0.0922889

MAIN@946:958 18.5558 0 0.365631 0.0773158 0.0785645

MAIN@1457:1466 17.8245 0 0.639854 0.0742688 0.125798

MAIN@1672:1691 17.0018 0 0.731262 0.070841 0.111928

solvemasseq z@570:573 5.66729 0.0 0.274223 0.0236137 0.0471967

massnest z@703:709 3.01646 0 0.182816 0.0125686 0.0336178

Table 19: A summary of the profile information. Individual statistics for
the time used by each of the 240 openMP threads for the 23 most time
consuming openMP blocks.

www.dmi.dk/dmi/tr12-20.pdf page 60 of 117

DMI
Technical Report 12-20

n2d h3d h2d

n3d -0.98750126 0.81115859 0.39682246
n2d -0.89272082 -0.51815027
h3d 0.77500587

Coefficient Value ± Significance

a0 176.14361
a1 -0.0013136499 0.0032610463 -0.40283080
a2 -0.041150995 0.056902219 -0.72318788
a3 -0.00018938709 0.00011383040 -1.6637655
a4 0.0036603346 0.0010738286 3.4086768

a0 27.180970
a1 0.0013686821 0.00035052085 3.9047095
a2 0.012544247 0.0047947962 2.6162211

a0 106.06904
a2 -0.018243411 0.0020118670 -9.0679014
a3 -0.00014441753 2.2214415e-05 -6.5010726
a4 0.0039319393 0.00083428334 4.7129544

Table 20: Upper part: The correlation between the four input parameters.
There is a strong anti-correlation between n2d and n3d and we can prob-
ably exclude one of them. Lower part: Results of three linear regression
analyses using 4, 2 and 3 parameters. The Pearson correlation coefficient
was R = 0.56710102, R = 0.49547223 and R = 0.56668785, respectively.
The maximal absolute difference between the measurements and the result
of the regression is 5.5, 7.8 and 5.3, respectively.

www.dmi.dk/dmi/tr12-20.pdf page 61 of 117

DMI
Technical Report 12-20

Figure 36: This figure focuses on the top5 individual chunks in table 19 and
shows the time each thread spend.

(top 1,2,6 and 18) so we only need to inspect the data structures and con-
trol flow of that subroutine in order to seek an explanation of the overall
balance issues. Note that momeqs uses khu and khv and that each outer loop
need to look at neighbour columns in 8 directions. Moreover, recall that we
have 4 different domains and not one single domain so the 4 parameters we
have worked with thus far are really 4*4 parameters. Let us substitute the
n3d parameter with kh, khu and khv and let us count the number of times
each of the eight neighbour columns from current center and from u and
v placement have a shorter column length than at the current point and
let us do it on a per-domain basis. These numbers express the number of
remainder loops in the subroutine and also their trip-counts so we introduce
parameters that will tell how many branches the code will take in the given
trip round. In total we now have (4-1)*4+3*4+3*8*4=120 parameters in-

www.dmi.dk/dmi/tr12-20.pdf page 62 of 117

DMI
Technical Report 12-20

Figure 37: Regression analysis using the same 4 parameters as we used in
the first round, namely iw3(nt), iw2(nt), h3(nt) and h2(nt). Upper figure
shows results of using all four, middle figure is with iw3(nt) and iw2(nt)
only, and bottom figure is with the three iw3(nt), iw2(nt) and h2(nt). The
Pearson correlation coefficient is 0.56710102, 0.49547223 and 0.56668785,
respectively. Hence, the poor regression.

stead of the 4 used in the last section. If the 120 parameters cannot describe
our load then we could try to incorporate hardware and/or runtime envi-
ronment parameters too. Luckily, we see that the new Pearson correlation
coefficient become 0.85597656 and as shown in figure 38 we now also have
a much better regression. However, it is important to stress that none of
the 120 parameters are very significant and trying to reduce the numbers
also reduced the correlation. This implies that we cannot use the regression
to improve the balance but our focus at this point of time was merely to
describe approaches and not so much to pose final solutions.

www.dmi.dk/dmi/tr12-20.pdf page 63 of 117

DMI
Technical Report 12-20

The next step would be to do several profiles with the same thread place-
ment. The aim being to see if the spikes were reproducible and whether or
not they would move around. Moreover, we would like to do several profiles
using different placements strategies and then do the analysis on a core basis
instead of a thread basis. These experiments should allow us to conclude
whether the spikes are due to OS jitter or hardware exhaustion. Hopefully,
this insight would allow us to improve the balance.

Figure 38: Regression analysis using 120 parameters. Note that R =
0.85597656 and the maximal absolute difference between the measurements
and the result of the regression is 2.9123180 whereas the mean difference
now is 0.86086447.

Based on the findings above we plan to optionally read in (or write out)
openMP decompositions (just as we do for MPI). This will allow us to fine
tune the decompositions (by hand or by an offline tool) and based on the
say 120 parameter regression we will be able to evaluate each decomposition

www.dmi.dk/dmi/tr12-20.pdf page 64 of 117

DMI
Technical Report 12-20

within having to run the model. This should allow us to get at least a 50%
improvement and thus another 3 seconds. Figure 39 shows the result of a
simple manual attempt to remove some of the high spikes but again note
that we are using far too many parameters to make this useful in practice.

www.dmi.dk/dmi/tr12-20.pdf page 65 of 117

DMI
Technical Report 12-20

Figure 39: Top: The thread imbalance found using the decomposition for
experiment ex49-ni. Bottom: The thread imbalance found after a few man-
ual changes to the decomposition. Note that the highest peak has dropped
from 99 to 93.

www.dmi.dk/dmi/tr12-20.pdf page 66 of 117

DMI
Technical Report 12-20

12 Conclusion

This paper was never meant to be more than initial reporting so we will try
to confine ourselves and wrap up the findings.

For the use of external tridiagonal solvers we have tried to use the MKL
solver and we can summarize our findings on the Xeon X7550 as:

• We were not able to find a Fortran95 interface for the MKL solver.

• We were not able to link statically with the MKL library.

• We were not able to force the MKL solver to get inlined.

• We were not able to measure real improvements when using the MKL
solver in the momentum equations.

• We were not able to measure real improvements when using the MKL
solver in tflow nor in turbmodel.

We were not able to measure any real runtime improvements from the vec-
torization efforts in momeqs on the Xeon X7550.

The vectorization improvements in tflow and turbmodels, on the other
hand, gave significant improvements and we should continue this effort
throughout the remaining code. The overall improvement of these prelimi-
nary initiatives on the Xeon X7550 was 35% which is quite good for scattered
efforts conducted during our holiday.

Michael Greenfield from Intel has conducted runs with our code experiments
both on an Intel Sandy Bridge system (SNB-EP running at 2.6Ghz, 1600
memory and 64 GB of DDR3 with 16 cores) and on a Xeon PhiT coprocessor
as explained in section 9. In summary:

• measured no improvements when using the MKL solver over the simple
double-sweep trisolver implementation neither on the Sandy Bridge
system nor on the Xeon Phi system in any of the three cases above
(momeqs, tflow and turbmodel).

• measured improvements from the vectorization efforts on tflow on
both the Xeon Phi and the Sandy Bridge system.

www.dmi.dk/dmi/tr12-20.pdf page 67 of 117

DMI
Technical Report 12-20

• measured improvements from the vectorization efforts in momeqs but
only on the Xeon Phi system, not on the Sandy Bridge system.

• measured improvements from the vectorization efforts in turbmodels

on the Xeon Phi system.

• measured improvements from the new decomposition heuristic on the
Xeon Phi system.

• measured improvements from the efforts on parallelising the serial
components (mom c f, rand z, mom f c, w c f, bndstz) on the Xeon
Phi system.

The findings on the MKL solver coincide with our findings on the Xeon 7550.
The size of our equation systems could be too small to benefit from the MKL
BABE implementation or the call-overhead may exceed the potential gain.
It would be nice if we would be able to inline it in the future but this is very
unlikely, unfortunately.

The findings on momeqs on the Sandy Bridge system coincide with our find-
ings on the Xeon X7550. It is interesting and encouraging to note that the
momeqs rewrites did indeed improve the performance on the Xeon Phi sys-
tem.

On top of running with the rewrites outlined in section 9 Michael Greenfield
has also performed investigations on the choices of compiler flags. The best
timings obtained on the three systems are summarized in table 21 and the
corresponding compiler flags as well as the flags used for the initial timings
of the 2.7 release are shown in table 22.

On the Xeon Phi, we have extremely good speedup with a parallel portion
in the 99.5%-99.75% range up to the 60 cores, cf. the upper part of figure 40,
and then from 60-240 threads the speedup is still good but the parallel por-
tion gets down to something between 99.0% and 99.25%, cf. the lower part
of figure 40. Note that both the D1 (size 32kb) and the L2 (size 512kb) is
shared among the 4 threads on the core so this tendency coincides with the
theory that we could be limited by cache latency to some extend.

The pointer rewrites mentioned in section 10.5 came with a cost that amounts
to almost 5% in performance for the pure openMP build on our XT5-system
but with the default, hybrid openMP+MPI configuration we gained a few

www.dmi.dk/dmi/tr12-20.pdf page 68 of 117

DMI
Technical Report 12-20

Xeon X7550 Sandy Bridge Xeon PhiT

Threads Timing Gain Threads Timing Gain Threads Timing Gain

64 396 35% 16 528 20% 240 586 60%

Table 21: This table summarizes the fastest time for a 6 hour simulation
without IO obtained by the various versions of the Intel compiler (version
12.1.0 on the Xeon X7550 and version 13.0, rev177 on Sandy Bridge and
Xeon PhiT) across various compiler flags on each of the three system that
we used for thread scaling studies. The flags used is shown in table 22.
On the Xeon Phi the timings with hourly IO is 612 seconds and the main
reason for this added overhead is that we have an expensive serial chunk
that does permutation of all arrays before writing out. We have not tried to
improve this since the IO code used here is obsolete. It seems most relevant
to compare the Sandy Bridge performance with that of the Xeon PhiT and
we note that the difference between the two is approximately 10% which we
can explain by the balance issues which have a more significant impact on
the performance on the Xeon Phi. Thus, we also expect that this difference
will vanish when we have done a bit more tuning of the code.

Platform Reference TUNE flags Fastest TUNE flags

Xeon X7550 -O3 -fno-alias -O3 -fno-alias

Sandy Bridge -O3 -O3 -fno-alias -ipo

Xeon PhiT -O3 -fno-alias -ipo -O3 -fno-alias -ipo

-traceback -fimf-precision=low -traceback -fimf-precision=low

-fimf-domain-exclusion=15 -fimf-domain-exclusion=15

-opt-assume-safe-padding -opt-assume-safe-padding

-opt-streaming-stores always -opt-streaming-stores always

-opt-streaming-cache-evict=0 -opt-streaming-cache-evict=0

Table 22: List of compiler flags chosen for the 2.7 release builds versus the
fastest builds obtained with the code rewrites described in section 9.

www.dmi.dk/dmi/tr12-20.pdf page 69 of 117

DMI
Technical Report 12-20

Figure 40: Attained speedup on the Xeon Phi with modifications to the
code. Top: Using 1 to 60 threads. Bottom: Using 1 to 240 threads.

percent in performance.

www.dmi.dk/dmi/tr12-20.pdf page 70 of 117

DMI
Technical Report 12-20

Finally, we have developed a new method for generating the decomposition
in a way that takes the actual measured load on each thread into account.
With this, we have shown that we can improve the load balancing on the
many-core Xeon Phi system using 240 threads to gain 7% in performance
and we explained how we can optimize the load balancing even more and
potentially gain yet another few percent. The method is, however, general
in the sense that it is beneficial to apply it for lower thread counts too, and
it can be adapted for NUMA and other asymmetric architectures as well.
Furthermore, it can be applied for optimization of our MPI domain decom-
position and especially our mixed openMP+MPI decomposition. We will
explore these opportunities in the future.

www.dmi.dk/dmi/tr12-20.pdf page 71 of 117

DMI
Technical Report 12-20

A Appendix: Build instructions

The model uses autoconf and the corresponding configure process is meant
to set mandatory compiler settings and to distinguish between different build
incarnations. If one does not specify any configure options then one will get
a serial build. Note that configure generates a file with the compiler flag set-
tings called Makefile.include. In case one wishes to change compiler flags
one can either redo the configure or adjust the generated Makefile.include

file or one can pass the new flags onto make itself like make FCFLAGS=”-
O3”. In figure 41 we show some build examples in BASH-syntax. All the
build examples will generate a single binary called cmod.

tar -zxvf hbm-2.7.tar.gz

cd hbm-2.7

serial binary

FCFLAGS=’-O1’ FC=ftn ./configure && make -j <twice_nr_cores_on_build_host>

openmp binary

FCFLAGS=’-O1’ FC=ftn ./configure --enable-openmp && make -j <twice_nr_cores_on_build_host>

mpi binary

FCFLAGS=’-O1’ FC=ftn ./configure --enable-mpi && make -j <twice_nr_cores_on_build_host>

openmp+mpi binary

FCFLAGS=’-O1’ FC=ftn ./configure --enable-openmp --enable-mpi && make -j <twice_nr_cores_on_build_host>

openmp+openacc binary

FCFLAGS=’-Minfo=accel -fast’ FC=ftn ./configure --enable-openmp --enable-openacc && make -j

a silent make

time make -j 64 > logfile_for_build.txt 2>&1

Figure 41: Build samples.

In case one wishes to use special compiler flags for a subset of the

objects then one could do something like

rm cmod

and then adjust Makefile.manual. For instance assume that we need

to build some files with O1 instead of O2. Then we would need to

add these lines:

$(ROOT)/src/foo.o: FCFLAGS := $(subst -O2,,$(FCFLAGS) -O1)

$(ROOT)/src/bar.o: FCFLAGS := $(subst -O2,,$(FCFLAGS) -O3)

Figure 42: Building with file based compiler flags.

www.dmi.dk/dmi/tr12-20.pdf page 72 of 117

DMI
Technical Report 12-20

B Appendix: Run instructions

It should be noted that the model uses big-endian input files so for those
compilers that do not have compiler switches for this (and thus does not
allow the configure process to handle it) one will have to specify this as run-
time environment. One will also need to specify ulimit -s unlimited in
BASH-syntax or limit stacksize unlimited in CSH-syntax. One may also
need to adjust environment variables pertaining to the system and chosen
configure options such as e.g. OMP NUM THREADS. An example is shown in
figure 43.

tar -zxvf testcase.tar.gz

cd testcase

ulimit -s unlimited

export OMP_NUM_THREADS=64

<builddir>/cmod

grep -A57 ’Validation prints:’ logfile.000

grep -i ’took’ logfile.000

md5sum restart tempdat.0* sponge_[ts]

Figure 43: Run instructions.

There might also be compiler specific environment settings needed, e.g. when
using aprun placement one have to set PSC OMP AFFINITY for pathscale bi-
naries to false.

Please inspect the logfile logfile.000 upon completion. While running
it one can inspect the file zeitschritt that keeps track of the progress
within the timeloop. The timings can be found by grepping after took as
shown in figure 43. Moreover, one can check that results are consistent with
previous results by grepping for statistics in the logfile, cf. figure 43 and by
inspecting the binary output files. md5sum is not supposed to change when
neither compiler nor compiler flags have changes.

www.dmi.dk/dmi/tr12-20.pdf page 73 of 117

DMI
Technical Report 12-20

C Appendix: The work balance with 32 threads

The aim of this appendix is to document the work balance emerging from
dmi omp.F90 when using 32 threads providing us with background informa-
tion when trying to explain the balance issue revealed in the profiles.

For each of the four nested domains, tables 23, 24, 25 and 26 show the sub-
parts that each of the 32 threads is handling together with the associated
halo-sizes. This is intended as background information when studying the
related profiles.

The figures 44, 45, 46 and 47 show the actual decomposition into the 32
thread for each of the four nested domains. The obtained tflow cost classes
are also dispalyed in the figures.

D Appendix: Column-wise view on computational

work.

Figure 48-51 show histograms of the distribution of column lengths in each
nested domain.

www.dmi.dk/dmi/tr12-20.pdf page 74 of 117

DMI
Technical Report 12-20

T surface iw2 iw3 halo2d halo3d

1 [1;552] 551 14977 61 1522

2 [553;1204] 651 14976 147 3536

3 [1205;1772] 567 14983 194 4870

4 [1773;2292] 519 14987 208 6029

5 [2293;2769] 476 14994 223 7046

6 [2770;3233] 463 14978 244 7730

7 [3234;3703] 469 14978 250 7976

8 [3704;4183] 479 14983 262 8326

9 [4184;4656] 472 15004 274 8676

10 [4657;5131] 474 14971 286 8902

11 [5132;5635] 503 15001 294 9117

12 [5636;6123] 487 14984 298 8883

13 [6124;6700] 576 14988 309 8531

14 [6701;7252] 551 14999 324 8339

15 [7253;7857] 604 14984 333 8340

16 [7858;8426] 568 14978 334 8281

17 [8427;9029] 602 14998 333 8301

18 [9030;9661] 631 14984 329 7855

19 [9662;10312] 650 14990 324 7369

20 [10313;10972] 659 14995 319 7061

21 [10973;11637] 664 14980 312 6942

22 [11638;12309] 671 14995 300 7051

23 [12310;12906] 596 14988 285 6911

24 [12907;13503] 596 14979 263 6594

25 [13504;14104] 600 14986 256 6300

26 [14105;14746] 641 14975 242 5691

27 [14747;15398] 651 14988 206 4858

28 [15399;16078] 679 14989 192 4068

29 [16079;16954] 875 15016 181 3219

30 [16955;17937] 982 14976 118 2331

31 [17938;18396] 458 14983 60 2000

32 [18397;18908] 511 14494 31 1057

Table 23: openMP decomposition of NS subdomain using 32 threads.

www.dmi.dk/dmi/tr12-20.pdf page 75 of 117

DMI
Technical Report 12-20

T surface iw2 iw3 halo2d halo3d

1 [1;3372] 3371 49535 102 1808

2 [3373;7709] 4336 49532 339 4284

3 [7710;11889] 4179 49533 511 6638

4 [11890;14989] 3099 49527 632 9418

5 [14990;18457] 3467 49532 745 10766

6 [18458;21868] 3410 49534 743 10183

7 [21869;25394] 3525 49528 686 9695

8 [25395;28180] 2785 49549 653 11476

9 [28181;30352] 2171 49528 642 13859

10 [30353;32430] 2077 49577 618 14833

11 [32431;34467] 2036 49530 596 14610

12 [34468;36520] 2052 49532 582 13989

13 [36521;38775] 2254 49566 579 13090

14 [38776;40892] 2116 49541 506 11955

15 [40893;43124] 2231 49562 456 10619

16 [43125;45481] 2356 49544 468 9557

17 [45482;48109] 2627 49525 455 8409

18 [48110;51147] 3037 49532 447 7267

19 [51148;54417] 3269 49529 428 6327

20 [54418;57713] 3295 49535 332 5436

21 [57714;59756] 2042 49559 215 5462

22 [59757;61367] 1610 49536 222 6440

23 [61368;63093] 1725 49537 266 7588

24 [63094;64786] 1692 49536 289 8420

25 [64787;66779] 1992 49530 333 8509

26 [66780;68949] 2169 49530 362 8271

27 [68950;71381] 2431 49553 418 8971

28 [71382;73705] 2323 49554 505 10836

29 [73706;75847] 2141 49529 537 12754

30 [75848;77645] 1797 49563 508 13692

31 [77646;79364] 1718 49582 472 13899

32 [79365;80885] 1520 49022 233 6845

Table 24: openMP decomposition of IDW using 32 threads.

www.dmi.dk/dmi/tr12-20.pdf page 76 of 117

DMI
Technical Report 12-20

T surface iw2 iw3 halo2d halo3d

1 [1;196] 195 3249 141 2166

2 [197;422] 225 3247 275 4215

3 [423;622] 199 3247 275 4165

4 [623;851] 228 3251 276 4092

5 [852;1061] 209 3239 274 3951

6 [1062;1291] 229 3245 274 3902

7 [1292;1531] 239 3247 273 3829

8 [1532;1750] 218 3237 272 3759

9 [1751;1987] 236 3241 273 3712

10 [1988;2233] 245 3236 272 3641

11 [2234;2481] 247 3246 269 3607

12 [2482;2724] 242 3246 266 3561

13 [2725;2953] 228 3234 265 3403

14 [2954;3217] 263 3242 267 3240

15 [3218;3493] 275 3232 270 3120

16 [3494;3804] 310 3233 278 3075

17 [3805;4102] 297 3233 282 3020

18 [4103;4393] 290 3233 273 2997

19 [4394;4681] 287 3236 267 2938

20 [4682;4969] 287 3239 264 2866

21 [4970;5272] 302 3237 252 2721

22 [5273;5572] 299 3239 243 2607

23 [5573;5874] 301 3239 240 2508

24 [5875;6195] 320 3242 243 2427

25 [6196;6531] 335 3233 244 2290

26 [6532;6884] 352 3233 243 2157

27 [6885;7266] 381 3236 240 2020

28 [7267;7656] 389 3243 239 1860

29 [7657;8126] 469 3232 239 1627

30 [8127;8713] 586 3232 239 1284

31 [8714;9522] 808 3235 246 869

32 [9523;11581] 2058 3027 126 325

Table 25: openMP decomposition of WS subdomain using 32 threads.

www.dmi.dk/dmi/tr12-20.pdf page 77 of 117

DMI
Technical Report 12-20

T surface iw2 iw3 halo2d halo3d

1 [1;4327] 4326 191032 120 6959

2 [4328;8085] 3757 191060 238 11395

3 [8086;13572] 5486 191035 401 15949

4 [13573;17576] 4003 191085 629 30394

5 [17577;20840] 3263 191057 703 41042

6 [20841;23972] 3131 191024 739 43333

7 [23973;27241] 3268 191022 748 43134

8 [27242;30407] 3165 191038 762 45520

9 [30408;33641] 3233 191045 848 51534

10 [33642;36470] 2828 191041 941 64219

11 [36471;38979] 2508 191088 1007 75435

12 [38980;41446] 2466 191036 1045 78536

13 [41447;44008] 2561 191065 1076 79468

14 [44009;46559] 2550 191084 1093 82245

15 [46560;48940] 2380 191032 1087 85296

16 [48941;51304] 2363 191029 1076 85935

17 [51305;53629] 2324 191037 1060 86198

18 [53630;55980] 2350 191022 1042 85196

19 [55981;58315] 2334 191061 1033 83169

20 [58316;60771] 2455 191100 1027 80368

21 [60772;63270] 2498 191029 1030 76478

22 [63271;66059] 2788 191113 1042 71055

23 [66060;69211] 3151 191112 1049 62637

24 [69212;73248] 4036 191034 1054 49359

25 [73249;79027] 5778 191031 961 34251

26 [79028;84575] 5547 191029 723 24412

27 [84576;89483] 4907 191089 556 20998

28 [89484;94571] 5087 191089 476 17746

29 [94572;99582] 5010 191068 458 16870

30 [99583;104941] 5358 191046 457 15640

31 [104942;112621] 7679 191065 246 7699

32 [112622;119206] 6584 190019 37 1308

Table 26: openMP decomposition of BS subdomain using 32 threads.

www.dmi.dk/dmi/tr12-20.pdf page 78 of 117

DMI
Technical Report 12-20

Figure 44: Illustration of the 32 threads openMP decomposition for the
North Sea.
Right: Each thread’s domain is displayed using pseudo-colours. Threads are
numbered from 1 to 32 in left to right order with thread No. 1 handling the
deep blue domain to the far left and thread No. 32 the brown domain to the
far right.
Left: Each thread is coloured according to its cost class for the tflow

module. Threads in the most expensive class are red, mid-expensive
are green, and the least expensive threads are blue. Configure option is
--enable-openmp.

www.dmi.dk/dmi/tr12-20.pdf page 79 of 117

DMI
Technical Report 12-20

Figure 45: Illustration of the 32 threads openMP decomposition for the In-
ner Danish Waters.
Right: Each thread’s domain is displayed using pseudo-colours. Threads are
numbered from 1 to 32 in left to right order with thread No. 1 handling the
deep blue domain to the far left and thread No. 32 the brown domain to the
far right.
Left: Each thread is coloured according to its cost class for the tflow

module. Threads in the most expensive class are red, mid-expensive
are green, and the least expensive threads are blue. Configure option is
--enable-openmp.

www.dmi.dk/dmi/tr12-20.pdf page 80 of 117

DMI
Technical Report 12-20

Figure 46: Illustration of the 32 threads openMP decomposition for the
Wadden Sea.
Right: Each thread’s domain is displayed using pseudo-colours. Threads are
numbered from 1 to 32 in left to right order with thread No. 1 handling the
deep blue domain to the far left and thread No. 32 the brown domain to the
far right.
Left: Each thread is coloured according to its cost class for the tflow

module. Threads in the most expensive class are red, mid-expensive
are green, and the least expensive threads are blue. Configure option is
--enable-openmp.

www.dmi.dk/dmi/tr12-20.pdf page 81 of 117

DMI
Technical Report 12-20

Figure 47: Illustration of the 32 threads openMP decomposition for the
Baltic Sea.
Right: Each thread’s domain is displayed using pseudo-colours. Threads are
numbered from 1 to 32 in left to right order with thread No. 1 handling the
deep blue domain to the far left and thread No. 32 the brown domain to the
far right.
Left: Each thread is coloured according to its cost class for the tflow

module. Threads in the most expensive class are red, mid-expensive
are green, and the least expensive threads are blue. Configure option is
--enable-openmp.

www.dmi.dk/dmi/tr12-20.pdf page 82 of 117

DMI
Technical Report 12-20

5 10 15 20 25 30 35 40 45 50
0

200

400

600

800

1000

1200

Figure 48: Illustration of the distribution of column lengths [1 : 50] for the
North Sea domain. Blue bars are the lengths of scalar equations. Green and
brown are the u− and v− momentum equations.

www.dmi.dk/dmi/tr12-20.pdf page 83 of 117

DMI
Technical Report 12-20

10 20 30 40 50 60 70
0

500

1000

1500

2000

2500

3000

3500

Figure 49: Illustration of the distribution of column lengths [1 : 77] for the
Inner Danish Water domain. Blue bars are the lengths of scalar equations.
Green and brown are the u− and v− momentum equations.

www.dmi.dk/dmi/tr12-20.pdf page 84 of 117

DMI
Technical Report 12-20

5 10 15 20
0

500

1000

1500

2000

2500

Figure 50: Illustration of the distribution of column lengths [1 : 24] for the
Wadden Sea domain. Blue bars are the lengths of scalar equations. Green
and brown are the u− and v− momentum equations.

www.dmi.dk/dmi/tr12-20.pdf page 85 of 117

DMI
Technical Report 12-20

20 40 60 80 100 120
0

500

1000

1500

2000

2500

3000

3500

Figure 51: Illustration of the distribution of column lengths [1 : 122] for the
Baltic Sea domain. Blue bars are the lengths of scalar equations. Green and
brown are the u− and v− momentum equations.

www.dmi.dk/dmi/tr12-20.pdf page 86 of 117

DMI
Technical Report 12-20

E Appendix: The work balance with 240 threads

The aim of this appendix is to document the work balance emerging from
dmi omp.F90 when using 240 threads providing us with background infor-
mation when trying to explain the balance issue revealed in the profiles.

Larry Meadows from Intel kindly profiled the application for us. Table 27
and table 28 shows the ten threads with the most and the least work, re-
spectively, according to this profile.

Tables 29–34 show top-five statistics with respect to distribution of most
and least 2D points, 3D points and halo points for the current decomposi-
tion for each nested area as well as for the total setup.

Figures 52–55 show the actual 2D decomposition into the 240 thread for
each of the four nested domains.

Figures 56–59 show the halo decompositions (2D and 3D) when the problem
is decomposed using 240 threads for each of the four nested domains.

www.dmi.dk/dmi/tr12-20.pdf page 87 of 117

DMI
Technical Report 12-20

#T libiomp5.so time

17 10.219385

18 10.585014

19 12.294345

16 12.477155

229 13.162713

228 14.826331

198 15.393062

13 15.84096

14 15.950647

182 16.517377

Table 27: The 10 threads with most work.

#T libiomp5.so time

240 55.127981

158 32.3309

106 31.234013

161 30.594161

90 30.502751

165 30.484465

157 30.374783

119 30.045714

162 29.332732

98 29.314448

Table 28: The 10 threads with least work.

www.dmi.dk/dmi/tr12-20.pdf page 88 of 117

DMI
Technical Report 12-20

Area #T Interval 2D avg 2D 3D avg 3D 2D halo 3D halo

BS 229 [108156;109624] 1468 496 25473 25469 556 5222

BS 239 [116816;118139] 1323 496 25487 25469 192 2028

BS 230 [109625;110851] 1226 496 25484 25469 354 3243

BS 228 [107060;108155] 1095 496 25483 25469 756 8516

BS 240 [118140;119206] 1066 496 16691 25469 62 641

ID 17 [8357;9046] 689 337 6612 6603 1020 4871

ID 12 [5246;5898] 652 337 6605 6603 802 3942

ID 13 [5899;6546] 647 337 6609 6603 874 4306

ID 16 [7719;8356] 637 337 6607 6603 964 4770

ID 18 [9047;9668] 621 337 6615 6603 1044 5178

NS 219 [17214;17378] 164 78 1997 1996 330 2082

NS 220 [17379;17535] 156 78 2019 1996 282 1913

NS 218 [17058;17213] 155 78 2015 1996 350 2578

NS 216 [16801;16950] 149 78 2038 1996 348 2789

NS 221 [17536;17668] 132 78 2040 1996 238 1763

WS 235 [10512;10893] 381 48 431 431 372 200

WS 236 [10894;11270] 376 48 431 431 256 135

WS 234 [10196;10511] 315 48 433 431 398 255

WS 237 [11271;11581] 310 48 351 431 86 46

WS 233 [9929;10195] 266 48 431 431 410 304

ALL 229 1884

ALL 230 1677

ALL 17 1609

ALL 18 1576

ALL 239 1539

Table 29: The 5 threads with most 2D points for each of the 4 subdomains
and the 5 threads with the largest sum of 2D points. Note that 3 of the 5
threads in the ALL top5 is in the top10 profile.

www.dmi.dk/dmi/tr12-20.pdf page 89 of 117

DMI
Technical Report 12-20

Area #T Interval 2D avg 2D 3D avg 3D 2D halo 3D halo

BS 126 [52935;53218] 283 496 25515 25469 1140 50714

BS 93 [42220;42505] 285 496 25509 25469 1148 50607

BS 129 [53862;54152] 290 496 25572 25469 1164 50796

BS 134 [55423;55713] 290 496 25532 25469 1166 50727

BS 90 [41202;41492] 290 496 25470 25469 1166 50714

ID 240 [80757;80885] 128 337 3334 6603 262 3350

ID 237 [80206;80371] 165 337 6619 6603 664 13244

ID 239 [80572;80756] 184 337 6606 6603 546 8694

ID 236 [80018;80205] 187 337 6613 6603 752 12948

ID 168 [61921;62111] 190 337 6610 6603 486 7402

NS 240 [18909;18908] -1 78 0 1996 0 0

NS 239 [18875;18908] 33 78 270 1996 24 148

NS 85 [5776;5824] 48 78 2008 1996 200 4091

NS 100 [6864;6913] 49 78 2010 1996 204 4086

NS 102 [7023;7072] 49 78 2015 1996 204 4104

WS 238 [11582;11581] -1 48 0 431 0 0

WS 239 [11582;11581] -1 48 0 431 0 0

WS 240 [11582;11581] -1 48 0 431 0 0

WS 11 [286;306] 20 48 441 431 88 915

WS 16 [428;448] 20 48 432 431 88 904

ALL 158 593

ALL 90 641

ALL 106 643

ALL 155 660

ALL 79 660

Table 30: The 5 threads with least 2D points for each of the 4 subdomains
and the 5 threads with the smallest sum of 2D points. Note that 3 of the
threads in the ALL top5 are in the top10 of the threads with least work.

www.dmi.dk/dmi/tr12-20.pdf page 90 of 117

DMI
Technical Report 12-20

Area #T Interval 2D avg 2D 3D avg 3D 2D halo 3D halo

BS 129 [53862;54152] 290 496 25572 25469 1164 50796

BS 89 [40819;41201] 382 496 25569 25469 1514 49781

BS 104 [45950;46266] 316 496 25568 25469 1262 50377

BS 151 [60830;61149] 319 496 25567 25469 1284 50809

BS 41 [21870;22258] 388 496 25565 25469 1440 44965

ID 66 [29668;29930] 262 337 6674 6603 1030 13078

ID 230 [78637;78883] 246 337 6671 6603 962 13200

ID 76 [32442;32731] 289 337 6662 6603 1148 12793

ID 232 [79127;79354] 227 337 6654 6603 902 13207

ID 68 [30234;30539] 305 337 6653 6603 1210 12957

NS 230 [18295;18348] 53 78 2042 1996 118 2245

NS 227 [18100;18170] 70 78 2041 1996 136 2113

NS 228 [18171;18235] 64 78 2040 1996 136 2212

NS 221 [17536;17668] 132 78 2040 1996 238 1763

NS 216 [16801;16950] 149 78 2038 1996 348 2789

WS 207 [7584;7643] 59 48 448 431 244 896

WS 1 [1;22] 21 48 448 431 48 490

WS 56 [1622;1663] 41 48 447 431 172 911

WS 47 [1338;1385] 47 48 447 431 194 914

WS 3 [45;69] 24 48 447 431 54 483

ALL 159 34655

ALL 66 34655

ALL 89 34650

ALL 120 34645

ALL 104 34643

Table 31: The 5 threads with most 3D points for each of the 4 subdomains
and the 5 threads with the largest sum of 3D points. Note that the profile
showed that the most expensive threads were: 17, 18, 16, 19, 229, 228,
13, 14, 198, 182 and none of these threads appear in the table above so
a decomposition strategy that aims at an even split in the number of 3D
points is obviously not good enough at these thread counts.

www.dmi.dk/dmi/tr12-20.pdf page 91 of 117

DMI
Technical Report 12-20

Area #T Interval 2D avg 2D 3D avg 3D 2D halo 3D halo

BS 240 [118140;119206] 1066 496 16691 25469 62 641

BS 112 [48515;48840] 325 496 25469 25469 1304 50291

BS 119 [50734;51039] 305 496 25469 25469 1222 50065

BS 17 [8894;9720] 826 496 25469 25469 682 10237

BS 72 [35071;35453] 382 496 25469 25469 1504 49309

ID 240 [80757;80885] 128 337 3334 6603 262 3350

ID 117 [44301;44567] 266 337 6603 6603 892 9762

ID 133 [50009;50406] 397 337 6603 6603 888 7174

ID 138 [52104;52520] 416 337 6603 6603 954 7091

ID 146 [55709;56166] 457 337 6603 6603 794 5403

NS 240 [18909;18908] -1 78 0 1996 0 0

NS 239 [18875;18908] 33 78 270 1996 24 148

NS 155 [11428;11518] 90 78 1996 1996 368 3965

NS 161 [11953;12041] 88 78 1996 1996 352 4012

NS 18 [1367;1440] 73 78 1996 1996 290 3876

WS 238 [11582;11581] -1 48 0 431 0 0

WS 239 [11582;11581] -1 48 0 431 0 0

WS 240 [11582;11581] -1 48 0 431 0 0

WS 237 [11271;11581] 310 48 351 431 86 46

WS 111 [3464;3497] 33 48 431 431 140 872

ALL 240 20025

ALL 239 32363

ALL 238 34094

ALL 237 34472

ALL 212 34511

Table 32: The 5 threads with least 3D points for each of the 4 subdomains
and the 5 threads with the smallest sum of 3D points.

www.dmi.dk/dmi/tr12-20.pdf page 92 of 117

DMI
Technical Report 12-20

Area #T Interval 2D avg 2D 3D avg 3D 2D halo 3D halo

BS 144 [58563;58857] 294 496 25543 25469 1172 50897

BS 98 [43908;44211] 303 496 25537 25469 1216 50896

BS 139 [56987;57280] 293 496 25546 25469 1176 50855

BS 106 [46614;46910] 296 496 25519 25469 1176 50840

BS 138 [56683;56986] 303 496 25509 25469 1210 50839

ID 237 [80206;80371] 165 337 6619 6603 664 13244

ID 232 [79127;79354] 227 337 6654 6603 902 13207

ID 230 [78637;78883] 246 337 6671 6603 962 13200

ID 234 [79584;79801] 217 337 6634 6603 868 13191

ID 235 [79802;80017] 215 337 6608 6603 858 13159

NS 96 [6555;6605] 50 78 2028 1996 208 4127

NS 166 [12374;12470] 96 78 2037 1996 390 4120

NS 104 [7185;7236] 51 78 2023 1996 208 4115

NS 56 [3891;3948] 57 78 2027 1996 236 4113

NS 31 [2312;2367] 55 78 2027 1996 228 4110

WS 24 [644;692] 48 48 443 431 200 924

WS 31 [860;883] 23 48 445 431 100 923

WS 40 [1133;1156] 23 48 445 431 100 922

WS 12 [307;330] 23 48 444 431 100 922

WS 82 [2472;2498] 26 48 446 431 112 920

ALL 79 68503

ALL 98 68383

ALL 90 68338

ALL 82 68214

ALL 85 68212

Table 33: The 5 threads with most 3D halo points for each of the 4 sub-
domains and the 5 threads with the largest sum of 3D halo points. Note
that none of the top5 threads in ALL are in the top10 of the most expensive
threads.

www.dmi.dk/dmi/tr12-20.pdf page 93 of 117

DMI
Technical Report 12-20

Area #T Interval 2D avg 2D 3D avg 3D 2D halo 3D halo

BS 240 [118140;119206] 1066 496 16691 25469 62 641

BS 239 [116816;118139] 1323 496 25487 25469 192 2028

BS 233 [112480;113141] 661 496 25478 25469 170 3231

BS 230 [109625;110851] 1226 496 25484 25469 354 3243

BS 238 [115942;116815] 873 496 25476 25469 258 3422

ID 1 [1;500] 499 337 6605 6603 108 613

ID 2 [501;1011] 510 337 6617 6603 236 1421

ID 3 [1012;1490] 478 337 6606 6603 260 1605

ID 4 [1491;1956] 465 337 6607 6603 250 1692

ID 5 [1957;2439] 482 337 6630 6603 332 2284

NS 240 [18909;18908] -1 78 0 1996 0 0

NS 239 [18875;18908] 33 78 270 1996 24 148

NS 238 [18771;18874] 103 78 1996 1996 76 779

NS 1 [1;64] 63 78 2012 1996 76 1096

NS 237 [18695;18770] 75 78 2008 1996 124 1457

WS 238 [11582;11581] -1 48 0 431 0 0

WS 239 [11582;11581] -1 48 0 431 0 0

WS 240 [11582;11581] -1 48 0 431 0 0

WS 237 [11271;11581] 310 48 351 431 86 46

WS 236 [10894;11270] 376 48 431 431 256 135

ALL 240 3991

ALL 1 5969

ALL 239 10870

ALL 2 12099

ALL 3 13711

Table 34: The 5 threads with least 3D halo points for each of the 4 subdo-
mains and the 5 threads with the smallest sum of 3D halo points.

www.dmi.dk/dmi/tr12-20.pdf page 94 of 117

DMI
Technical Report 12-20

Figure 52: Illustration of the 240 threads 2D openMP decomposition for the
North Sea. Configure option is --enable-openmp.

www.dmi.dk/dmi/tr12-20.pdf page 95 of 117

DMI
Technical Report 12-20

Figure 53: Illustration of the 240 threads 2D openMP decomposition for the
Inner Danish Water. Configure option is --enable-openmp.

www.dmi.dk/dmi/tr12-20.pdf page 96 of 117

DMI
Technical Report 12-20

Figure 54: Illustration of the 240 threads 2D openMP decomposition for the
Wadden Sea. Configure option is --enable-openmp.

www.dmi.dk/dmi/tr12-20.pdf page 97 of 117

DMI
Technical Report 12-20

Figure 55: Illustration of the 240 threads 2D openMP decomposition for the
Baltic Sea. Configure option is --enable-openmp.

www.dmi.dk/dmi/tr12-20.pdf page 98 of 117

DMI
Technical Report 12-20

50 100 150 200
0

50

100

150

200

250

300

350

400

450

500

thread number

S
ur

fa
ce

 h
al

o
si

ze

50 100 150 200
0

500

1000

1500

2000

2500

3000

3500

4000

4500

thread number

H
al

o
si

ze

Figure 56: Illustration of the 240 threads halo decomposition for the North
Sea. Configure option is --enable-openmp. This size of the invisible halo
can regarded as the size of potential cacheline fight that the thread may
have with other threads.
Right: The size of the 3D halo.
Left: The size of the 2D halo.

50 100 150 200
0

200

400

600

800

1000

1200

1400

1600

thread number

S
ur

fa
ce

 h
al

o
si

ze

50 100 150 200
0

2000

4000

6000

8000

10000

12000

14000

thread number

H
al

o
si

ze

Figure 57: Illustration of the 240 threads halo decomposition for the Inner
Danish Water. Configure option is --enable-openmp. This size of the
invisible halo can regarded as the size of potential cacheline fight that the
thread may have with other threads.
Right: The size of the 3D halo.
Left: The size of the 2D halo.

www.dmi.dk/dmi/tr12-20.pdf page 99 of 117

DMI
Technical Report 12-20

50 100 150 200
0

100

200

300

400

500

600

thread number

S
ur

fa
ce

 h
al

o
si

ze

50 100 150 200
0

100

200

300

400

500

600

700

800

900

1000

thread number

H
al

o
si

ze

Figure 58: Illustration of the 240 threads halo decomposition for the Wadden
Sea. Configure option is --enable-openmp. This size of the invisible halo
can regarded as the size of potential cacheline fight that the thread may
have with other threads.
Right: The size of the 3D halo.
Left: The size of the 2D halo.

50 100 150 200
0

500

1000

1500

2000

2500

thread number

S
ur

fa
ce

 h
al

o
si

ze

50 100 150 200
0

1

2

3

4

5

6
x 10

4

thread number

H
al

o
si

ze

Figure 59: Illustration of the 240 threads halo decomposition for the Baltic
Sea. Configure option is --enable-openmp. This size of the invisible halo
can regarded as the size of potential cacheline fight that the thread may
have with other threads.
Right: The size of the 3D halo.
Left: The size of the 2D halo.

www.dmi.dk/dmi/tr12-20.pdf page 100 of 117

DMI
Technical Report 12-20

F Appendix: The work balance with 240 threads

- second round

This appendix contains information on the decomposition used in the runs
in section 11.

Area #T n2db n2de n2h

BS 177 75016 75657 1097

BS 176 74419 75015 1091

BS 178 75658 76440 1079

BS 175 73771 74418 1076

BS 174 73188 73770 1072

IDW 44 17571 17961 780

IDW 45 17962 18346 777

IDW 46 18347 18732 776

IDW 43 17176 17570 773

IDW 47 18733 19115 768

NS 99 7092 7194 207

NS 151 11304 11404 204

NS 136 10037 10137 204

NS 138 10203 10302 203

NS 97 6935 7032 201

WS 230 10813 10881 141

WS 227 10605 10673 141

WS 222 10262 10330 141

WS 224 10399 10466 140

WS 223 10331 10398 140

ALL 65 1796

ALL 46 1779

ALL 61 1774

ALL 45 1773

ALL 67 1770

Table 35: The 5 threads with most 2D halo points for each of the 4 subdo-
mains and the 5 threads with the largest sum of 2D halo points.

www.dmi.dk/dmi/tr12-20.pdf page 101 of 117

DMI
Technical Report 12-20

Area #T n2db n2de n3h

BS 134 56987 57302 56363

BS 128 54945 55257 56240

BS 137 58011 58328 56219

BS 131 55969 56281 56202

BS 143 60082 60400 56070

IDW 239 80399 80640 15320

IDW 238 80143 80398 15245

IDW 91 33918 34204 14652

IDW 237 79897 80142 14556

IDW 92 34205 34490 14515

NS 98 7033 7091 4744

NS 102 7354 7411 4744

NS 77 5485 5542 4733

NS 79 5625 5681 4728

NS 100 7195 7252 4721

WS 12 426 459 1407

WS 19 700 733 1395

WS 5 155 188 1389

WS 26 976 1009 1362

WS 33 1253 1287 1360

ALL 90 75545

ALL 102 75295

ALL 81 75258

ALL 96 75226

ALL 87 75124

Table 36: The 5 threads with most 3D halo points for each of the 4 subdo-
mains and the 5 threads with the largest sum of 3D halo points.

www.dmi.dk/dmi/tr12-20.pdf page 102 of 117

DMI
Technical Report 12-20

Area #T n2db n2de n2d

BS 240 118116 119206 1091

BS 228 108981 110009 1029

BS 227 107992 108980 989

BS 239 117148 118115 968

BS 229 110010 110896 887

IDW 14 5301 5777 477

IDW 20 8012 8476 465

IDW 21 8477 8939 463

IDW 15 5778 6238 461

IDW 16 6239 6695 457

NS 223 17485 17605 121

NS 221 17265 17384 120

NS 220 17150 17264 115

NS 224 17606 17718 113

NS 216 16742 16846 105

WS 238 11372 11442 71

WS 237 11301 11371 71

WS 239 11443 11512 70

WS 236 11231 11300 70

WS 234 11092 11161 70

ALL 240 1504

ALL 228 1451

ALL 227 1393

ALL 239 1363

ALL 229 1314

Table 37: The 5 threads with most 2D points for each of the 4 subdomains
and the 5 threads with the largest sum of 2D points.

www.dmi.dk/dmi/tr12-20.pdf page 103 of 117

DMI
Technical Report 12-20

Area #T n2db n2de n3d

BS 131 55969 56281 28046

BS 128 54945 55257 28043

BS 137 58011 58328 28030

BS 134 56987 57302 28017

BS 108 48181 48500 28000

IDW 169 60056 60298 8449

IDW 170 60299 60548 8310

IDW 168 59805 60055 8280

IDW 240 80641 80885 8108

IDW 239 80399 80640 8090

NS 232 18266 18326 2405

NS 233 18327 18388 2381

NS 234 18389 18450 2342

NS 235 18451 18513 2340

NS 98 7033 7091 2336

WS 1 1 34 701

WS 19 700 733 687

WS 12 426 459 683

WS 5 155 188 675

WS 26 976 1009 666

ALL 117 38024

ALL 113 37975

ALL 108 37695

ALL 102 37676

ALL 90 37621

Table 38: The 5 threads with most 3D points for each of the 4 subdomains
and the 5 threads with the largest sum of 3D points.

www.dmi.dk/dmi/tr12-20.pdf page 104 of 117

DMI
Technical Report 12-20

Area #T n2db n2de n2h

BS 232 112363 112976 135

BS 233 112977 113608 144

BS 234 113609 114254 146

BS 236 114930 115607 151

BS 237 115608 116289 155

IDW 169 60056 60298 190

IDW 168 59805 60055 192

IDW 170 60299 60548 194

IDW 4 1255 1669 195

IDW 167 59539 59804 205

NS 240 18810 18908 39

NS 239 18727 18809 53

NS 232 18266 18326 60

NS 233 18327 18388 61

NS 234 18389 18450 63

WS 239 11443 11512 50

WS 238 11372 11442 53

WS 240 11513 11581 59

WS 1 1 34 70

WS 12 426 459 70

ALL 240 518

ALL 5 630

ALL 2 631

ALL 3 638

ALL 4 643

Table 39: The 5 threads with least 2d halo points for each of the 4 subdo-
mains and the 5 threads with the least sum of 2D halo points.

www.dmi.dk/dmi/tr12-20.pdf page 105 of 117

DMI
Technical Report 12-20

Area #T n2db n2de n3h

BS 240 118116 119206 774

BS 239 117148 118115 2017

BS 238 116290 117147 3182

BS 229 110010 110896 3338

BS 233 112977 113608 3411

IDW 1 1 420 662

IDW 2 421 835 1560

IDW 4 1255 1669 1868

IDW 3 836 1254 1929

IDW 5 1670 2068 1988

NS 240 18810 18908 446

NS 1 1 75 1092

NS 239 18727 18809 1234

NS 225 17719 17819 1801

NS 223 17485 17605 1810

WS 240 11513 11581 2

WS 239 11443 11512 16

WS 238 11372 11442 44

WS 237 11301 11371 72

WS 235 11162 11230 93

ALL 1 6103

ALL 240 9128

ALL 2 12457

ALL 3 14176

ALL 4 16035

Table 40: The 5 threads with least 3D halo points for each of the 4 subdo-
mains and the 5 threads with the least sum of 3D halo points.

www.dmi.dk/dmi/tr12-20.pdf page 106 of 117

DMI
Technical Report 12-20

Area #T n2db n2de n2d

BS 128 54945 55257 313

BS 131 55969 56281 313

BS 134 56987 57302 316

BS 140 59045 59360 316

BS 137 58011 58328 318

IDW 239 80399 80640 242

IDW 169 60056 60298 243

IDW 240 80641 80885 245

IDW 237 79897 80142 246

IDW 236 79650 79896 247

NS 79 5625 5681 57

NS 100 7195 7252 58

NS 102 7354 7411 58

NS 77 5485 5542 58

NS 104 7507 7565 59

WS 1 1 34 34

WS 12 426 459 34

WS 19 700 733 34

WS 26 976 1009 34

WS 5 155 188 34

ALL 113 720

ALL 117 721

ALL 90 733

ALL 102 734

ALL 108 738

Table 41: The 5 threads with least 2D points for each of the 4 subdomains
and the 5 threads with the least sum of 2D points.

www.dmi.dk/dmi/tr12-20.pdf page 107 of 117

DMI
Technical Report 12-20

Area #T n2db n2de n3d

BS 240 118116 119206 17032

BS 228 108981 110009 17419

BS 227 107992 108980 18038

BS 239 117148 118115 18606

BS 229 110010 110896 19951

IDW 14 5301 5777 4376

IDW 20 8012 8476 4529

IDW 21 8477 8939 4536

IDW 15 5778 6238 4649

IDW 16 6239 6695 4689

NS 221 17265 17384 1313

NS 223 17485 17605 1316

NS 220 17150 17264 1405

NS 240 18810 18908 1456

NS 224 17606 17718 1492

WS 240 11513 11581 69

WS 228 10674 10743 70

WS 231 10882 10951 72

WS 232 10952 11021 74

WS 238 11372 11442 75

ALL 240 26665

ALL 228 27119

ALL 227 28067

ALL 239 28803

ALL 229 29618

Table 42: The 5 threads with least 3D points for each of the 4 subdomains
and the 5 threads with the least sum of 3D points.

www.dmi.dk/dmi/tr12-20.pdf page 108 of 117

DMI
Technical Report 12-20

G Appendix: Compiler handling of the momeqs sub-

routine

The aim of this appendix is to summarize how different compilers handle the
most expensive subroutine momeqs present in default momeqs.f90. Being
able to vectorize is quite important to both the Intel Xeon Phi and NVIDIA
GPUs and as revealed below this subroutine was not vectorized when we
began this study, cf. [2](12-18) and [1](42-43) for a proper treatment. Fig-
ure 60, 61 and 62 shows how different compilers handled the original code.
Figure 63, 64 and 65 shows how different compilers handle the rewrite, first
approach whereas figure 66, 67 and 68 show how they handle the rewrites
from the second approach. It should be stressed that the fact that the com-
piler can generate vector code does not imply that it generates good vector
code. All we show here is that each rewrite reveals more information to
the compiler allowing it to generate vector code. The compiler will typically
generate code for different alignments of arrays but there might also be code
for short vector counts and for long vector counts.

momeqs:

138, Invariant assignments hoisted out of loop

166, Memory copy idiom, loop replaced by call to __c_mcopy8

171, Loop not vectorized: data dependency

Loop unrolled 2 times

202, Loop not vectorized: may not be beneficial

266, Unrolled inner loop 4 times

Figure 60: The static analysis done by the PGI compiler, original code.

momeqs_standalone_v0.f90(166): (col. 9) remark: loop was not vectorized: vectorization possible

but seems inefficient.

momeqs_standalone_v0.f90(171): (col. 7) remark: loop was not vectorized: existence of vector dependence.

momeqs_standalone_v0.f90(212): (col. 9) remark: loop was not vectorized: subscript too complex.

momeqs_standalone_v0.f90(269): (col. 26) remark: loop was not vectorized: subscript too complex.

momeqs_standalone_v0.f90(138): (col. 3) remark: loop was not vectorized: not inner loop.

Figure 61: The static analysis done by the Intel compiler, original code.

www.dmi.dk/dmi/tr12-20.pdf page 109 of 117

DMI
Technical Report 12-20

do nsurf=nl,nu

ftn-6286 crayftn: VECTOR MOMEQS, File = momeqs_standalone_v0.f90, Line = 138

A loop starting at line 138 was not vectorized because it contains input/output operations at line 182.

ftn-6213 crayftn: VECTOR MOMEQS, File = momeqs_standalone_v0.f90, Line = 166

A loop starting at line 166 was conditionally vectorized.

ftn-6382 crayftn: VECTOR MOMEQS, File = momeqs_standalone_v0.f90, Line = 171

A loop starting at line 171 was partially vector pipelined.

ftn-6209 crayftn: VECTOR MOMEQS, File = momeqs_standalone_v0.f90, Line = 171

A loop starting at line 171 was partially vectorized.

ftn-6270 crayftn: VECTOR MOMEQS, File = momeqs_standalone_v0.f90, Line = 204

A loop starting at line 204 was not vectorized because it contains conditional code which is more

efficient if executed in scalar mode.

ftn-6332 crayftn: VECTOR MOMEQS, File = momeqs_standalone_v0.f90, Line = 270

A loop starting at line 270 was not vectorized because it does not map well onto the target architecture.

Figure 62: The static analysis done by the Cray compiler, original code.

momeqs:

146, Invariant assignments hoisted out of loop

173, Memory copy idiom, loop replaced by call to __c_mcopy8

182, Loop not vectorized: data dependency

Loop unrolled 2 times

215, Loop not vectorized/parallelized: loop count too small

289, Generated 4 alternate versions of the loop

Generated vector sse code for the loop

358, Generated 4 alternate versions of the loop

Generated vector sse code for the loop

377, Loop not vectorized: may not be beneficial

Figure 63: The static analysis done by the PGI compiler, rewrite first ap-
proach.

momeqs_standalone_v1.f90(173): (col. 9) remark: loop was not vectorized: vectorization possible

but seems inefficient.

momeqs_standalone_v1.f90(182): (col. 7) remark: loop was not vectorized: existence of vector dependence.

momeqs_standalone_v1.f90(289): (col. 7) remark: LOOP WAS VECTORIZED.

momeqs_standalone_v1.f90(345): (col. 27) remark: loop was not vectorized: subscript too complex.

momeqs_standalone_v1.f90(358): (col. 7) remark: PARTIAL LOOP WAS VECTORIZED.

momeqs_standalone_v1.f90(358): (col. 7) remark: PARTIAL LOOP WAS VECTORIZED.

momeqs_standalone_v1.f90(387): (col. 9) remark: loop was not vectorized: subscript too complex.

momeqs_standalone_v1.f90(146): (col. 3) remark: loop was not vectorized: not inner loop.

Figure 64: The static analysis done by the Intel compiler, rewrite first ap-
proach.

www.dmi.dk/dmi/tr12-20.pdf page 110 of 117

DMI
Technical Report 12-20

ftn-6286 crayftn: VECTOR MOMEQS, File = momeqs_standalone_v1.f90, Line = 146

A loop starting at line 146 was not vectorized because it contains input/output operations at line 193.

ftn-6213 crayftn: VECTOR MOMEQS, File = momeqs_standalone_v1.f90, Line = 173

A loop starting at line 173 was conditionally vectorized.

ftn-6382 crayftn: VECTOR MOMEQS, File = momeqs_standalone_v1.f90, Line = 182

A loop starting at line 182 was partially vector pipelined.

ftn-6209 crayftn: VECTOR MOMEQS, File = momeqs_standalone_v1.f90, Line = 182

A loop starting at line 182 was partially vectorized.

ftn-6209 crayftn: VECTOR MOMEQS, File = momeqs_standalone_v1.f90, Line = 289

A loop starting at line 289 was partially vectorized.

ftn-6270 crayftn: VECTOR MOMEQS, File = momeqs_standalone_v1.f90, Line = 313

A loop starting at line 313 was not vectorized because it contains conditional code which is more

efficient if executed in scalar mode.

ftn-6209 crayftn: VECTOR MOMEQS, File = momeqs_standalone_v1.f90, Line = 358

A loop starting at line 358 was partially vectorized.

ftn-6270 crayftn: VECTOR MOMEQS, File = momeqs_standalone_v1.f90, Line = 377

A loop starting at line 377 was not vectorized because it contains conditional code which is more

efficient if executed in scalar mode.

Figure 65: The static analysis done by the Cray compiler, rewrite first
approach.

momeqs:

142, Invariant assignments hoisted out of loop

170, Memory copy idiom, loop replaced by call to __c_mcopy8

182, Generated 4 alternate versions of the loop

Generated vector sse code for the loop

Generated 2 shuffle instructions for the loop

188, Generated 4 alternate versions of the loop

Generated vector sse code for the loop

219, Loop not vectorized/parallelized: loop count too small

282, Generated 4 alternate versions of the loop

Generated vector sse code for the loop

287, Generated 4 alternate versions of the loop

Generated vector sse code for the loop

293, Generated 4 alternate versions of the loop

Generated vector sse code for the loop

299, Generated 3 alternate versions of the loop

Generated vector sse code for the loop

305, Generated 3 alternate versions of the loop

Generated vector sse code for the loop

310, Generated 3 alternate versions of the loop

Generated vector sse code for the loop

317, Generated 3 alternate versions of the loop

Generated vector sse code for the loop

326, Generated 3 alternate versions of the loop

Generated vector sse code for the loop

331, Generated 3 alternate versions of the loop

Generated vector sse code for the loop

334, Generated 3 alternate versions of the loop

Generated vector sse code for the loop

337, Generated 3 alternate versions of the loop

Generated vector sse code for the loop

342, Generated 3 alternate versions of the loop

Generated vector sse code for the loop

345, Generated 3 alternate versions of the loop

Generated vector sse code for the loop

348, Generated 3 alternate versions of the loop

Generated vector sse code for the loop

351, Generated 3 alternate versions of the loop

Generated vector sse code for the loop

388, Generated 3 alternate versions of the loop

Generated vector sse code for the loop

Figure 66: The static analysis done by the PGI compiler, rewrite second
approach.

www.dmi.dk/dmi/tr12-20.pdf page 111 of 117

DMI
Technical Report 12-20

momeqs_standalone_v3.f90(170): (col. 9) remark: loop was not vectorized: vectorization possible

but seems inefficient.

momeqs_standalone_v3.f90(182): (col. 7) remark: FUSED LOOP WAS VECTORIZED.

momeqs_standalone_v3.f90(282): (col. 7) remark: LOOP WAS VECTORIZED.

momeqs_standalone_v3.f90(287): (col. 7) remark: LOOP WAS VECTORIZED.

momeqs_standalone_v3.f90(293): (col. 7) remark: LOOP WAS VECTORIZED.

momeqs_standalone_v3.f90(299): (col. 7) remark: LOOP WAS VECTORIZED.

momeqs_standalone_v3.f90(305): (col. 7) remark: LOOP WAS VECTORIZED.

momeqs_standalone_v3.f90(310): (col. 7) remark: LOOP WAS VECTORIZED.

momeqs_standalone_v3.f90(317): (col. 7) remark: LOOP WAS VECTORIZED.

momeqs_standalone_v3.f90(326): (col. 7) remark: LOOP WAS VECTORIZED.

momeqs_standalone_v3.f90(331): (col. 7) remark: LOOP WAS VECTORIZED.

momeqs_standalone_v3.f90(334): (col. 7) remark: LOOP WAS VECTORIZED.

momeqs_standalone_v3.f90(337): (col. 7) remark: LOOP WAS VECTORIZED.

momeqs_standalone_v3.f90(342): (col. 7) remark: LOOP WAS VECTORIZED.

momeqs_standalone_v3.f90(345): (col. 7) remark: LOOP WAS VECTORIZED.

momeqs_standalone_v3.f90(348): (col. 7) remark: LOOP WAS VECTORIZED.

momeqs_standalone_v3.f90(351): (col. 7) remark: LOOP WAS VECTORIZED.

momeqs_standalone_v3.f90(381): (col. 29) remark: loop was not vectorized: subscript too complex.

momeqs_standalone_v3.f90(388): (col. 9) remark: LOOP WAS VECTORIZED.

momeqs_standalone_v3.f90(142): (col. 3) remark: loop was not vectorized: not inner loop.

Figure 67: The static analysis done by the Intel compiler, rewrite second
approach.

www.dmi.dk/dmi/tr12-20.pdf page 112 of 117

DMI
Technical Report 12-20

ftn-6286 crayftn: VECTOR MOMEQS, File = momeqs_standalone_v3.f90, Line = 142

A loop starting at line 142 was not vectorized because it contains input/output operations at line 197.

ftn-6213 crayftn: VECTOR MOMEQS, File = momeqs_standalone_v3.f90, Line = 170

A loop starting at line 170 was conditionally vectorized.

ftn-6382 crayftn: VECTOR MOMEQS, File = momeqs_standalone_v3.f90, Line = 182

A loop starting at line 182 was partially vector pipelined.

ftn-6209 crayftn: VECTOR MOMEQS, File = momeqs_standalone_v3.f90, Line = 182

A loop starting at line 182 was partially vectorized.

ftn-6209 crayftn: VECTOR MOMEQS, File = momeqs_standalone_v3.f90, Line = 282

A loop starting at line 282 was partially vectorized.

ftn-6004 crayftn: SCALAR MOMEQS, File = momeqs_standalone_v3.f90, Line = 287

A loop starting at line 287 was fused with the loop starting at line 282.

ftn-6004 crayftn: SCALAR MOMEQS, File = momeqs_standalone_v3.f90, Line = 293

A loop starting at line 293 was fused with the loop starting at line 282.

ftn-6004 crayftn: SCALAR MOMEQS, File = momeqs_standalone_v3.f90, Line = 299

A loop starting at line 299 was fused with the loop starting at line 282.

ftn-6209 crayftn: VECTOR MOMEQS, File = momeqs_standalone_v3.f90, Line = 305

A loop starting at line 305 was partially vectorized.

ftn-6209 crayftn: VECTOR MOMEQS, File = momeqs_standalone_v3.f90, Line = 310

A loop starting at line 310 was partially vectorized.

ftn-6209 crayftn: VECTOR MOMEQS, File = momeqs_standalone_v3.f90, Line = 317

A loop starting at line 317 was partially vectorized.

ftn-6209 crayftn: VECTOR MOMEQS, File = momeqs_standalone_v3.f90, Line = 326

A loop starting at line 326 was partially vectorized.

ftn-6382 crayftn: VECTOR MOMEQS, File = momeqs_standalone_v3.f90, Line = 331

A loop starting at line 331 was partially vector pipelined.

ftn-6209 crayftn: VECTOR MOMEQS, File = momeqs_standalone_v3.f90, Line = 331

A loop starting at line 331 was partially vectorized.

ftn-6382 crayftn: VECTOR MOMEQS, File = momeqs_standalone_v3.f90, Line = 334

A loop starting at line 334 was partially vector pipelined.

ftn-6209 crayftn: VECTOR MOMEQS, File = momeqs_standalone_v3.f90, Line = 334

A loop starting at line 334 was partially vectorized.

ftn-6382 crayftn: VECTOR MOMEQS, File = momeqs_standalone_v3.f90, Line = 337

A loop starting at line 337 was partially vector pipelined.

ftn-6209 crayftn: VECTOR MOMEQS, File = momeqs_standalone_v3.f90, Line = 337

A loop starting at line 337 was partially vectorized.

ftn-6382 crayftn: VECTOR MOMEQS, File = momeqs_standalone_v3.f90, Line = 342

A loop starting at line 342 was partially vector pipelined.

ftn-6209 crayftn: VECTOR MOMEQS, File = momeqs_standalone_v3.f90, Line = 342

A loop starting at line 342 was partially vectorized.

ftn-6382 crayftn: VECTOR MOMEQS, File = momeqs_standalone_v3.f90, Line = 345

A loop starting at line 345 was partially vector pipelined.

ftn-6209 crayftn: VECTOR MOMEQS, File = momeqs_standalone_v3.f90, Line = 345

A loop starting at line 345 was partially vectorized.

ftn-6382 crayftn: VECTOR MOMEQS, File = momeqs_standalone_v3.f90, Line = 348

A loop starting at line 348 was partially vector pipelined.

ftn-6209 crayftn: VECTOR MOMEQS, File = momeqs_standalone_v3.f90, Line = 348

A loop starting at line 348 was partially vectorized.

ftn-6382 crayftn: VECTOR MOMEQS, File = momeqs_standalone_v3.f90, Line = 351

A loop starting at line 351 was partially vector pipelined.

ftn-6209 crayftn: VECTOR MOMEQS, File = momeqs_standalone_v3.f90, Line = 351

A loop starting at line 351 was partially vectorized.

ftn-6332 crayftn: VECTOR MOMEQS, File = momeqs_standalone_v3.f90, Line = 356

A loop starting at line 356 was not vectorized because it does not map well onto the target architecture.

ftn-6382 crayftn: VECTOR MOMEQS, File = momeqs_standalone_v3.f90, Line = 388

A loop starting at line 388 was partially vector pipelined.

ftn-6209 crayftn: VECTOR MOMEQS, File = momeqs_standalone_v3.f90, Line = 388

A loop starting at line 388 was partially vectorized.

Figure 68: The static analysis done by the Cray compiler, rewrite second
approach.

www.dmi.dk/dmi/tr12-20.pdf page 113 of 117

DMI
Technical Report 12-20

H Appendix: The PanEU setup

This appendix presents the largest experimental setup that we run today,
namely the pan-eu setup. This setup shows that we need to refine our cur-
rent decomposition heuristics (both openMP and MPI) since the size of the
different domains differ a lot and without improved heuristic the smaller
domains will eventually prevent scaling. Table 43 and table 44 summarizes
the setup shown in figure 69. The Ir number for this setup is 182.1. Af-
ter the pointer rewrites and the following cleanup in global arrays this case
can now run in approximately 9 Gb of memory. With the asynchronous IO
server one should then be able to fit the whole setup into a system with say
a Sandy Bridge CPU handling the IO and a Xeon Phi coprocessor handling
the computations.

NA NS MS WS IDW BS

resolution [n.m.] 3.0 3.0 3.0 1.0 0.5 1.0

mmx [N/S] 859 348 341 149 482 720

nmx [W/E] 341 194 567 156 396 567

kmx 78 50 84 24 77 122

gridpoints 22847682 3375600 16241148 557856 14697144 49805280

iw2 104527 18908 73746 11581 80884 119206

iw3 5647632 479083 4214803 103441 1583786 6112717

fiw3 25% 14.2% 26.0% 18.5% 10.8% 12.3%

ϕ [latitude] 65 52 30N 65 52 30N 47 16 30N 55 41 30N 57 35 45N 65 53 30N

λ [longitude] 16 22 28W 04 07 30W 5 27 30W 06 10 50E 09 20 25E 14 35 50E

∆ϕ 0 3 0 0 3 00 0 3 0 0 1 00 0 0 30 0 1 00

∆λ 0 5 0 0 5 00 0 5 0 0 1 40 0 0 50 0 1 40

dt [sec] 10.0 10.0 10.0 10.0 10.0 10.0

maxdepth [m] 6087.69 696.25 5066.49 53.60 78.00 398.00

min ∆x 4029.34 3787.40 5559.78 1740.97 827.62 1261.65

CFL 0.798 0.319 0.708 0.250 0.632 0.728

Ir 58.6 1.8 39.9 0.4 12.0 46.3

Table 43: The first 6 sub-domains of the testcase termed paneu.

www.dmi.dk/dmi/tr12-20.pdf page 114 of 117

DMI
Technical Report 12-20

GIBR DRE BOSE

resolution [n.m.] 1.0 0.3 0.1

mmx [N/S] 119 90 108

nmx [W/E] 145 120 150

kmx 66 35 34

gridpoints 1138830 378000 550800

iw2 8656 1415 2535

iw3 390316 27765 59123

fiw3 34% 13.6% 10.1%

ϕ [latitude] 36 44 30N 40 29 50N 41 14 55N

λ [longitude] 06 24 28W 26 10 10E 28 00 03E

∆ϕ 0 1 00 00 00 20 00 00 10

∆λ 0 1 00 00 00 20 00 00 06

dt [sec] 5 5 2.5

maxdepth [m] 1531.97 81.69 77.70

min ∆x 1485.09 469.76 139.34

CFL 0.742 0.533 0.767

Table 44: The MS subdmain have another 3 subdomains enclosed amounting
to a total of 9 subdomains.

www.dmi.dk/dmi/tr12-20.pdf page 115 of 117

DMI
Technical Report 12-20

gib

Figure 69: The 9 subdomains that make up the pan-eu testcase.

www.dmi.dk/dmi/tr12-20.pdf page 116 of 117

DMI
Technical Report 12-20

References

[1] Per Berg and Jacob Weismann Poulsen. Implementation details for
HBM. DMI Technical Report No. 12-11. Technical report, DMI, Copen-
hagen, 2012.

[2] Jacob Weismann Poulsen and Per Berg. More details on HBM - general
modelling theory and survey of recent studies. DMI Technical Report
No. 12-16. Technical report, DMI, Copenhagen, 2012.

Previous reports

Previous reports from the Danish Meteorological Institute can be found on:
http://www.dmi.dk/dmi/dmi-publikationer.htm

www.dmi.dk/dmi/tr12-20.pdf page 117 of 117

