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Tuning the implementation of the radiation scheme ACRANEB2

Jacob W. Poulsen and Per Berg
IT department, DMI
Copenhagen, Denmark
Email: jwp@dmi.dk, per@dmi.dk

Abstract—It is not trivial to write code that leads to efficient
performance on modern hardware and it becomes even more
involved if the performance has to beportable and competitive
across different architectures. This paper describes the @ark
that was done to improve the performance of the radiation
dwarf pertaining to the ESCAPE! project embracing the
well-known IFS and ALADIN-HIRLAM numerical weather
prediction models. The overall idea is to demonstrate thathe
implementation of the radiation scheme known as ACRANEB2
can indeed be refactored so that it runs with competitive per
formance on modern througrp/‘put architectures such as the 2nd
generation Intel® Xeon Phi'" processors (codenamed Knights
Landing™) and accelerator architectures from NVIDIA. We
show that the refactored codes run significantly faster on KN
and on NVIDIA P100 than they run on the strongest dual-
socket Intel® Xeon systeni available on the market today. In
addition, the refactored code also runs significantly fastethan
the original code on all the dual-socket Intel Xeon systems
used during this study. The parallelism itself is expressed
using directive based approaches, OpenMP and OpenACC,
respectively. We show that competitive performance is obiaed
by completely different code bases and hence that performae
on a given target architecture comes from the source code
within the scope of the directives rather than from the diredives
themselves. The performance results are presented atme-
to-solution and energy-to-solution and to be fair focus is on
comparing performance across hardware released in 2016. Eh
results of the refactored implementations are also relatedo
Moores law and cross-compared with the evolution of the
de-facto standard processor benchmarks HPL and Stream.
Finally, we show how one have to use phenomenological
modeling in order to apply the roofline model in cases like
this where transcendental functions are heavily used.

Keywords-Performance, SIMD, OpenMP, OpenACC, GPU,
HPC, Exascale, NWP, ESCAPE, Xeon Phi, KNL, NVIDIA
P100, roofline, Energy efficient computing.

I. INTRODUCTION

intermittently? as dictated by the computational demands of
the current operational production, and this desire irsgea
with increasing resolution but the cost of doing so is simply
too high today. This is the overall motivation for choosing
the radiation as the physics component in the ESCAPE
project. There are several schemes available for radiation
today and the scheme chosen for this study is currently
used in production setups in the ALADtINommunity and
one that is planned for near-future setups locally where
HARMONIE-AROME is used, cf. [1]. The baseline version
of this dwarf consists of the upstream ACRANEB2 code
extracted from the full IFS code base as a stand-alone
application but with loop and index ordering interchanged
compared to the upstream implementation. Bh&C of the
baseline dwarf is around 6.000The original ACRANEB2
scheme is described in [9] and [6]. Moreover, the upstream
data structures and loop nesting is described in the IFS
documentation, cf. [5].

The baseline implementation covers multiple radiation op-
tions of different complexity, and the original ACRANEB2
algorithm has support for selective intermittency too.sThi
means, that the upstream code includes segments that are
more or less frequently visited during a forecast simula-
tion and describes more or less advanced physics, cf. the
fourth bar in figure 1. For the present study, however, we
have chosen to dive into the implementation of the most
computationally expensive part, i.e. we choose the most
challenging path through the call tree as seen both from a
radiation science and a computer science perspective. This
corresponds to the third bar in figure 1.

Throughout this paper we use a 400x400x80 test case,
i.e. with 400 points in both horizontal directions and 80
layers in the vertical. This corresponds to the largestiast
we could run with the baseline code on a single 64 GB node.

Radiation physics is one of the most time-consumingThe target problem size for real operational, regional node
physics components in NWP today, cf. figure 1. It is annow and in near future has up to about 3 times as many
interesting component of the physics due to its intensity inpoints in each horizontal direction and 65-80 layers; for
floating point operations which is unusual in NWP modelsexample, the largest operational setup locally at ourtirtsti
which tend to be bound primarily by memory bandwidth. is 1200x1080x65 at present. The refactored code can easily
There is a strong desire from a physics perspective to run ra-

diation physics at every timestep of the model instead of onl

http://www.hpc-escape.eu
2Intel Xeon E5-2699v4.

3In current HARMONIE-AROME configuration the radiation plgs is
updated only every 12 timestep corresponding to 15 minutes intervals in
the model.

“http://www.umr-cnrm.fr/aladin/spip.php?article304
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Figure 1. Fractional split of compute time spend in radiatfed) and in
all remaining parts (blue) at a node count correspondingréabproduction
run and with settings corresponding to a real production Tine red area
will increase as the number of nodes decreases and decre#ise rumber
of nodes increases. The first bar represents the curremt watre the
Morcrette radiation scheme (see [4]) is only called everj1fimestep

due to the computation resources required for each call. sBeend bar
represents the split if the Morcrette radiation scheme vedled at every
timestep and clearly shows why this is not feasible. Thelthar represents
the split when the full ACRANEB2 scheme is run at every tirepsand

finally, the fourth bar represents the split in the ACRANERBR&me using
the newly developed algorithm with intermittency that a#ofor a few

expensive timesteps and several less expensive timesthpstotal time

spend running the new ACRANEB2 with intermittency is morgaative

than running the current operational algorithm at everyesitap but still

more expensive than can be afforded in production runs.

source languages as well as in the target ISA and its runtime
environment. Thus, we can not allow that results describing
the physics are changed as a consequence of our changes
in the implementation. Moreover, we will require that all
results, both with respect to the physics and more technical
measures like time-to-solution and energy-to-solutiae, a
reproducible. Needless to say, we actually rabterectness
and reproducibility higher than performance gain, and we
strive towards securing these properties at all times. Of
course, results might change numerically due to e.g. choice
of different math libraries, use of SIMD reduction instead
of scalar reduction, etc., but we always verify that we obtai
identical results from one code release to the next, also
across platforms, by performing "safe math” experiments.
We also verify measurements like timings by repeating the
experiment many times.

Thus,performance tunings a process where we tweak the
implementation and its build and run environment in ways
that allows us to benefit most from the silicon provided by
a given architecture vendor, keeping the results fixed. We
illustrate this in figure 2 where we seek an implementation
I within one of the two circles in the subset of the left
hand side that with a given set of build)(and run-time
(r) environment will attairinf; ;, .{725(r(b(I)))} for target
1 and target 2, respectively. The figure also hints that the

run such cases (not shown in this paper) on a regular 64 GBlea of portable performance is a contradiction in terms
node. Moreover, the problem as layed out in our approac@nd we will elaborate further on this in section V. The
is embarrassingly parallel hence scaling to more nodes i¥al challenge, however, is that the infimum is not known
trivial and will not be considered in this paper. beforehand and the tuning process will consequently attemp
The paper is organized as follows: First, we define ourt0 take steps that will maké2S decrease until one runs
perception of performance and explain the performanc@ut of ideas or there is no more time to improve it further.
improvement process in general terms in section Il. InPerformance modelling is very useful in setting reasonable
section Il we describe our initial refactoring and with a €xpectations and guiding this process, cf. appendix A.
detailed presentation of the performance model used during The target architectures that we aim at in this study
the Study p|aced in appendix A. In section IV we presenthave many similarities from an abstract point of view (See
the basic data structures and the parallelization of the.cod€-9. [8]) and this allows for a portable strategy towards
Section V reveals the performance results obtained on theptimization of the implementation. However, they avet
different target architectures by codes specifically edaft identical and the devil is in the details. Eventually, one
towards performance on each target, and we also descrii@th will improve performance further on one architecture
some further refactorization steps needed to bring the GPBut will impair the performance on another. This is an
on a similar performance level as the Xeon Phi. Finally,important fact that requires special attention when orestri
based on our work, we draw some conclusions in section V{0 compare performance across different platforms. The fac
and suggest direction for future model development inthat the strategy towards optimization has many simisiti
section VII. Build and run specifications used throughout ismakes it very tempting to approach the refactorization task
placed in appendix B together with some system referencesing a classical computer science approach with absiracti
numbers. layers etc. We tend to believe that this is a wrong approach
for legacy codes like the one considered here since the
restructuring required is simply too involved and there are
It seems reasonable to define what we mearpésfor-  no easy routes but analyzing the entire implementation line
manceand to specify how we can measure it. In this contextby line if the goal is to seriously improve the performance.
performanceis time-to-solution7'2S, i.e. the seconds it We tend to think of the continued improvement process
takes to complete a given task. Thatli$yPUT is fixed and as depicted in figure 3. Imagine that you first shrink the
QUTPUT is fixed by the algorithm itself and the freedom algorithm representation to a minimal amount of memory
comes solely with the implementation of the algorithm in thetransfers. Then the refactorization will attempt to organi

Il. PERFORMANCE
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Figure 3.  The tuning process. The aim is reducii@S as much
as possible. Extra memory transfers need be traded for mtvib S
vectorization. Splitting into more sub-loops implies ieased temporary
storage to provide an interface between these which agaitiesnextra
memory transfers that could have been handled in registest keast in
short latency cache parts.

90 assumed-shape interfaces and that the stack memory
usage was trimmed considerably. The primary elements to
the refactorization process were ensuring contiguous; data
reduce overall stack pressure by turning local temporary
2D/3D variables into 1D/2D variables and even in a few
cases into scalars by aligning computations properly such

Implementations (I)  Silicon target 2 (T2S)

Figure 2. Implementation choices. The left hand side ilaiss the set
of all possible implementations of a given algorithm withatofreedom

in the choice of programming languages, parallelizatiordet® etc. The
two subsets on the right hand side illustrate the generateéscfor two
specific targets as a result of the implementation itsE)f the build and
link instructions §) and the run-time environment){ The aim is to reach
infimum; circles show that this is not attained by a unique loioration.

that temporary storage could be reduced or even omitted
completely; the largest stack arrays was moved to the heap;
proper NUMA-initialization of the heap arrays; collapsing

loops over the outermost horizontal index; assuring no

side effects in local functiongp(ir e in Fortran); constant

variables declared as constarps( anet er in Fortran).
all the loops such that parallel exposure is maximized while Further refactorization consisted of reducing the memory
keeping the temporary memory overhead in storage andverhead and of pushing all branching out of the loops such
in transfers due to the implementation as low as possiblghat choices between different physical conditions areemad
Eventually, trading additional memory transfers requied from a top level of the dwarf. From the emerging more bare
further splitting of the loops will not out-weight the bertsfi implementation we began to shuffle computations around
of added parallelism and the process will stop. This turningo maximize the parallel exposure within each column,
point differs from one target architecture to the next. Henc guided by recognition of commonly occurring computational
the tuning process is much like the famous banana problenpatterns, cf. also appendix A. That is, we organized all

Worldwide, NWP codes are being refactored towardghe vertical loops into sub-loops that had no dependencies

performance on the modern throughput architectures, £f. [7and those that did. Sub-loops with dependencies are those
Since different versions of the source codes optimized fothat do conventional operations such as prefix-sums and
different target architectures are needed and when eveieductions. All sub-loops without dependencies was SIMD
different generations of hardware are considered, a faivectorized and SIMD tuned, and the ones with depen-
comparison of performance results is a challenge and ca@iéncies were vectorized if it seemed beneficial, e.g. using
often be misleading. We will keep this issue in mind whenOpenMP SIMD reductions. It should be mentioned that
presenting performance results in section V. prefix-sum operations can indeed be parallelized but the

parallel algorithms for prefix-sums do not work well for the

[Il. REFACTORIZATION STEPS trip-counts of relevance to our applications and they were

The initial optimization work aimed at ensuring a proper
threading of the code. We used our usual SPMD approach tg
complete this, cf. [10]. This required a transition to Fantr

8For complicated loops, this does not happen automaticatlyome needs
tweak the code to allow the compiler to translate it intficeint SIMD
instructions.



R . . Time portions of ACRANEB2
left as minimized non-SIMD parallelized vertical loops. .,

Moreover, despite the fact that parallel prefix-sum opergti -
are easily expressed using threads there are currently r — e E——
directives in the OpenMP specification that allow for such = Rest

TRANST

expressions so one would have to express them explicitly, « iy
The result of these efforts are summarized in figure 4 ane el O
figure 5. ° il

Figure 4 shows the classification of sub-components the = fatloop
resulted from our refactorization efforts. The time spend 2
in the full ACRANEB2 code (dark blue bar) is divided
between the thermal radiation scheme, catleédnst (yel- O coue TRANST & est PR, @ loops
low), and all the rest of the radiation physics (red). The
transt is clearly the most time-consuming part of the full Figure 4. _Classification of the main loops resulting from miial tuning

. . . analysis. The bars indicates the portion of time that is dpethe respective

ACRANEB2 code. Diving into theé r anst component in  code fragments on Xeon. See text for explanation.
the third bar, we separate that into three parts; a desogndin
part (1), an ascending part (2), and a triangular part (3)
The triangular part, which we shall denote byanst 3
in the following, is clearly the most expensive component,
corresponding to~80% of the total ACRANEB2 compute
time on a dual-socket Xeon E5-26xxv4. The fourth bar
shows our final classification of the triangular part intorgy ti
preparation loop, a relatively expensive prefix-sum loop, &
huge loop with high arithmetic intensity and referred to as
the fat loop from now on, and a collection of smaller SIMD
loops and non-SIMD loops.

Inside the fat loop, a large number of simple mathematica
operations and transcendental functions as shown in table E5-2697-v4 KNL-7250
are executed and 33 memory transfers of double precision

data are performed. Since it is a triangular double nestefigure 5. Time-to-solution when running the complete ACRZS3® dwarf
on a dual-socket Xeon (72 threads; left) versus singleetoékon Phi (272

|00p the total trip count iS((Sl * 8_0)/2 = 3_240 in our threads; right). There is almost2x difference in the overall performance
80 layers test case for each horizontal point so the totabut there are individual performance differences seen divitual sub-

FLOP-count becomes very large for this part of the code. components.

The cost of splitting the r anst component into these
sub-components is that the preparation loop must be re-
peated in each of the three parts (1), (2) and (3). HowevepReen included in our major refactoring at all and in the
this preparation loop was straightforward to SIMD vecteriz 9reentranst 3_rest part that has been refactored but
and as a result time spend here was brought down to a#fill contains prefix-sum and reduction patterns.
insignificant contribution in the full context as indicatbyl The initial refactorization efforts allowed us to simplify
the very thin slice which can hardly be seen on top of thethe dwarf and confine our focus to the anst kernel and
fourth bar in figure 4. This is indeed well spent since itthe transt 3 kernel with aSLOC around 1600 and 700,
serves for preparing coefficient arrays for the more invblve respectively. These kernels have been ported and tuned to th
loops that follow, which can then concentrate on doing thefarget throughput architectures (Intel Xeon Phi and NVIDIA
work they are meant to do.

Figure 5 shows that our general refactorization efforts

ime’

percent

| Mrest
mtranstl
Otranst2

| Wtranst3 rest
Wtranst3_loop

Time [s]

Table |

already look very promising on KNL, i.e. it was suffi- COUNT OF OPERATION$FUNCTIONS INSIDE THE FAT LOOP
cient to SPMD thread parallelize the computations over t_he operation/ | count
columns and SIMD vectorize over the vertical layers within function
each column in order to obtain competitive performance max 24
. add 454
when running the complete dwarf on KNL. The actual — 208
time portions of the individual sub-components are slightl div a8
different on Xeon Phi than on Xeon: As expected, the non- sart 18
SIMD vectorizable parts become relatively more expensive I‘;Xp 1;‘
on Xeon Phi supporting AVX-512 than on Xeon supporting p(?W 55

AVX2, and this appears as the bluest part that has not



GPUs) of the ESCAPE project and have been evaluated more bulky thread-local stack frame. Needless to mention
against various SKUs from the Intel Xeon E5-26xxv4 serieghis transition will come at a cost of higher thread stack
of CPUs released in 2016. pressure so it would only work well up to a certain size.
One of the most important steps during the continuedVith fewer threads this may not be an issue but as the
refactorization process was to reorganize the loops swath thnumber of threads increases so does issues related to this
the fat loop got a constant trip count. That is, in our 80overhead, making it a competitive candidate on multi-core
layers test case, for the triangular double nested loop witlarchitectures with relatively few threads per node but less
80 iterations of varying trip count from 1 to 80, we paired attractive on modern many-thread architectures. Thud, wil
short and long loop lengths and thereby obtained a constamie benefit from trading the overhead introduced with the
trip count of 81 in the inner most loop but only half as manyadded stack pressure with that of faster computations in the
iterations. small loops that cannot be SIMD vectorized with the new

data layout? This is an open question that we will address
IV. DATA STRUCTURES AND PARALLELIZATION in section V

Figure 6 shows the data-structure layout from the up-
stream code as documented in the IFS documentatio15,“{"g$‘giu;:n{g°;f”g<---vi“pvi'°va'°”vk'evv--->

cf. [5], whereas figure 7 shows the new data-structure layoyt real(kind=iprb), intent(im  :: al(kion)

real (kind=jprb), intent(in) 1 a2(klon, klev)

that we have mainly focused on in this paper. The upstrearn real (kindsjpro). intent(inout) :: a3(kion, 0:klev)
IFS thread parallelization is as shown in figure 8 dong ! lccal variables i

real (ki nd=j prb) 1 11(kl on)

size klon
size klonxkl ev
si ze klonx(kl ev+1)

size klon

over the horizontal with a block granularity of tunable size| rea (kind=iprt) fol2kon kiev) ! size klonklev
npr ona. Our new thread para’”ellzatlon’ Shown n flgure .9’ iio‘j)lrfesil),l!(;)gs .neSl! vertical Ioop with Ioopfcgrried dependenci es
is done over the horizontal too but with the fine granularity] ¢ itensitowiup ! no lecp-carried dependencies

of a single horizontal point. It is important to stress that as(iton jlev)= ...

npr oma=1 is notthe same as a granularity of a single hori-| _ erdd

zontal point. Both thread parallelization approaches areed

using outlined constructs in order to minimize synchroniza
tions costs and thus allowing t_he _threads maximum freedorﬁigure 6. Fragment of the original ACRANEB2 code using Faort77
for parallel work. The refactorization can be summarized asixed-size dummy argument declarations implying that teai@rguments

e a significant reduction in the thread-local stack pressurénust be contiguous in memory. If the actual argument is natight not be
contiguous, the semantics of the language will force thepilemto copy

« a more fine grained thread pa'_‘a"el d_ecomposmon_unithe actual argument array to a contiguous temporary arreybaok upon
« full exposure of yet another dimension of parallelism return. The innermosit! on-loop will be SIMD vectorizable by definition

end subroutine foo_orig

in the algorithm itself and this holds for all physics subroutines whereas the mastj | ev-
) ) . loop often will suffer from loop carried dependencies. Ntie artificial
The first item allows us to run far more threads simul-memory overhead for all stack variableg, | 2, . . . at this point in the

taneously without hitting stack limits; this is mecessary call-tree and beyond imposed by this way of implementingltiup nests
condition that must be met if one wishes to scale the run¥'n the physics.

to many threads. The second item allows a better load

balancing between the threads and the importance of this V. PERFORMANCE RESULTS

again increases at scale. The third item which carefully we confine ourselves to present tiperformanceat-
exposes the vertical parts that have no dependencies afgined on the reducetlr anst 3 kernel. We have verified
hence can run in parallel from those that have dependenciggot shown here) that the results and the timings for the
is anothemecessargondition for running on highly parallel t r anst 3 component are the same if we perform measure-
architectures, i.e. all parallelism inherited in the schenust  ments on this reducetr anst 3 kernel or on the more
be explicitly exposed to the compiler. Finally, the sizeftdt jnyolvedt r anst kernel or on the fullacr aneb2 dwarf,
sub-chunks with dependencies have been minimized to allowo that there is no need to complicate things more than
for as much parallelism as possible. necessary. Table Il lists the architectures and SKUs used
At this point it seems reasonable to consider if we couldin this study, and throughout this paper we shall use the

benefit from reintroducing the blockgd on-approach al-  apbreviations shown in the first row of the table.

lowing the non-SIMD innermost sub-loops to SIMD vector- Table Il

ize by re-interchanging the loops. Figure 10 is an attempt to LIST OF ARCHITECTURES

integrate our improvements with the upstream data strestur SNB SOW KNLC T P100
assuming that the complete interchange of array indices ;i arch SandyBridge | Broadwell | KnightsLanding | Pascal
is too time-consuming to do for the whole physics code| Released 2012 2016 2016 | 2016
base at once and that one therefore in practise must do>KYs ES-2680v1 Eg:ggg;xi ;gég P100

the refactoring component by component. The cost of this
integrated approach compared to our proposal in figure 7 is



subroutine foo_new(...,jup,jlow klon,klev,...) program bar _new
| argunents ax
real (kind=jprb), intent(in) tooal(:) ! size klon ! $OVP PARALLEL DEFAULT(shar ed)
real (ki nd=j prb), intent(in) t:oa2(:,:) ! size klevxklon call acraneb2_numainit(...)
real (kind=jprb), intent(inout) :: a3(0:,:) ! size (klev+l)*klon ' $OVP END PARALLEL
.c;).mi guous :: al, a2, a3 ! $OVP PARALLEL DEFAULT( shar ed)
call acraneb2( ....)
! local variables |* ! $OVP END PARALLEL
real (ki nd=j prb) o1 ! size 1
real (ki nd=j prb) to12(klev) ! size klev end program
i .iypi cal |oop nest subroutine acraneb2(...)
!'$acc parallel &
I'$acc present(...) call donp_get_domain(...,jlow jup) ! get thread bounds
I'$acc | oop gang private(...)
do jlon=jlow,jup ! no loop carried dependencies do jlon=jlow,jup ! chunk of horizontal |oop handled by this thread
I'$acc | oop vector do jlev=0, klev ! innernost vertical |oop
do jlev=0,klev ! vertical sub-loop with no |oop carried dependencies N
o enddo
a3(jlev,jlon)= ... enddo
ena;:ié cal | acraneb_subr(jlowjup,...) ! thread local calls to subroutines
!'$acc | oop seq .
do jlev=0,klev ! vertical sub-loop with loop carried dependencies end subroutine acraneb2
a3(jlev,jlon)= ...
33""" Figure 9. Fragment of how threading is implemented in our cede.
endao . . .
o Note that it is designed such that the load can be balancedauitie
end subroutine foo_new threads based on the local properties of ACRANEB2 (or othrepgr-

ties that one might wish to expose to the implementationpuph the

) . donp_get _domai n call. A straight-forward balancing would simply
Figure 7.  Fragment of our new ACRANEB2 code using Fortran-90 gistribute thej | on-iterations evenly among the threads but for some
assumed-shape dummy argument declarations and withhateged 1oop  hysics component this could give rise to ill-balanced Idgs, the design
ordering. The bulk of the computations in the innermpkev-loop are allows for flexible hooks to balance the load.

SIMD vectorizable but some are not as shown here. There amlonon
dependencies so the outermgston-loop is thread parallelizable by

definition and each thread will handle its own contiguousnéhof the subroutine foo_nprona(....jup,jlowkionkiev,...)
global loop over all columns. Note that the artificial stacledead caused Le:{?trﬁgt-fp?b) intent(in)  :: al(c) | size Kion
by the original loop nest ordering is completely gone now. real (kind=jprb), intent(in)  :: a2(:,:) ! size klon+klev
real (kind=jprb), intent(inout) :: a3(:,0:) ! size klon*(klev+1)
contiguous :: al, a2, a3
program bar _ol d N
! local variables |*
I'$onp parallel do schedul e(dynanic,1) private (jkglo,ibl) real (ki nd=j prb) :: 11(nproma) ! size nproma
do j kgl 0=1, kgpconp, npr oma real (ki nd=j prb) :: 12(nproma, klev) ! size npromaxklev
i bl =(j kgl 0-1)/ nproma+1
call foo_old(al(1,1,ibl), ....) ! F77-style do j=jlowjup, nproma ! no |oop carried dependencies
enddo iup = nmin(nprona,jup+l-j)
. do jlev=0, klev ! vertical sub-loop with no loop carried dependencies
end program do i=1,iup ! no |oop carried dependencies
jlon =j +i -1
subroutine foo_old(al,jlow,jup,klev, nproma...) 12(i,jlev)= ...
real (kind=jprb),intent(inout) :: al(nprons, O:klev) e
cen enddo
real (ki nd=j prb) 22 11(npronm) ! size nproma enddo
real (ki nd=j prb) :: 12(npronmm, kl ev) ! size npronmaxkl ev do jlev=0, kl ev ! vertical sub-l1oop |loop carried dependencies
. do i=1,iup ! no | oop carried dependencies
do jlev=0, kl ev ! vertical loop with loop carried dependencies jlon =j +i -1
do jlon=jlow jup ! innernpbst |oop wthout |oop carried dependencies a3(jlon,jlev)= ... 12(i,jlev)
enddo enddo
enddo enddo
cen enddo

end subroutine foo_nproma

Figure 8. Fragment of how threading is implemented in upstré~S and

HIRLAM-ALADIN codes. Unfortunately, the dwarf that we reed for Figure 10.  Fragment of the new ACRANEB2 code using Fortf@an-9

this study did not have surrounding OpenMP loop and comasisvith 555 med-shape dummy argument declarations and with alstbdoop

the original code beyond one core should therefore be tteaith care. rewrites fromf 0o_new() but with the originalnpr oma-blocked loop
nest ordering inlined into the subroutine itself. All innerst loops are
now SIMD vectorizable and the bulk of the outermost loops &helD

. . vectorizable too. The block sizepr oma is a tunable parameter that one
A. Time-to-solution results can used to tune the size of the individual stack-frames ésfopmance.

Figure 11 summarizes the best single node, core and
thread performance we attained on different Xeon and Xeon
Phi systems. It is seen that theeakestKNL significantly ~ SKUs released in 2012 with that of a dual-socket BDW and
outperforms thestrongest dual-socket BDW at the node single socket KNL which both emerged in 2016. Note that
level with our refactored code. The fact that KNL at all there is a remarkable improvement as a result of Moores law
comes close to BDW even at the core level is due to th&ven at the core and thread level for our refactored code.
strong SIMD parallelism that has been achieved as part of Figure 13 shows time-to-solution for two different refac-
the refactorization of the implementation. The boxes in theored codes on three platforms, BDW, KNL and P100. The
same figure show the result of 4 years of Moores law bycode refactored for the GPU target is not really suited for
cross-comparing a dual-socket SNB in the high end of thehe Xeon/Xeon Phi target, a property we shall come back to
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Figure 11. Node, core and thread performancet foanst 3 on different
Xeon and Xeon Phis for the refactored code. The cylinderssscompare ~ B. Portable performance

the performance of thetrongest dual-socket BDW SKU aka E5-2699v4 .
(red) with that of theweakestKNL SKU aka KNL-7210 (yellow). The The source code used for all the targets is Fortran. The

boxes cross-compare a dual-socket SNB (blue) with that oWB@ed)  baseline code was written in Fortran and the authors have

and KNL (yellow). no reason to believe that code generation could be improved
by switching entirely to or by combining it with source code

written in another programming language. The paralleliza-

when discussing portable performance in section V-B. tion, on the other hand, is expressed using the OpenMP
To answer the question posed at the end of section IV w@09ramming model when targeting Xeon and Xeon Phi

summarize in figure 12 the result from using the refactorednd using the OpenACC programming model when targeting
code but retaining the original data-structures and osigin NV/PIA GPUs. According to our experience the GPU does

loop structures and the corresponding tuneable paramet8pt like to treat larger chunks at the same time since this
nproma, cf. figure 10. All timings from this blended will lead to data spill, i.e. data that cannot reside in regs

approach are consistently higher than the timings we caWill get evicted to global memory and if the corresponding
attain with our new codes, i.e. those shown in figure 13latencies can not be hidden the processor will simply idle.
The performance loss that comes from the original dat2?: for performance on the GPU we need to confine the
organization is significant on KNL. The performance loss/00PS 0 treat smaller fractions one by one. Moreover, if
is consistent but less significant on the more traditionafhared memory is used too then this will also limit the
BDW for all values ofnpr omma’. This experiment suggests number of thread-blocks that can run concurrently on the
that the traditional data structures and corresponding loodevice and again be a performance obstacle. All in all this
structures in atmospheric models is up for a reconsideratio/©2ds t @ poor utilization of the available bandwidth, are t
when one targets KNL and even BDW to a lesser extentCPU will be mostly waiting for data and overall performance
though. It is interesting to note that while the conclusionWill Suffer. Thus, the GPU tends to prefer more loop splgtin
is clear for KNL, the conclusion for the P100 is less clear.(@5suming that the latencies from the additional memory
Figure 12 reveals a sweet spot fopr oma=32 on P100. transfers resulting from this can be hidden behind real
It is still 15% slower than the version with the new data- WOrk) whereas with KNL one would stop the splitting once

structures but the fact that none of the GPU alternative&!! SIMD potential is exposed and the caching system is

so far have shown competitive absolute performance make¥e!l utilized. Therefore competitive performancean not
the npr oma-version of the code another good candidateP€ Portable across very different architectures such as the
for tuning for the P100. Actually, when we got stuck in GPU and the Xeon Phi. The traditional Xeon line, on the

attempting to improve the performance on P100 further, Wé)th.er hand, seems to be Ies_s sensitive to the number of loop
turned our attention to thispr oma-candidate again and the SPIits compared to Xeon Phi.

best GPU result shown in figure 15 in section V-D stems [N order to treat all targets equal we have decided not to
from further GPU tuning of this implementation. focus on the code resulting from refactoring for the GPU

nor for the Xeon Phi solely since as revealed in figure 13

this could have led to too simple conclusions, especially

"Note that we had to increas@VP_STACKSI ZE in order to run with I the_ case where the refactoring was done for the GPU.
the largermnpr oma values The figure also demonstrates that what one could refer to



asportable performancean be quite far frontompetitive  we can cross-compare it with other published numbers. For
performanceso in weighting the importance of portability instance, [11] shows that the fastest kernel out of 8 kernels
versus performance one may sometimes have to choose the NERSC/Trinity benchmark sustains 506 GFLOP/s. In
between a portable layout of the loops resultingportable  appendix A we will treat the question if sustaining 41%-
performanceand a less performance portable layout of the46% of achievable peak (HPL performance) constitutes a
loops resulting incompetitive performancen the primary roof or if there is opportunities for improvements. The
target platform. However, on the GPU, with a gap~af2%  good absolute performance on KNL translates to BDW too,
the performance of the Xeon targeted code is not too far fronmot directly one-to-one but in the sense that improvements
that of the GPU targeted code in our case which could guidérom refactoring for KNL also yields improved absolute
the choice if one had to stick to a single code version dugerformance on BDW. This is the case for NVIDIA P100
to e.g. maintenance costs. This would imply that the GPUoo, i.e. efforts on improving for KNL also improved the
target become less interesting since the GPU performangeerformance on P100 but as shown in figure 13 this did
is by no means competitive with this source code. In thisnot lead to competitive performance on P100 nor did the
context it should be stressed that both code versions caeuld Hurther tunings efforts on this version of the code. A profile
improved further for their respective targets, thus calyai on P100 confirmed (not shown here) that the GPU utilization
enlarging the gap; this is shown later in section V-D for theis limited by register usage and each SM is limited to execute
GPU target. only 4 blocks simultaneously. Thus, in theory there is imtee
room for improvements on P100 if we can manage to split
EP100 ®2S E5-2699v4 © KNL-7210 the computations further and at the same time be able to
hide the memory latencies resulting from extra memory
transfers required to bind the smaller chunks together. For
this code, however, we were not able to improve it in
practice despite the theoretical potential. The totalffedént
npr oma-candidate was much easier to improve for the GPU
target as revealed in section V-D.
The algorithm used in this chunk mmpute minimain
the sense that all computations are necessary and sufficient
GPLL Xeoniexenn:Rhl for defining the output. The algorithm delivers results imtw
Target architecture output arrays(; and Oz, and is consequently not consid-
ered to bememory output minimalOn Xeon and Xeon Phi
Figure 13.  Time-to-solution for two different refactoredbdes that there is sufficient cache memory available to benefit from
e soormanes e o e s s waepcade, COMPUING0; and0 in one go. On the GPU, on the other
was refactored for the NVIDIA GPU target whereas the rightdh side ~ nand, the fastest version shown in figure 15 consists of two
shows the performance attained on the three platforms whencode  independentmemory output minimalhunks, one computing
e ety Vi i et oo o s we 01 3N another computing.. AS revealed above this splt
allowed the interface to change too. The GPU timingsndoinclude Pci 1S not sufficient so further splitting is needed and this will
communication. by definition - introduce additional overhead that has to be
compensated for, either by completely hiding this overhead
or by exceeding the sustained KNL performance in order to
become competitive with the KNL performance.
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C. Absolute performance

If we only presentime-to-solutiorin a relative context as
we did in the previous sections then we may cheat ourselves
by a poor baseline for performance. Thus, we now turn ouP- Best performance
attention to absolute performance measures to put thesesul  As hinted in previous subsections we needed to tune the
into a proper context. We used the Intel SDE foahd  GpuU code variant further to utilize the GPU potential better
instrumented the code with an SDE portion surrounding theynd achieve competitive performance. Thus, we departed
fat loop within thet r anst 3 kernel. from thenpr ona-candidate and introduced more loop split-
Figure 14 shows absolute performance on KNL-721Qing to overcome the obstacles revealed above to create our
for the fat loop. The fat loop sustains approximatelypest performing code for the GPU target. We gained a further
800 GFLOP/s DP and 900 GFLOP/s DP on KNL-7210.1.9 times speedup such that instead of the 4.0 s for the
and KNL-7250, respectively. Being an absolute measuregpy to the left in figure 13 we achieved 2.1 s which is
8https://software.intel.com/en-us/articles/calcuigtflop-using-intel- TaSt.er than our best timing on the smallest KNL to the I’Ig_ht
software-development-emulator-intel-sde. It is our eigree that this tool n flgure 13. It should be stressed, that when running with
is the most reliable tool to measure the FLOP-counts. this more dedicated GPU code version on Xeon and Xeon



timings on figure 15 if one allows for both transposed
data structures and thereby changed interface as well as
changed mathematical formulation. It should, however, be
stressed that the performance attained is also a function of
the algorithm at hand and not just a function of the hardware
capabilities. A given algorithm may map better to some
architectures than to others and this does not imply thaesom
architectures are better than others. Thus, this figure does
svml-ha svmHa svml-ep not imply that best possible performance arfiy algorithm

is always almost the same on KNL and GPU. It only shows

Figure 14. Absolute performance on KNL 7210 using differerdes for ~ the status of our work on the various refactorizations of the

the MKL vector math library revealing that GFLOP/s is a poerfprmance implementation of the ACRANEB2 algorithm.
measure of performance for the fat loop in this particulan&e Moreover,
we sustain 41%-46% of HPL performance for two of the 3 modethef
MKL vector math library. 100% -

B FLOP-count relative to la ® FLOPs relative to HPL © T2S relative to ha
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Phi the performance suffered seriously on the X&dosa
degree much worse than apparent from left part of figure 1:
due to severe cache pollution.

The best node performance that we attained on differen
architectures released in 2016 is summarized in figure 1t
This is a direct head-to-head comparison of our implemen
tations on architectures that one could purchase at the san A N © o o o
. . . N oV 2 o P
time. Note that in order to obtain a performance on the R o N&aﬁ““ o w.\&av*“"

GPU that is competitive with the performance on Xeon

and Xeon Phi (and vice versa) we neeq to handle differengg,re 15. Relative time-to-solution for anst 3 from the best perform-

refactored code versions, but when doing so, performancieg code versions on the respective architectures, i.e.ithnot portable

become almost identical on the Iargest KNL and on thepen‘ormance but a result of cross-comparing differentivassof the source
. ode, each one explicitly crafted to target an individualhéecture. For

|‘_5‘r995t GPU that were available for purchase at the samgjog, (a) and (b) are without and with algebraic rewrite & frower

time. function, respectively. The GPU timings dotinclude PCl communication.

If one further as an experiment relaxes a little bit on
the restrictiqn not to mpdify the mathematical functions_E. Energy results
that come with the algorithm developed by renowned radi-
ation physicists, one can replace the power funckeny

Relative timings for transt3 [%)]

We will now treat performance using the measenergy-

. . ! . . to-solution We ran this test on E5-2697v4 and KNL-7250

with the mathematically equivalent but numerically diéfat ith b d ina 72 and 272 thread vel
. +log(x)) (in Fortran, that is). The without turbo mode using 72 an threads, respectively

expressionexp(y ' ' and we ran 500 iterations of the fat loop in order to get

replacement forces a more straightforward impIementatiogl'”cﬁcient samples for the power measurem&niEhe power
which avoids too high local memory usage by the compiler,

The result is a further1.25 times speedup on P100 which was measured using the method described in [3] using the

. _— . : | SCoL tool. Table Il presents the entire system character-
we show as alternative (b) in figure 15. A similar gain can. . . . )

) . . _istics, including measured time and power consumption for
not be achieved on Xeon or Xeon Phi where the comp|lec[he fat loop

an_d the p.erform.ance math library (SV”.‘"ep) aIreaQy '€ The normalized node performance relative to the dual-
doing a similar job. It shouI.d be mentioned that |n.the ocket E5-2697v4 is summarized in figure 16 for our
testcase used here we obtained the same results with the. o4 ode and shows thiahe-to-solutioris improved

to draw conclusions too soon; it is out of the scope of the

. ) our refactored code is more efficient on KNL compared
present paper to question the mathematical formulas used 8 on BDW than what would be suggested from the HPL
the radiation code.

i performance in table 1l (HPL ratio 1.57x and EER 2.32x,
Note, there is a~3x between the fastest and the SIOWEStrespectively) both with respect to time and energy.

9Timings increased to more than 1 minute on the BDW and 5 ménute  19This is system power measurements for the entire nodenckiding
on the KNL, cf. left part of figure 18. both CPU and memory system. Energy is power times time.



Table Il . .
COMPARISON OFTRANST3 PERFORMANCE TO SYSTEM First, we may draw the attention to the challenge we

CHARACTERISTICS PERCENTAGES ARE RELATIVE TOBDW. HPLEER  started off with, namely that the radiation scheme is a

IS THEHPL ENERGY EFFICIENCY RATIQ |.E. THE HPL PERFORMANCE bottleneck in today's operational NWP production cf. fig-
PERWATT, RELATIVE TO BDW. THE TWO LAST ROWS ARE ’

MEASUREMENTS ON THEFAT L OOP. ure 1. There is a vast potential for improving the current
BOW T KNL implementation as revealed in this paper. Our completely

SKU E5-2607v4 | 7250 refactored implementation of the most expensive algorithm
HPL [GFLOP/s] 1236 | 1939 outperforms the effects of improving it at the algorithmic
:Et EgtiFoL([z/'z]/SNV] zl'gg 5152)‘7‘ level, i.e. by adding support for intermittency. This scter
HPL time [%] 100 64 re-factoring immediately pays off since it allows for doing
HPL EER [%] 100 | 232 much more physics under the fixed constrains on time-to-
I oop power [W], 500 iterations 459 371 solution and on hardware investment as well as on the energy
I oop time [s], 1 iteration 3.377 | 1.428 budget.

Secondly, the importance of our software refactoring
becomes even more important on the newer architectures
as shown in figure 17. The baseline code was clearly
not suited for the modern throughput architectures. To be
able to run the baseline code at all on a NVIDIA GPU,
we had to do a significant amount of non-trivial code
preparation just to ensure the semantics ended up being
correctly understood by the compiler. The correctness of
this work was verified with the Cray compiler on an older
NVIDIA K20x. Further, with this modified baseline code
we had to use smaller testcases on the GPUs due to lag
of sufficient memory space and up-scale the timings to the

Energy Time 400x400x80 reference. The performance of this GPU-ported
baseline code is better when instead the PGI compiler is used
Figure 16. Node performar_\ce improvement normali_zed_ to BDiste with similar performance on K20x (not shown) as on P100,
that the ratio exceeds the ratio obtained by HPL both in time energy. but unfortunately the initial results were also slightly 86
the initial preparation steps were apparently not sufficien
to obtain portable OpenACC behaviour. On Intel Xeon and
Xeon Phi the baseline code ran correctly out of the box.

The 400x400 setup exceeds Amdahl-99.95% strong scalfhe completely refactored codes gave correct results on all
ing and it also weak scales perfectly from 400x400 tothe tested hardware and with all compilers tested across
1500x1500 on KNL-7210 (not shown here). Thus, up-all incarnations (testcase size, thread count, etc) argl thi
scaling the timing so that we account for 100% and not jusincludes the OpenACC ports to the GPUs too.
the 80% accounted for byr anst 3, we reach a first crude  Figure 17 shows that the two 2016 technologies Intel
estimate of the number of nodes needed for running a setugNL and NVIDIA P100 perform much worse than the 2012
of size 1200x1080x80 which in the horizontal correspondsechnology (SNB) when we run the baseline code, and the
to the largest setup that we run in production today and in thgap is significant with KNL-7210 being2 times slower and
vertical exceeds the largest setup by 15 layers. This mears100 being~4500 times slower than a dual-socket SNB
that 5 to 10 KNL-7210 nodes would be sufficient to run thefrom 2012. However, running the refactored code on all
full ACRANEB2 on this large setup in 0.5 to 1 seconds. platforms reveals a very different picture. Now P100 and

KNL-7210 beat SNB by more than a factor of 6. For single
VI. CONCLUSION core, the baseline code on the 2016 Xeon technology (BDW)

Our results suggest that investments in software develog2€ats the 2012 Xeon technology (SNB) by a factor of 1.7, but
ment and performance maintenaHceertainly pays off and With our refactored version the factor is more than doubled
refactoring of legacy code may have a significant impacto 3_-8- _ _ _
on performance on modern hardware. There are multiple Figure 18 is showcasing the difference between portable
arguments as summarized in the following. performance and competitive performance. In this figure

code bases X and G (which are also shown earlier in fig-

e consider a continued effort in refactoring the code taistdjo  ure 13) are pretty much the same code except for the splitting
trends in hardware evolution as a MUST for the daily mainteeaof the in G. while code base GNM is essentially a complete re-
code. The surroundings are moving, new conditions are beiagcribed L g .

write with modified data-structures, interface, loop order

and one will have to follow in order not to contribute to thetisical debt ) :
of the project. reformulation of power function, and on top of that a more

W 2S E5-2697v4 m KNL-7250

Normalized Node Performance

F. Scaling
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Figure 17. Time-to-solution relative to the baseline impémtation on a

SNB node fort r anst in the full acr aneb2 dwarf. Note, the vertical
axis is logarithmic in order to embrace the range of perforcearesults.
The baseline code performance on single nodes of differehitactures is
shown to the left. Bars in the middle show the single nodegperénce of
the refactored codes, and the right bars show the single pfermance
of the refactored codes. Using the Cray compiler on NVIDIAWGR20x

(brown) and the PGI compiler on P100 (blue), and the Intel miten on

Intel BDW (red), KNL (yellow) and SNB (green). Single-corerformance
is not sensible for the GPU.
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Figure 18. Time-to-solution for the three different codesdm on three

different architectures. X is the Xeon target code. G is tifRJGarget code
using the data structures as X, but with split into seven kbu@®NM is
the GPU target with transposed data structures as compar¥dand G,
reformulated power function and even more splits (into 1@nés).

involved splitting. Note, we had to use a log-axis to cover

the range of timings.

implemented in hardwat® and this part of the ISA is not
exercised by HPL. Thus, good SIMD vectorization in the
code therefore becomes even more important. For P100, the
performance improvement is better for our refactored code
than for STREAM TRIAD, and including the rewrite of the
power function the improvement factor is getting quite elos
to the high HPL improvement factor, thus utilizing a major
portion of the potential performance boost from the SNB to
P100 evolution. Note, such improvements as demonstrated in
table IV can not be obtained with the baseline code for any
of the architechtures, only with the refactored code. Even
on the single core the refactorization pays off compared
to the baseline code on a full node; this holds for the
older SNB hardware too but even more on the newer BDW
and KNL. The improvements of the refactoring on newer
hardware compared to the older SNB is more than accounted
for by increased thread-count times clock-frequency, tWwhic
demonstrates the importance of proper utilization of SIMD
vectorizatiof®. Thus, it is evident that our months on
refactoring of the code has orders of magnitude higher
impact on the performance for this code than 4 years of
hardware evolution. It is important to stress that this does
not prove lack of progress in evolution of hardware but rather
it emphasizes the issue with legacy code.

Table IV
NODE PERFORMANCE IMPROVEMENT FACTORS RELATIVE TGNB. FOR
P100, @) AND (B) ARE WITHOUT AND WITH ALGEBRAIC REWRITE OF
THE POWER FUNCTION RESPECTIVELY,

Architecture HPL | Stream Triad| transt3
E5-2680v1 1.0 1.0 1.0
E5-2699v4 4.2 1.6 45
KNL-7210 5.6 5.6 6.7
KNL-7250 5.7 6.2 7.8
NVIDIA-P100 (a) 11.4 6.9 7.6
NVIDIA-P100 (b) 11.4 6.9 9.5

The improvement in time-to-solution due to our refactor-
ing for the entiret r anst code and not only fot r anst 3
is summarized in table V and figure 17. It is interesting
but not surprising to observe that the refactoring has a
more significant impact on newer hardware than on older
hardware. It is important to stress that the improvements

The obtained gains in performance should be seen in that the node level are somewhat incomplete in the sense
perspective of how much one can expect from the hardwarthat the dwarf that we received was single threaded. It
evolution, and to this end we compare node performance d§ also important to stress that we did not have time to
thet r anst 3 kernel with HPL and STREAM TRIAD node merge the fastest implementation of anst 3 on P100*
performance relative to SNB in table IV. For BDW vs SNB into thet r anst code; completing this step will bring the
the ratios are~4.2 and~1.6, respectively, and thus with a refactored node performance for the GPU to be fastest of all
factor of ~4.5 our refactored code performs slightly betterthe architectures considered in this paper, and in the dast r
than expected from the hardware evolution alone. For théitalicized) in table V we have estimated the corresponding

smaller KNL-7210 the ratios are’5.6 and~5.6, and for
the larger KNL-7250 the ratios are5.7 and~6.2, and our

refactored code with-6.7 and~7.8, respectively, performs

improvement factor for the GPU target.

121SA improvements in SQRT, DIV and AVX-512ER
13SNB has AVX with 4 SIMD lanes, BDW has AVX2 with 4 SIMD

significantly out of these ranges which we attribute t0 th@anes but also FMA, KNL has AVX-512 with 8 SIMD lanes and FMA.
fact that KNL has some of the transcendental functions 4.e. from the best performing code version shown in figuresirid 18.



Table V . ..
REFACTORIZATION IMPROVEMENT FACTOR ON A SINGLE NopE aNpon  @nd then get code generated that will run efficiently on

A SINGLE CORE FOR DIFFERENT ARCHITECTURES both targets. Numerous attempts on a pure OpenMP and
Architecture Core | Node OpenACC directive approach using the very same code
E5-2680v1 3.3 50 base have been made by the present authors and their
Eif.g%%l ﬁ'; éég collgborators, and failed. _ .

NVIDIA P100 | N/A | 7302 Finally, we have seen that refactoring of legacy cigle
NVIDIA PI00 | N/A | 17000 indeed required for getting performance out of investment i

newer hardware, and with refactored code we can improve

time-to-solutionby choosing one of the new highly-parallel

and throughput tuned architectures but we have also seen

Based on our experience from working with operationalthat on top of this we gain even more performance improve-

met-ocean models, we believe that the radiation dwarfnent if the metric is energy. Thus, it seems obvious to us
considered in the present paper serves as a typical examplgat we have to prepare our entire workload such that it
with respect to refactoring potential for NWP componentsill be able to embrace the future technologies. There is a
so for entire models we will expect that speed-up in orders/ast potential in legacy codes that will be revealed when we
of magnitudes can indeed be achieved on modern hardwaggart to invest in refactorization and we sapienand notif

by a deep refactoring of the entire code. It will, however,hecause the latter - to the best of our knowledge - is not a
take a huge and continued effort to deal with the technicabystainable option.

debts inherent in many of these models currently as well as
to prevent it from growing further as the hardware trends VIl. FUTURE DIRECTIONS

evolve. Our refactorization plan follows a pattern that is directly
We have also shown that the process of tuning codapplicable to all the other physics components in IFS and
for different architectures is the same but also that it willALADIN-HIRLAM systems too, thus accounting for about
diverge eventually and one will end up with completely half of the total runtime in today’s operational NWP models.
different code bases in the end. To quantify the difference#\s we have shown earlier in a previous study, cf. [2], it is
in the two incomplete attempts of today (one for the GPUindeed possible to refactor the more involved dynamics too
target and one for the Xeon target), the relat8eOC  and thereby the entire model which would require a new in-
difference is 50% and the size of the ff between the depth analysis of the current implementation of dynamics.
two source files exceeds the size of each of the files. The It is an open question if it would pay off combining the
local variables in the two implementations have differentimproved algorithm using intermittency with our improved
dimensions and the input/output used in one implementatioimplementation of the expensive step and reap the harvest
are transposed in the other implementation so even th&om both improvements simultaneously. This will for sure
interfaces differ. In practice, one would consequentlyehav increase maintenance costs and there might not be gain in
to maintain two code bases despite the fact that we havphysics results so the gain in time-to-solution should be
confined ourselves to the use of directive based approachesgnificant to justify such an approach.
Moreover, we have seen that the latency tuned architectures Our present study also revealed a significant use of
are less sensitive to where we stop the splitting process artdanscendental functions and we demonstrated that alstraig
also less sensitive to the choice of loop nest ordering. Théorward reformulation of the power function could lead
highly parallel throughput tuned architectures, on theeoth to a 20% gain. So, an obvious question would be if one
hand, are very sensitive to this. Thus, from this particularcould relax on the mathematical physics formulation by
study we can conclude thabrtable performancés quite  substituting the use of these functions with purpose build
far from competitive performancand we need to be very Padé polynomials instead to gain even more. Finally, as the
cautious when cross-comparing performance obtained oresolution scale becomes even finer, it also seems relevant
KNL vs GPU. One could have chosen to stop refactoringo investigate multi-grid strategies and our colleagueseha
at the simplest code X in figure 18, claiming that one codeactually pursued this idea further.
base is sufficient, sacrificing competive performance on the
GPU for increased portability and maintenance costs. There
is already some orders of magnitudes gain in performance The authors would like to thank Jan MaSek, ONPP/CHMI,
on both KNL and P100 using the X target code compared tdristian Pagh Nielsen and Bent Hansen Sass, DMI for
using the legacy code, cf. figurel7, so it might be tempting tanot just providing us with the wrapped dwarf code, the
stop the refactoring process here. But if performanceyeall corresponding test cases and input for figure 1 but also for
matters we would have to discriminate the refactoring. Wecountless discussions on radiation physics. Moreover, we
can certainlynot expect that we can just decorate the verywish to express our gratitude to Karthik Raman, Ruchira
same code base both with OpenMP and OpenACC directiveSasanka and Michael Greenfield, Intel, Peter Messmer and
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Stan Posey, NVIDIA and John Levesque, Cray for their 1) Roofline analysis to guide code refactorintn sec-
great support of this study. Special thanks go to Alan Graytion Il we described the initial refactoring in kind of a tdn
NVIDIA for analysis of the register usage in the anst 3 waving way, but one could also describe the process using
kernel and for pointing out the advantage of reformulatinga more formal roofline-based argumentation. For example,
the power function for the P100. Thanks to numerouscf. upper part of figure 19, analysis of legacy codes will ofte
people in the HPC and NWP communities for commentingreveal an inner loop with a contents which is recognized as a
constructively on various early drafts of the manuscript.mixture of a non-SIMD patterns and some SIMD patterns.
Thanks to Cray for allowing us to use the Marketing Partnein this particular case, the prefix-sum will prevent SIMD
Network systemswan, to Intel for allowing us to use the vectorization thus spoiling performance of the entire loop
Endeavour cluster and to NVIDIA for allowing us to If ny andn, denotes the number of FLOP and BYTEs,
use theirPSG cluster to complete this study. The ESCAPE respectively, referenced in the functibmwo, the arithmetic
project has received funding from the European Unionsntensity of the mixed loop will bén; + 1)/(ny + 3 * 8),
Horizon 2020 research and innovation programme undeassuming 8 byte reals. In the refactored code, cf. lower
grant agreement No 671627. part of figure 19, the loop has been split into an explicit
prefix-sum loop and a SIMD vector loop for the remaining
) ) part. The prefix-sum loop has a very low Al of only
A. Roofline analysis 1/(3  8) ~ 0.04 but will be able to run at full memory
Roofline analysis is centered around a definitioropér-  bandwidth, or possibly even directly out of the cache. The
ational intensityand a sometimes naive throughput assump-Al of the SIMD loop isns/(n, + 3 * 8) which is slightly
tion and it often serves as a valuable tool in guiding coddower than the Al of the mixed loop, but this is insignificant
optimization work. For any given implementatiah) one  for performance whem; is relatively high, i.e. especially
may calculate the operational intensity/) = W(I)/Q(I)  when the SIMD loop is fat. What is important here is that
defined as the ratio between the wdik to the memory this loop will now SIMD vectorize and we can sustain much
traffic . A common metric for work is FLOP-count and a better utilization of the hardware for the refactored code,
common metric for memory traffic is number of bytes beingeven when some portions are inherently non-SIMD friendly.
moved in which case intensity will be the arithmetic intéysi
denoted Al and measured in FLOP/byte. The naive roofling.; mxed-!oop code with a hidden prefix-sumpattern -------

'sum = 0.0_jprb
model uses achievable peak bandwidh,, sustained by | =" ju: 2()
the stream triad benchmark and achievable peak performangga() = feot sum .- )
P4 sustained by HPL to limit the performance 6fby
P(I) = min(Pyaz, J(I) X Bmaz). Measuring sustained ||- refactored code wloop split ----o-oommomssszssooooooos
performance of (/) and cross-comparing this with the com- |} =eirelt per xsum
puted P(I) may sometimes reveal room for improvements| ®,.oxn L
for the implementation/ at the platform given implicitly | e
by (Bmaz, Pmaz)- In cases dealing with fat loops, the I1 |5 yecter oop:
instruction cache may be too small to hold the loop and iff () = feeC zsumti). - )
that happens, the®,,,. will be too optimistic. Moreover,
SUCC.eSSIVe 'tera.tlo_ns of the loop can only overlap bY a Sr_na&igure 19. Sketch of pattern identification and the follayvinop splitting
relative amount il is fat and the throughput assumption will in a typical refactorization process. The loop-carriedegfency in the first
not hold true. Instead, the true in-core execution is dictat loop will prevent SIMD vectprization. Itis assume_d tha_t foectionf oo
by the critical path execution time and henég,,, will Ph"’; E%;neﬁgﬁﬂﬁggﬁs or side-effegtair(e function in Fortran) and
again be too optimistic.
Roofline analysis is useful and reasonably accurate when 2) Establishing a performance modeFirst, we notice
the implementation mainly contains simple operations thathat the fat loop contains a vast number of long-latency
translate directly to hardware instructions, eAPD and  operationsl V andSQRT), and of transcendental functions
MUL. It is is less suited for comparing different implemen- (POW EXP, LOG with corresponding FLOP-counts being
tations of different algorithms nor is it simple to use in highly implementation-, context- and argument-dependent
cases where the implementation contains many complicateflo, even if we could translate each operation or function
operations. into an equivalent FLOP-count on a given platform we
For this particular kernel, we have already revealed thamust be aware that the issues like pipelining of instructjon
the main loop is rather packed with complicated transcenlatency, dependencies and argument range may obscure the
dental functions, cf. table I. Nevertheless we will attetigpt  performance model, making it more crude and maybe even
construct a performance model for the fat loop and use it iness useful in practice.
the context of roofline analysis. Then, we created series of small stand-alone kernels, one
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Table VI

for each operation that is considered. We used the Craypal  FLoOP-coUNT EXPERIMENT USING THEINTEL COMPILER.

tool with both the Intel compiler and with the Cray compiler

on BDW and KNL to estimate the FLOP-count for each of |ian?W' ﬁ;ayp?; tOoclep IimeI:)WHaS DEIz;OOI ep
these kernels on each platform and thereby we are able to | max 1] 1] 1] 1 1] 1] 1] 1
translate the results into a representative FLOP-count for %dudl i i i i i i i i
each operation. The consistency of this approach was then 5y T 11 11 1 T 11 11 1
tested by repeating the experiment using the Intel SDE tool sqrt 1 1 1] 1 1 1 1] 1
with the Intel compiler on BDW and KNL. The results of exp 1912071141 10) 19]21]14] 10
these experiments are shown in tables VI - VII. We show Ir?gw gg 2}1 }13 g gg gi Lllg ;2
FLOP-counts for the simple operations and transcendental
. . KNL, Craypat tool KNL, SDE tool

functions that appear in the fat loop. In table VI the results bm | ha | 1a | ep | bm | ha | Ta | ep
are from using the Intel compiler on BDW (upper part) and max 21 2] 2| 2 T 1| 1| 1
KNL (lower part) and both the Craypat tool (left) and the add 1] 17 1] 1 1] 17 1] 1
SDE tool (right). We have here considered the four MKL g;\L/" % 1% é é i i é é
variants, i.e. the serial libm and the three vector moded-svm St > 115 | 15 | 15 1112 12 | 12
ha, svml-la and svml-ép. In table VII the results are from exp 8g | 17 | 16 | 11 19| 23 | 22 | 13
using the Cray compiler on BDW (left part) and KNL (right log 66 | 291221 21| 28] 34] 28|19
part) and the Craypat tool. Also, different math transtasio pow | 201 77| 72[41] S5] 78] 72] 40

are considered through different choices of compiler flag,

- Q0 and- O2, respectively. Table VII
As expected the obtained FLOP-count for the transcen- FLOP-COUNT EXPERIMENT USING THECRAY COMPILER.

dental functions varies with choice of math library. Witteth BDW, Craypat tool | KNL, Craypat tool
Intel compiler, the results obtained with Craypat are very — 'O‘l) 'Oi '02 -og
consistent with the results obtained from SDE on BDW but 2dd 1 1 1 1
not on KNL; also note here that except for the simplest mul 1 1 1 1
operations the vector modes of MKL have relatively high div 1 1 2 16
FLOP-counts on KNL even for the fast low-accuracy (l1a) 2?(5 1; 1; 1%?) ig
and extended-performance (ep) modes. Moreover, the sesult log 19 19 | 241 39
with the Cray compiler are consistent with the results with pow | 190 95 | 1769 195

the Intel compiler on BDW (both using Craypat), but on
KNL the results differ quite a lot. Finally, it must be stated
(not shown) that the FLOP-count obtained in this way is of ) ) _
course heavily dependent on the actual values of the argdnodel for a loop: Add up the operations weighted by their
ments to the functions, and we have here limited ourselve&eSPective occurrence count. Divide this total FLOP-count
to show only results obtained with some "representative’y the number memory transfers that you have in the loop
argument values. to obtain the Al. In our case, as shown in tables VIII - IX,
Note that on KNL, theDl V operation is converted to W€ obtain Al values from-6 with svml-ep from Intel MKL
"MUL 1/x” with mode la and ep, and this explains the jump©" BDW to a stgggeringu170 using_low optir_niza_ltion with
from 1 FLOP to 6 FLOP in the SDE Intel runs. It is expectedtN€ Cray compiler on KNL. A typical application would
that something similar but not quite the same happens wit{S€ the more safe math for precision and accuracy studies
the Craypat tool using the Intel compiler (8 FLOP for modedu”r?g_ testing and development but jump to faster bgt lower
la and ep). precision (e.g. svml-la reached through the compiler flag

This exercise so forth just demonstrates that it will be_'fl nf - preci si on=medi umfor performance runs, and
n these cases the Al from our performance model®10

necessary to operate with a different set of FLOP-COUH# : L " . X ,
or the loop. Arithmetic intensities of this order is venghi

numbers for functions from different math libraries andttha . .
care should be taken before relying too much on thes(g‘;ompared to what is usually seen for loops in NWP models,

FLOP-count numbers as a basis for code optimization likd"uS deserving its fat loop label.

e.g. in roofline analysis. 3) Tool vs model:The applied tools, i.e. Craypat and
Assuming that partial FLOP-count numbers have beerpDE, can of course be used to directly measure the FLOP-

collected for each considered operation and function, thefount for the loop in question. One might even be so lucky

it is simply a matter of using these to build a performancethat tools can be applied to profile performance of smaller
fragments in a real context and obtain reliable results, But

L5https://software.intel.com/sites/products/documigmmédoclib/mkl/ honeStly’ it is our experience that this is not always thfecas
vm/vmdata.htm and we also encourage to treat such measurements with great



Table VI - . .
ARITHMETIC INTENSITY (Al) AND FLOP-COUNT FOR THE FAT LOOP profile in a re“able way with the Craypat tool and therefore
USING THEINTEL COMPILER. PMIs GFLOP/SIN THE LooP FROMOUR  We had to stick to our performance model. Since the test
PERFORMANCE MODEL TM IS GFLOP/SMEASURED BY THE TOOL, case is supposed to mimic a realistic situation we have
DEV IS DEVIATION BETWEENPM AND TM IN %. .
used the performance library MKL svml-la, but we have
BDW, SDE tool BDW, Craypat tool f . | h d it . th ial
o R [ ep | Tbm ha & ep or comparison also showed one result using the seria
Al 9.7 | 104 | 87 62 97| 103| 84| 50 MKL libm. Actually, this serial result is placed higher in

PM 413|446 | 374] 263 | 415] 440 36.0 | 253 the roofline diagram and therefore has a better FLOP/s
™ 379 439 | 36.2 | 244 | 388 440 353 | 23.8 ; ; ;
eV 81 Ta T 375 %6 o0 To =9 performance than the results using the vectorized library o

the same node and on a smaller BDW node, but does this

— KN'B’aSDE tlgc" & “meNL' E;avpatéloo' & then mean that the performance number that really matters,
Al 99 1311 132 981 2651 1551 132 | 10.2 i.e. the time-to-solution, also is better?
PM | 42.2 | 56.1 | 56.3 | 41.7 | 113.3 | 66.2 | 56.4 | 43.6
TM | 38.9| 54.1 | 54.6 | 404 | 107.9 | 65.1 | 56,6 | 41.7

DEV -80| -836| -3.0| -3.1 47| -16 | -1.5| -45

Table IX
ARITHMETIC INTENSITY AND FLOP-COUNT FOR THE FAT LOOP USING
THE CRAY COMPILER. PM s GFLOP/SIN THE LOOP FROM OUR
PERFORMANCE MODEL TM 1S GFLOP/SMEASURED BY THE TOOL,
DEV IS DEVIATION BETWEENPM AND TM IN %.

1000

Double precision performance [GFLOP/s]

]
BDW, Craypat tool | KNL, Craypat tool 2
-00 -02 -00 -02
Al 20.6 12.7 | 1705 25.3
PM 88.2 543 | 729.1 108.4 ! R 100
™ 89.8 51.6 | 729.1 121.2 Arithmetic Intensity [FLOP/byte]
DEV 19 51 0.0 11.8 —KNL7250 ® SDE, svmlla KNL 7210 craypat, svml la
—E5-2699v4 @ SDE,svmlla A craypat,svmlla B craypat, libm
—E5-2697v4 ® SDE,svmlla A craypat, svmlla
care. Figure 20. Roofline diagram showing some selected resufeserGeolor

. . . is used for KNL-7250, orange is for KNL-7210, red is for E59264 and
The performance model described in the previous subsegiue is for E5-2697v4. Horizontal lines are from the HPL Henark while

tion is based on measuring the individual FLOP-count forthe sloping lines are from the STREAM TRIAD benchmark, cbl¢aX.

: : ; arkers are results obtained from the performance modelgussie Intel
each function, and_ this m"?‘y come handy du”ng deve_lopmedéﬂompiler and the maximum number threads on each SKU, i.e.®v2
when one e.g. tries to implement a new code piece byhe KNL-7250, 256 on the KNL-7210, 88 on the larger BDW and T2 o

piece or tries to optimize legacy code, while keeping focusﬂ;e smaller 'BD|W Resultg from tze perf_orm?nce Ii_brarxé MKLnMahare

: : shown as circles using SDE and as triangles using Craypa. sfjoare
on perforrr_]ance. We do, however, nee_d_ to Verlfy that thlsrsnarker indicates the result from using Craypat and the defalL libm
approach is good enough for the specific purpose at hangprary.
We expect that our performance model is crude, but if we
should be able to use it in a larger context, our model must No, obviously not. In figure 21 we compare the time-

(i.e. system by system, library by library, argument by skus with that of using the serial MKL liom on the largest
argument, ...). BDW. From this figure it is clear that MKL libm on the 88
We have compared our performance model with resultshread BDW is slower than the rest, a conclusion that can
from the tools. Tables VIII - IX show the total FLOP-count not be drawn clearly from figure 20. This demonstrates that
in GFLOP/s for the loop in a semi-real context (the test casgoofline on its own can be of limited use as a performance-
was tuned to 500 iterations of a 1x10x80 grid configurationmeasuring tool in these more involved contexts. However,
in order to satisfy the tools). The overall picture is that ou the 272 threads KNL-7250 is best performing according
performance model in this case explains pretty much all theo both roofline and time-to-solution. On the smaller KNL
FLOP measured by the tools, and most of the runs using theur implementation sustains41% of the HPL performance
more optimized libraries are within5% (again disregarding both with svml-la as shown in figure 20 and with svml-ep
the model result from using Cray compiler on KNL which as shown in figure 14. On the larger KNL it reache46%.
is ~12% off in the fast version). The Al is 13.2 on the KNLs. On the two BDWSs, however,
4) Roofline analysis for the fat looptn figure 20 we Al is 8.7 which is on the left hand side of the knee of the
show some selected results from roofline analysis of theoofline and thus STREAM TRIAD is the proper measure
loop in full context using the performance model. Thehere; our implementation sustain®26% and~30% of the
model grid size is 400x400x80 which we were not able toSTREAM TRIAD performance on the smaller and larger



BDW,

respectively.

libm, E5-2699v4
svml la, E5-2697v4
svml la, E5-2699v4

svml la, KNL-7210

svml la, KNL-7250

Time2Solution [s]

o B N W M 00O

Figure 21. Time to solution for four selected cases usingdrited compiler:
The circular bars are from using the performance library Méml-la on
the four platforms, while the square bar is from using theadkflibrary
MKL libm on the large BDW. Color of the bars correspond to ttedoc of
the markers in the roofline diagram in figure 20.

B. Build and Run specifications

tar -zxvf dwarf-transt3_v<version>.tar.gz
cd dwarf-transt3_v<version>

# bdw knl

BDW TARGETF=" - x CORE- AVX2" ;
TARGETF=<your _choi ce>
Fep="-Q2 $TARGETF -ipo -finf-precision=low -fp-nodel fast=2"

Fl a="- 2 $TARGETF -ipo -finf-precision=nmediunt

Fha="-02 $TARGETF -ipo -finf-precision=high"

FCFLAGS=$Fep FC=ifort ./configure --enabl e-opennp --host=x86_64-1inux-gnu
make

KNL_TARGETF="-xM C- AVX512"

# p100
TAF_DEFAULT="-ta=nvi di a";
TAF=<your _choi ce>

F="-nmp $TAF -acc -fast -Mnline=levels:3 -Muda=cuda8. 0 - Mcuda=f ast mat h"
FCFLAGS=$F FC=pgf90 ./configure --enabl e-opennp --enabl e-openacc &% make

TAF_MAX80REGS="-t a=nvi di a, maxr egcount : 80"

Figure 22. Build instructions for reproducing the buildedsn this paper.

tar -zxvf dwarf-transt3_testcase.tar.gz
cd dwarf-transt3_testcase

#bdw knl, cray system

export OMP_NUM THREADS=<t hr eads>; export KMP_AFFI NI TY="di sabl ed, ver bose"
aprun -nl -Nl -d<threads> -j2 -cc depth dwarf # bdw

aprun -nl -Nl -d<threads> -j4 -cc depth dwarf # knl

#bdw/ knl, non-cray system
export OVP_NUM THREADS=<t hr eads>; export KMP_AFFI NI TY="conpact, ver bose"
dwar f

#p100
export OMP_NUM THREADS=1
srun dwar f

Figure 23. Run instructions.

Figure 22 summarizes the build instructions and figure 23

summarizes run instructions BASH-syntax for Xeon/Xeon
Phi and NVIDIA, respectively. Thei fort compiler
versions used wasl7.0.1.132 Build 20161005
whereas theggi compiler version used wak7. 4- 0 and
the cce compiler was versio. 5. 8. We usedt ur bo
mode on all SKUs but E5-2697v4. For the KNL systems,
this benchmark is so highly flop bound that it is neutral to
whether it runs out of DDR or MCDRAM and also neutral
to whether we run in flat or cache mode. As for KNL kernel
configurations, we found thatONFI G_HZ_250=y gave
slightly better timings thailCONFI G_HZ_1000=y.

Finally, table X summarizes the HPL and Stream Triad

numbers used for roofline analysis and for evaluations of
the absolute performance sustained. The numbers for Inte
hardware were received from private correspondence with

Intel while the NVIDIA P100 numbers were obtained from
a Dell published study and from private correspondence
with NVIDIA.

The authors are strong supporters of Nature’s theme o
transparent and reproducible science and code sHarngl

welcome anyone to contact us if they are interested in the

implementations mentioned in this paper.

REFERENCES

[1] Lisa Bengtsson, Ulf Andrae, Trygve Aspelien, Yurii Ba-
trak, Javier Calvo, Wim de Rooy, Emily Gleeson, Bent
Hansen Sass, Mariken Homleid, Mariano Hortal, Karl-lvar

16http://en.community.dell.com/techcenter/high-perfance-
computing/b/generahpc/archive/2017/03/14/application-performance-
on-p100-pcie-gpus

Lhttps:/iwww.nature.com/polopalys/1.16232!/menu/main/topColumns/
topLeftColumn/pdf/514536a.pdf

Ivarsson, Geert Lenderink, Sami Niemela, Kristian Pagh
Nielsen, Jeanette Onvlee, Laura Rontu, Patrick Samuels-
son, Daniel Santos Mufioz, Alvaro Subias, Sander Tijm,
Velle Toll, Xiaohua Yang, and Morten @degaard Kgltzow.
The HARMONIE-AROME Model Configuration in the
ALADIN-HIRLAM NWP System. Monthly Weather Review
145(5):1919-1935, 2017.
[2] Per Berg, Karthik Raman, and Jacob Weismann Poulsen.
Complete HBM model runs on Intel Xeon processors and
Intel Xeon Phi processors - part . Technical report, DMI,
Copenhagen, 2016.

W. Michael Brown, Andrey Semin, Michael Hebenstreit,
Sergey Khvostov, Karthik Raman, and Steven J. Plimpton. In-
creasing molecular dynamics simulation rates with an 8-fol
increase in electrical power efficiency. Rroceedings of the
International Conference for High Performance Computing,
Networking, Storage and AnalysiSC '16, pages 8:1-8:14,
Piscataway, NJ, USA, 2016. IEEE Press.

2

n

[4] ECMWEF. Part IV: Physical ProcesseslFS Documentation.

ECMWEF, 2013.
Table X
HPL AND STREAM TRIAD PERFORMANCE REFERENCE NUMBERS

Architecture HPL | Stream Triad | TDP

[GFLOP/s] [Gbyte/s] | (W)
E5-2680v1 343 79 260
E5-2697v4 1278 126 290
E5-2699v4 1446 127 290
KNL-7210 1933 440 215
KNL-7250 1971 490 215
NVIDIA-P100 3900 540 300




[5] ECMWEF. Part VI: Technical and Computational Procedures
IFS Documentation. ECMWF, 2016.

[6] J.-F. Geleyn, J. MaSek, R. Brozkova, P. Kuma, D. Deagre,
G. Hello, and N. Pristov. Single interval longwave radiatio
scheme based on the net exchanged rate decomposition with
bracketing. Quarterly Journal of the Royal Meteorological
Society 143(704):1313-1335, 2017.

[7] Mark Govett, Jim Rosinski, Jacques Middlecoff, Tom Hen-
derson, Jin Lee, Alexander MacDonald, Ning Wang, Paul
Madden, Julie Schramm, and Antonio Duarte. Parallelimatio
and Performance of the NIM Weather Model on CPU, GPU
and MIC ProcessorsAccepted for Bulletin of the American
Meteorological Society2017.

[8] Brent Leback, Douglas Miles, and Michael Wolfe. Tesla
vs. Xeon Phi vs. Radeon - A Compiler Writer's Perspective.
In CUG Conference Proceeding€UG 2013, Napa Valley,
California, USA, 2013.

[9] J. MaSek, J.-F. Geleyn, R. Brozkova, O. Giot, H.O. Acoh
and P. Kuma. Single interval shortwave radiation scheme
with parameterized optical saturation and spectral opsrla
Quarterly Journal of the Royal Meteorological Society
142(694):304-326, 2016.

[10] Jacob Weismann Poulsen, Per Berg, and Karthik Raman.
Chapter 3 - Better Concurrency and SIMD on HBM. In
James Reinders and Jim Jeffers, editétigh Performance
Parallelism Pearls: Multicore and Many-core Programming
Approaches volume 1, pages 43 — 67. Morgan Kaufmann,
Boston, MA, USA, 2015.

[11] Antonio C. Valles, Chuck Yount, and Sundaram Chinthaima
Chapter 25 - Trinity Workloads. In James Reinders, Jim
Jeffers, and Avinash Sodani, editohstel Xeon Phi Processor
High Performance Programming Knights Landing Edition
pages 549-579. Morgan Kaufmann, Boston, MA, USA, 2016.



