
Complete HBM model runs on

Intel R© Xeon R© processors and Intel R© Xeon

PhiTM processors - part I

Per Berg∗ Karthik Raman† Jacob Weismann Poulsen∗

September 14, 2016

1 Preface

In this paper, we provide a survey of recent node/card performance results
attained by the HBM model, cf. [1], [2], [3] and [4].

Previously, when we have discussed HBM performance results we have
focused mainly on performance of kernels related to HBM. Studying these
kernels have revealed parts that are highly bound on memory bandwidth
and parts that tend to be more compute bound and the focused studies
have allowed us to improve the individual performance of these kernels. In
this paper, we will turn our attention to complete model runs. Moreover,
we intend to present the performance results in the context that matters
most to the end users of the model, namely as time-to-solution results and
as nodes-needed-for-production-runs and kilowatts-required-for-production-

runs. A run is classified as a production run if the run will complete a
given forecast length (say a 24 hour simulation) in less than a specified wall-
time (say 10 minutes).

Traditionally, software have been developed under the assumption that
performance comes from hardware1. Increased performance came from in-
creased processor clock speed. The increased processor clock speed came

∗DMI
†Intel
1see e.g. Tim Mattson, https://www.youtube.com/watch?v=cMWGeJyrc9w

1



at a price, namely increased power consumption. Thus, increasing perfor-
mance was achieved at the cost of increasing power at a rate faster than
linear. This unsustainable power model eventually hits the so-called power
wall.

This evolution of processor clock speed stalled quite some time ago and
the only way to increase performance, without breaking the power budget,
is to add parallelism and improve data locality2. Performance really has
become a question about readiness for parallel computations. Thus, perfor-
mance must come from the software. A keyword for the required work on
the software (or so-called code modernization) is scalability. By scalability
we here mean

• fabric scalability: the ability to scale across nodes, distributed mem-
ory (MPI, CAF)

• thread scalability: the ability to scale with increasing number of
cores/threads on each node/card, shared memory (OpenMP)

• vector scalability: the ability to utilize vectorization for data paral-
lelism, SIMD

Please note, scalability does not necessarily imply efficiency, nor does it
imply portable performance. Thus, as a typical example, one could think of
an application which possesses near-perfect scaling across a couple of nodes
on one particular system but for which the performance on the individual
multi-core nodes is hopeless and/or for which performance is not portable.

Ensuring the needed efficient scalability is an on-going process and code
modernization work generally improves performance on any processor. The
need for such modernization is not temporary. It is therefore necessary not
only to code applications for present days hardware, but to ensure portable

scalability that also incorporates the evolution trends and ensure scalability
towards future hardware.

The present paper is a snapshot, demonstrating where we are and how
far we have come with respect to code modernization of HBM when a single

2see e.g. James Reinders, ”Moving Down the Path Toward Code Modernization”,
http://www.hpcwire.com/2015/08/19/moving-down-the-path-toward-code-modernization/

2



node is considered. The source code tag used for the present paper is 16049.

The first section introduces the testcase and the benchmark systems that
we will use for this study. Moreover, it surveys the main components within
the timeloop from a computational perspective. The second section presents
performance results attained on three generations of Intel R© Xeon processors.
The third section presents out-of-the-box performance attained on 1st gen-
eration Intel R© Xeon PhiTM coprocessors (codenamed Knights CornerTM)
and 2nd generation Intel R© Xeon PhiTM processors (codenamed Knights
LandingTM) and it cross-compares this with the performance attained on
the Intel R© XeonTM processors. Finally, we present our conclusions in sec-
tion four.

This paper is the first in a planned series of three papers and this one
is meant to serve as baseline reference report. It will present out-of-the-box
node performance results on Intel Xeon Phi and Intel Xeon processor nodes.
The second will present out-of-the-box cluster performance results. (aiming
at Q4, 2016). These first two papers constitutes the baseline performance as
is, and the results revealed therein will be used as guidelines for prioritizing
further optimization efforts. The final paper will present cluster performance
results after we have had some time to tune the code for modern processors
(aiming at Q3, 2017). This will complete our modernization efforts on HBM
towards the new HPC cluster that DMI will receive towards the end of 2017.

2 Introduction

This section will introduce the test-cases that we will deal with in this and
the following papers. It will also summarize relevant runtime information
such as memory footprints and IO initialization requirements. Finally, we
will summarize the hardware that we have used during this study.

2.1 The Baffin Bay setups

To make our points and not to complicate things more than necessary, we
will neither use meteo-forcing fields nor other forcing data in this paper,
which may even be protected by proprietary rights, yet we would like to
demonstrate our findings on realistic data sets that we can share freely with
anyone interested. Therefore, we have supplied with the source code relevant

3



data from a Baffin Bay setup generated from the freely available ETOPO23

data set.

Figure 1 shows the geographical location of the setup and the bathymetry
and table 1 summarizes the set of Baffin Bay setups. The setups distinguish
themselves from our usual setups because they do not apply our two-way
nesting feature, cf. [1]. We hope that this will ease the interpretation of
the out-of-the-box performance results. We have chosen to present the set
of setups in this first paper to reveal the obvious challenges that one faces
when the resolution is increased but also to demonstrate that our compact
index representation allow us to run relatively large setups on a relatively
small footprint.

85°W 75°W 65°W 55°W 45°W

Figure 1: Map of the 1nm bathymetry for the Baffin Bay setup (left) and
map of Baffin Bay area (right).

In the present paper we focus solely on node performance, i.e. the perfor-
mance related to threading and vectorization in a shared memory context.
We acknowledge the fact that other technical issues, such as performance
related to I/O and distributed memory, as well as other model features,
such as nesting and open boundary forcing, do indeed play huge roles for

3ETOPO2 is a 2 arc-minute global relief model of Earth’s surface that integrates land
topography and ocean bathymetry,
http://www.ngdc.noaa.gov/mgg/global/global.html

4



BB 2 BB 1 BB 05 BB 025 BB 0125

resolution [n.m.] 2.0 1.0 0.5 0.25 0.125

resolution [m] 3704 1852 926 463 232

mmx [N/S] 565 1130 2260 4520 9040

nmx [W/E] 331 661 1322 2644 5288

kmx [layers] 137 137 137 137 137

3D gridpoints 25621055 102329410 409317640 1637270560 6549082240

3D wetpoints 7136949 27838287 111353148 445412592 1781650368

ratio3 [%] 27.9 27.2 27.2 27.2 27.2

2D points 187015 746930 2987720 11950880 47803520

2D wetpoints 77285 300822 1203288 4813152 19252608

ratio2 [%] 41.3 40.3 40.3 40.3 40.3

ϕ [latitude] 81◦ 50′0′′ N 81◦ 50′0′′ N 81◦ 50′0′′ N 81◦ 50′0′′ N 81◦ 50′0′′ N

λ [longitude] 82◦ 30′0′′ W 82◦ 30′0′′ W 82◦ 30′0′′ W 82◦ 30′0′′ W 82◦ 30′0′′ W

∆ϕ 0◦ 2′00′′ 0◦ 1′00′′ 0◦ 0′30′′ 0◦ 0′15′′ 0◦ 0′7.5′′

∆λ 0◦ 6′00′′ 0◦ 3′00′′ 0◦ 1′30′′ 0◦ 0′45′′ 0◦ 0′22.5′′

dt [sec] 10 5 2.5 1.25 0.625

maxdepth [m] 2387.00 2387.00 2387.00 2387.00 2387.00

min ∆x [m] 1579.57 789.78 394.89 197.35 98.72

CFL 0.9 0.9 0.9 0.9 0.9

Complexity (Ir) 68 528 4221 33768 270144

IO (hz) [Mb] 55 213 850 3399 13593

Table 1: The Baffin Bay testcases. The color yellow in the cells is used
to denote challenges that the implementation has to deal with as the setup
increases. Yellow indicates data set sizes where it may not be a trivial task
to read it in; reading these data may contribute a significant portion to the
timings. Please consult [1] and [2] for a definition and discussion of the
computational complexity index Ir.

5



any real operational model application, but we will here liberate ourselves
from burdens like those.

Let us try to make some very crude extrapolations of the setups in ta-
ble 1 into corresponding global setups. Size-wise, seen from the number of
grid-points, the BB 025 testcase in table 1 coincides with global ocean se-
tups that are in ≈ 4 km range and BB 0125 coincides with a global setup
in the ≈ 2 km range, but remember that the timesteps for the BB 025 and
BB 0125 setups are significantly smaller than they would be for the corre-
sponding global testcases due to the very fine resolution. Now, time-wise,
the time it takes to solve say BB 2 coincides with the time it would take to
solve a global setup with around 2260x1322x137 points in a 15 km resolu-
tion, or the time it takes to solve BB 05 corresponds to the time it would
take to solve a global setup with around 9040x5288x137 points in 4 km reso-
lution. Thus, we trust that we span the whole range of sizes and resolutions
that are used in production today onto the sizes and resolutions that are
beyond what we would imagine to appear within the next 5 years.

Note that the BB 05 and onward are artificial extensions of BB 1. The
one following BB 0125, namely BB 00625, requires that the number of 3D
wetpoints is represented in 64-bit integers. Thus, asynchronous IO-servers
constitute a mandatory component once we get to such setups. Hence, we
will confine our initial studies to the first 4-5 cases. The smallest case,
BB 2, is small enough to fit into the memory of a single node or accelerator
whereas the larger one, BB 025, requires several nodes (assuming the usual
capacity of 64 GB) just to run, at least if we do not use dedicated IO servers
to handle the global MPI variables. In this paper, where we focus on node
performance, we will confine the treatment to the BB 2 case.

2.2 Imbalance inherited in the setup

There are two important aspects related to imbalance. Firstly, we need to
split the work properly among the threads and this is a non-trivial problem,
cf. [4] and figure 2. Secondly, we need to ensure proper CPU and memory
affinity.

NUMA layout. All the 2D and 3D arrays are first-touched according
to threads that will operate on these arrays, cf. [4]. This does give rise to a
reasonable NUMA layout with a few exceptions. First, the land-point index

6



Figure 2: Irregularity of the problem. The color coding shows the number
of wet-points below each surface point, white is on land, and the color scale
runs from dark blue for 1 point to dark red for 137 points. The histogram to
the right shows the distribution of number of wet-points along each zonal (i.e.
constant latitude) grid line. The upper histogram shows the distribution of
number of wet-points along each meridional (constant longitude) grid line.
This figure is meant to convey the challenges that one faces when it comes
to split the work evenly among the threads.

0 which is placed on the MASTER thread which again will be placed on the first
socket. Second, the tiny fraction of the indices that belong to the page that
hold indices belonging to several threads that could be spread across sockets.
With the current implementation there is no guarantee that these threads
are placed on the same socket. The decomposition algorithm could ensure
that the split between threads that live on different sockets always happens
at page boundaries and this would be a simple improvement to the current
algorithm which we will consider in our future work on improving the model.

7



2.3 Memory footprint

It is important to understand the memory requirements as we scale the se-
tups so table 2 is an attempt to summarize this.

The largest case can run on a single node assuming that this node has
256 GB of memory available but requires at least 7 nodes if they have the
”usual” capacity of 64 GB. It should be mentioned that different compilers
and different compiler options do change these numbers a bit so the numbers
in the table should be read as ballpark numbers. The numbers table 2 were
attained from a build with the Cray compiler using optimization flags (see
section 2.5). Note that the single node fingerprint (which includes both data
and code) translate roughly into an equivalent of 62 real(8) fields.

#tasks BB 2 BB 1 BB 05 BB 025

[GB] [GB] [GB] [GB]

1 3.3 12.9 51.5

2 2.0 7.8 30.9

3 1.2 6.0 24.0

4 1.4 4.8 20.6

5 1.2 4.7 18.5

6 1.1 4.3 17.1

7 1.1 4.1 16.2 55.0

8 1.0 3.9 15.4 51.9

9 1.0 3.7 14.8 49.5

10 1.0 3.6 14.4 47.7

20 0.8 3.1 12.3 39.2

30 0.8 2.9 11.6 43.0

40 0.8 2.8 11.2 34.9

50 0.7 2.8 11.0 40.7

60 0.1 2.7 10.9 30.5

70 0.7 2.7 10.8 33.1

80 0.1 2.7 10.7 39.5

Table 2: Memory footprint for different setups as function of MPI task
count. The table shows how much memory the largest task is consuming
and we focus on nodes with 64 GB of memory.

8



2.4 Initialization

As the setup increases, we have to focus not only on the timeloop but also on
the initialization and the IO taking place during initialization. As revealed
in table 1, the bathymetry file grows with the setup and reading in several
GB does take several seconds and we have to consider how to do it properly
as the setups grow. In table 1, it is the BB 025 and BB 0125 that really
require some attention but the fact that this is indeed the case just shows
that we need to deal with this in order to prepare ourselves for the future
setups. Our real solution is to use IO-servers but even in the cases where we
run without IO-servers, it is still worth to read in using N tasks (N should
be seen in relation to the total number of tasks and to the size of the input
file) and BCAST to the remaining number of tasks. If we do cold-start runs
only, then we can confine ourselves to deal with the bathymetry file at scale
but for restart runs, we need to deal with that too. For restart files, the
solution at scale is to use asynchronous IO-servers.

2.5 The benchmark system

The systems (IvyBridge, Haswell, Broadwell, KnightsCorner and Knights-
Landing) all run Red Hat Enterprise Linux Server (Santiago). The
IvyBridge system uses release 6.5 whereas the rest of the systems use
release 6.6. We have used the same compiler and the same tools on
all the systems in order to ensure consistency. The only exception is the
memory footprint information in table 2 which was obtained on a different
system4 The compiler used for all performance tables is the Intel R© Fortran
compiler, Version 16.0.0.109, Build 20150815. The specifications of the sys-
tems are summarized in table 3-6. Moreover all runs have been conducted
with the default pagesize which in this case where transparent huge pages
(THP) is used become 2Mb. On KnightsLanding, the cluster mode is quad
and the memory mode is flat in all runs. All runs but the ones without
Intel R© HyperThreading technology are done using KMP AFFINITY=compact.
The runs without HyperThreading use affinity settings like the particular
Haswell example shown below:
KMP AFFINITY=proclist=[0-27:1],granularity=thread,explicit

All timings are done using omp wtime and we focus on the timing sur-
rounding the whole timeloop including all barriers etc. as well as the worst-

4A cray XC system with 10c IVB nodes using the cray compiler and the craypat tools
to obtain the information.

9



case timings, i.e. the slowest thread, done inside the parallel region surround-
ing the 13 most important components. The 13 components accounts for
more than 95% of the total timeloop time. It is important to stress that one
should not expect that the worst-case timings sum to the timeloop timings
simply because they are worst-case timings and also because we have left
out some tiny blocks because they do not contribute to the overall picture.

10



IVB HSW BDW

Micro-architecture IvyBridge Haswell Broadwell

Model E5-2697v2 E5-2697v3 E5-2697v4

Released Q3, 2013 Q3, 2014 Q1, 2016

Sockets/node 2 2 2

Cores/socket 12 14 18

Multi threading HT HT HT

Threads/core 2 2 2

Threads/node 48 56 72

Frequency [GHz] 2.7 2.6 2.3

Lithography [nm] 22 22 14

ISA AVX AVX2 AVX2

Memory channels/socket 4 4 4

Memory access NUMA NUMA NUMA

Memory DDR3 1600 DDR4 2133 DDR4 2400

Memory [GB/node] 64 64 128

L3 cache [MB/socket] 30 35 45

L2 cache [KB/core] 256 256 256

D1 cache [KB/core] 32 32 32

TDP/socket [W] 130 145 145

Ideal [GF/s] 518 1165 1324

HPL [GF/s] 492 949 1236

HPL efficiency [%] 95 81 93

HPL power [W] 700 750 545

HPL [GF/s/W] 0.70 1.26 2.26

HPL/core [GF/s] 20.5 33.9 35.5

Ideal BW [GB/s] 102 136 154

Triad [GB/s] 86 107 129

Triad efficiency [%] 84 78 84

Triad power [W] 620 380 425

Triad [GB/s/W] 0.135 0.287 0.303

Triad/core [GB/s] 3.58 3.82 3.58

Balance [bytes/flops] 0.17 0.11 0.10

Table 3: Specifications for the Intel R© Xeon R© processor-based systems
used throughout this paper. Note that TDP ratings are per core whereas
the quoted power numbers and performance/Watt numbers are all system
power.

11



KNC KNL

Micro-architecture KnightsCorner KnightsLanding

Model 7120A 7210

Released Q2, 2013 Q2, 2016

Cards—Sockets 1 1

Cores/Socket 60 64

Tiles/Socket N/A 32

Multi threading SMT SMT

Threads/core 4 4

Threads/node 240 256

Frequency [GHz] 1.238 1.3

AVX Frequency [GHz] N/A 1.1

Mesh Frequency [GHz] N/A 1.6

Lithography [nm] 22 14

ISA ICMI AVX-512

Memory GDDR5 MCDRAM

Memory transerfs 5.5 GT/s 6.4 GT/s

Memory access UMA UMA

Memory channels/socket 16 8

Memory [GB] 16 16

Memory mode N/A Flat

L3 cache N/A N/A

L2 cache [KB] 512/core 1024/tile

D1 cache [KB/core] 32 32

TDP [W] 300 215

Ideal [GF/s] 1188 2662

Table 4: Specifications for the Intel R© Xeon PhiTM processor-based systems
(to be continued on next page) used throughout this paper. Note that L2
is shared on KNL. Also note that KNL has access to both fast bandwidth
MCDRAM and slower bandwidth DDR4 RAM but we have only specified
MDCRAM related numbers in the table since we run the whole model in
MCDRAM and do not use the DDR4 RAM attached at all. Finally, note
that KNL also come in two other SKUs, namely 7230 (bin2) and 7250 (bin1).
The latter has 68 active cores and runs at 1.4Ghz and the uncore frequency
is 1.7 Ghz instead of 1.6 Ghz. Moreover, the memory transfers are 7.2 GT/s
instead of 6.4 GT/s. Finally, stream triad performance is 490 Gb/s instead
of 440 Gb/s.

12



KNC KNL

Micro-architecture KnightsCorner KnightsLanding

Model 7120A 7210

Ideal [GF/s] 1188 2662

HPL [GF/s] 999 1800

HPL efficiency [%] 84 68

HPL power [W] 312 455

HPL [GF/watt] 3.2 3.95

HPL/core [GF/s] 16.7 28.1

Ideal BW [GB/s] 352 ≈600

Triad [GB/s] 177 440

Triad efficiency [%] 50 73

Triad power [W] 528 403

Triad [GB/watt] 0.335 1.09

Triad/core [GB/s] 3.0 6.9

Balance [bytes/flops] 0.18 0.24

Table 5: Specifications for the Intel R© Xeon PhiTM processor-based systems
used throughout this paper - continued.

13



IVB HSW BDW KNC KNL

x86 64 yes yes yes no yes

x87 yes yes yes yes yes

SSE yes yes yes no yes

AVX yes yes yes no yes

AVX2(FMA3) no yes yes no yes

AVX512 no no no no yes

ICMI no no no yes no

#cores [%] 100 117 150 250 267

#cores time [%] 100 85.7 66.7 40 37.5

#threads [%] 100 117 150 500 533

#threads time [% 100 85.7 66.7 20 18.75

HPL [GF/s] 492 949 1236 999 1800

HPL ratio [%] 100 192 251 203 366

HPL time [%] 100 52 40 49 27

HPL EER [%] 100 180 323 457 564

Triad [GB/s] 86 107 129 177 440

Triad ratio [%] 100 124 150 206 512

Triad time [%] 100 80 67 49 20

Triad EER [%] 100 213 224 248 807

Table 6: Comparison of system characteristics. This table shows ballpark
estimates for the time reductions we expect to see for BW bound parts and
it also show an upper bound on the reductions we expect to see for the
compute-bound components. Percentages are relative to the IVB which we
have chosen as the reference. The HPL EER is the HPL energy efficient
ratio, i.e. the HPL performance per Watt, relative to IVB. The Triad EER
is the Triad energy efficient ratio, i.e. the Triad performance per Watt,
relative to IVB.

14



2.6 The timeloop components

The characteristics of each of the 13 most time-consuming components
within the timeloop are summarized in table 7 and a brief description of
the functionality and computational characteristics of each of these is given
in appendix A.

Component SLOC Bound BARRIERs non-SIMD halo swaps

advection 5400 BW yes yes

deform 100 BW yes no

uvterm 200 BW no no

momeqs 800 BW/flops no trisolver no

turbulence 500 flops no trisolver no

reduction

vdiff 100 flops no trisolver no

diffusion 200 BW yes no

density 200 flops (yes) reduction yes

sumuvwi 60 BW no no

bcldens 300 flops no reduction no

masseqs 100 BW yes reduction no

tflow up 300 BW (yes) yes

smag 100 BW no no

Table 7: Summary of component characteristics. See text for explanations.

The sloccount5 for the total HBM source code base is approximately
90.000 so the components we consider in this paper collectively amount to
less than 10% of the HBM code lines6 but still these components are con-
suming more than 95% of the run-time (cf. section 3.1). The remaining
90% of the code lines are dealing with matters like I/O and nesting and
other model features that we do not consider in the present paper here, plus
infrastructure components including domain decomposition, data permuta-
tion, array allocation and wrappers for OpenMP, MPI and utilities such as
the timers which are also important and used here but not accounted for in
table 7.

5http://www.dwheeler.com/sloccount/
6Antoine de Saint-Exupéry: Perfection is attained, not when there is nothing more to

add, but when there is nothing more to remove.

15



The Bound column in table 7 reflects our immediate gut feeling about
how each component is mainly bound. We here characterize components as
either memory bandwidth bound (BW) or compute bound (flops).

For BARRIERs, ”no” means that the component does not contain any
OMP BARRIERs inside the timed code segment. A ”yes” means that it does
contain one or more OMP BARRIERs and that the last of these OMP BARRIER

is immediately before exit of the timed chunk, while ”(yes)” means that the
component contains one or more OMP BARRIERs which are buried deep inside
the component and not at the end.

Some of the components rely on algorithms that are inherently serial.
This is depicted in the non-SIMD column. There is the solver for tri-
diagonal systems of sets of linear equations (called trisolver), and there are
reduction-type loops (e.g. summation accumulation over the water column).
Note that the turbulence component has both of these, limiting this oth-
erwise stream-friendly component by the scalar performance of the system.

The halo swaps column indicates if the component contains any MPI
halo swaps inside the timed code segment.

16



3 Intel R© Xeon R© processor performance

In this section we present out-of-the box performance on different incarna-
tions of the Intel Xeon processor-based platform. There are many ways that
one can present the timings and each approach may give rise to new insights.
The goal of this section is to reveal such insights.

3.1 Default decomposition

This subsection will present timings attained when running with one single
MPI task and as many OpenMP threads as there are hyperthreads available
on the node and when using the default geometric decomposition described
in [1] and [4].

Table 8 summarizes these timings and it shows how the hardware im-
provements from one Intel Xeon processor incarnation to the next affect
the various model components differently. It also shows that all the mem-
ory BW bound components (see table 7) do attain the 20% improvement
that the stream benchmark attains (cf. table 6). Moreover, we observe that
vdiff on HSW performs under expectation and this ought to be further
investigated. Table 9 shows the fraction of time that each of the chosen
13 components account for and based on this table it seems reasonable to
explain the timeloop performance by focusing solely on the components that
explain 95%-97% of the timeloop performance.

17



Component IVB [s] HSW [s] BDW [s] IVB [%] HSW [%] BDW [%]

advection 190 151 126 100 80 66

deform 15 12 10 100 81 68

uvterm 19 15 13 100 81 70

momeqs 37 31 23 100 83 62

turbulence 31 23 16 100 74 51

vdiff 8 7 4 100 87 49

diffusion 17 13 11 100 80 68

density 19 12 10 100 63 50

sumuvwi 22 17 14 100 78 65

bcldens 14 8 7 100 59 50

masseqs 11 8 7 100 79 69

tflow up 31 24 20 100 78 66

smag 11 10 7 100 84 66

timeloop 441 341 283 100 77 64

Table 8: Worst case thread timings attained when running with a single
MPI tasks and all available threads on the node. On the right-hand side,
we show the timings in percent relative to our reference IVB.

18



Component IVB [%] HSW [%] BDW [%]

advection 43 44 45

deform 3 4 4

uvterm 4 4 5

momeqs 8 9 8

turbulence 7 7 6

vdiff 2 2 1

diffusion 4 4 4

density 4 4 3

sumuvwi 5 5 5

bcldens 3 2 2

masseqs 2 2 3

tflow up 7 7 7

smag 3 3 3

All the above 96 97 95

Table 9: Timings in percent relative to the full timeloop timings in ta-
ble 8. It reveals the fractions of time within the timeloop that we have not
accounted for (3%-5%) by focusing solely on the 13 components.

19



3.2 Hybrid OpenMP+MPI versus single task OpenMP

We will now show how the model performs using hybrid OpenMP+MPI
and we will cross-compare this with single-task OpenMP runs with simi-
lar decomposition as the OpenMP+MPI hybrid runs. This experiment will
indeed show the importance of data locality and of balancing the compu-
tations in the sense that the timings from the default decomposition are
improved significantly. Figure 3 illustrates how one can partition the do-
main into sub-slices with an almost equal number of wetpoints in each slice.
This is the decomposition strategy used in the hybrid runs and in the sliced
OpenMP runs.

60°N

65°N

70°N

75°N

80°N

85°W 75°W 65°W 55°W 45°W

Figure 3: Example showing four slices (zonal split) of the Baffin Bay 1nm
setup . With this attempted even-split the number of wetpoints in the 4
subareas become 6941116, 6976306, 6951686 and 6969179, respectively.

It is not uncommon to see that codes are better off using N MPI tasks
within the nodes with N > 1. Having said that, we are not aware of any
technical explanation that would justify this. We trust that a more likely
explanation would either be a less efficient OpenMP parallelization strategy
and implementation in the code itself or that one uses a compiler that comes

20



#tasks #threads Time [s] #threads #omp slices Time [s]

1 48 436 48 1 436

2 24 439 48 2 428

4 12 424 48 4 415

6 8 410 48 6 400

8 6 403 48 8 396

12 4 397 48 12 386

24 2 420 48 24 384

48 1 451 48 48 398

Table 10: Hybrid runs and pure OpenMP runs with hybrid decomposition
on IVB. Red highlights the slowest run whereas green is the fastest run.

#tasks #threads Time [s] #threads #slices Time [s]

1 56 341 56 1 340

2 28 346 56 2 337

4 14 326 56 4 325

7 8 314 56 7 312

8 7 314 56 8 310

14 4 314 56 14 299

28 2 341 56 28 300

56 1 388 56 56 334

Table 11: Hybrid runs and pure OpenMP runs with hybrid decomposition
on HSW. Red highlights the slowest run whereas green is the fastest run.

21



#tasks #threads Time [s] #threads #slices Time [s]

1 72 278 72 1 279

2 36 277 72 2 273

3 24 271 72 3 267

4 18 266 72 4 262

6 12 255 72 6 256

8 9 252 72 8 251

9 8 252 72 9 248

12 6 251 72 12 242

18 4 253 72 18 239

24 3 260 72 24 240

36 2 272 72 36 260

72 1 318 72 72 242

Table 12: Hybrid runs and pure OpenMP runs with hybrid decomposition
on BDW. Red highlights the slowest run whereas green is the fastest run.

with a less efficient implementation of the OpenMP specification. Being less
well OpenMP parallelized will eventually prevent the code from scaling well
in the sense that the fraction of the memory used to store the halo zones
will exceed the number of active compute points much earlier with a pure
MPI approach. With a pure MPI approach the fraction will grow with the
number of cores whereas with a proper hybrid approach it will grow with
the number of nodes and this is an important difference as the number of
threads on the nodes seem to grow rapidly. At this point, we have chosen to
add another confirmation check on our OpenMP strategy, namely to dou-
ble check that we cannot beat it by substituting some of the threads with
MPI tasks. Tables 10-12 confirm this hypothesis. The slice decomposition
improves the performance by 12%-14% alone on all three systems, despite
the fact that the cost of join-fork operations for the explicit OpenMP bar-
riers increases with increasing OpenMP thread count. The upcoming paper
which deals with cluster runs will hopefully reveal that this result is not due
to an inefficient MPI implementation which would be one potential expla-
nation but rather due to an efficient use of OpenMP in the code.

The best performance is attained using a slice count in the range #T/4−
#T/3. Please also note that the worst performance on all three systems is
attained when all available hyperthreads are used for MPI tasks; we sim-

22



ply loose approximately 1/3 in performance. For hybrid parallelised runs,
the MPI communication benefits from the OpenMP threading since in the
HBM implementation we do threaded encode and decode of send and receive
buffers as well as MPI communication on different OpenMP threads.

Tables 13-14 show the timings for each of the computational components
obtained for the OpenMP-slice experiments on BDW. Some components
are virtually unaffected by varying the decomposition while the advection
component shows a huge response up to 20%. It is good to confirm the
expectation that compute bound components are not really affected by the
decomposition and it is interesting to observe that some BW bound compo-
nents are highly affected while other BW bound components are not affected
much. This is a finding that is worth to dive deeper into.

Slices 1 2 3 4 6 8 9 12 18 24 36 72

advection 127 123 122 117 113 109 107 104 103 102 110 102

deform 10 10 9 9 9 9 9 9 9 9 9 9

uvterm 13 13 12 12 11 10 10 9 9 9 10 9

momeqs 23 23 23 23 22 23 22 21 21 21 22 21

turbulence 16 16 16 16 16 17 16 16 16 16 19 16

vdiff 4 4 4 4 4 4 4 4 4 4 4 4

diffusion 12 11 10 10 10 9 9 8 9 8 9 9

density 10 10 9 9 10 10 10 9 9 9 11 10

sumuvwi 15 14 14 15 14 14 15 15 15 15 17 15

bcldens 7 7 7 7 7 7 7 7 7 7 8 7

masseqs 7 7 7 6 6 6 6 6 6 6 7 6

tflow up 21 20 20 20 20 19 19 19 19 19 20 19

smag 8 8 7 7 8 7 7 7 7 7 8 8

timeloop 279 273 267 262 255 251 248 242 239 240 260 242

Table 13: Timings in seconds for each individual component as well as for
the whole timeloop when running on BDW with varying number of slices.

23



Slices 1 2 3 4 6 8 9 12 18 24 36 72

advection 100 97 96 92 89 86 85 82 81 80 86 81

deform 100 103 91 91 90 88 86 87 86 85 87 86

uvterm 100 99 90 90 83 75 76 73 72 72 76 68

momeqs 100 100 98 97 94 97 95 90 88 91 96 89

turbulence 100 99 100 100 98 102 101 99 97 98 118 100

vdiff 100 95 95 93 95 96 93 94 97 94 111 102

diffusion 100 93 91 87 83 79 76 73 74 73 76 74

density 100 98 95 95 97 98 96 95 95 95 111 100

sumuvwi 100 99 98 100 99 99 100 99 99 100 115 105

bcldens 100 100 100 99 101 101 100 100 100 99 119 106

masseqs 100 95 94 87 83 84 82 82 82 82 89 81

tflow up 100 94 93 93 93 91 91 91 90 90 96 90

smag 100 101 92 93 98 92 94 92 91 91 98 99

timeloop 100 98 96 94 91 90 89 87 86 86 93 87

Table 14: Timings in percent relative to the default sliced decomposition for
each individual components as well as for the whole timeloop when running
on BDW with varying number of slices. Green is used to highlight the BW
components that are highly improved by the best sliced decomposition.

24



3.3 Compiler flags

This subsection is devoted to the choice of compiler flags. We have tried
many combinations of compiler flags and the conclusion of this study (not
shown here) was that the flags do not contribute to the performance as long
as we ensure to turn on Intel R© Advanced Vector Extensions (Intel R© AVX)
and Intel R© Advanced Vector Extensions 2 (Intel R© AVX2), respectively. We
have tried all combinations with the flags shown in table 15 and all trials
have been repeated 10 times. We found that none of the many combinations
showed significant improvements nor degradation over our default flags -O2
-xAVX and -O2 -xCORE-AVX2 in the sense that the effect of substituting
compiler flags was no larger than the unavoidable 1% run-to-run variations
that we have experienced on the benchmark system. The only really inter-
esting finding from this study was the effect of the SIMD instructions.

Table 16 and table 17 show the improvements attained due to Intel AVX
and Intel AVX2, respectively. We see that the highly BW bound components
cannot be improved since they already hit the BW roof but the ones that
does not can indeed. Moreover, we see that for flop intensive components
Intel AVX does indeed improve the performance significantly (up to 38%).
The overall improvement gained from Intel AVX is around 10% which we is
quite reasonable given that the majority of this code is purely BW bound.
On the same flop intensive components Intel AVX2 improves the performance
further and FMA3 certainly contributes to this improvements as shown for
density and bcldens where we see impressive improvement beyond 130%.
The overall timeloop improvement gained from Intel AVX2 is around 23%
which is quite good given that the majority of this code is mainly BW bound.

25



-O2

-O3

-xAVX vs -xCORE-AVX2

-no-inline-max-size

-align array64byte

-fimf-precision=low -fimf-domain-exclusion=15

-opt-streaming-stores always

-no-vec

-no-fma

Table 15: List of compiler flags. This table shows the single flags settings
that we have used and as part of the investigation we tried all combinations
of these flags.

Component AVX [s] no-vec [s] AVX [%] no-vec [%]

advection 157 170 100 108

deform 13 13 100 102

uvterm 13 14 100 101

momeqs 35 39 100 110

turbulence 31 37 100 120

vdiff 8 8 100 102

diffusion 13 14 100 106

density 19 26 100 134

sumuvwi 22 22 100 98

bcldens 14 19 100 138

masseqs 9 9 100 99

tflow up 28 29 100 103

smag 11 11 100 104

timeloop 387 423 100 109

Table 16: Different compiler flags on IVB. This table shows the individual
improvements or degradation that are imposed with or without Intel R© Ad-
vanced Vector Extensions on IVB. On the left-hand side, we show the ab-
solute timings whereas the right-hand side shows the relative effect. Colors
are used to highlight significant improvements.

26



Component AVX2 [s] no-fma [s] no-vec [s] AVX2 [%] no-fma [%] no-vec [%]

advection 125 125 139 100 100 111

deform 10 11 11 100 105 105

uvterm 11 11 11 100 105 105

momeqs 28 29 39 100 104 142

turbulence 23 23 39 100 102 172

vdiff 7 7 7 100 100 107

diffusion 10 10 12 100 102 114

density 12 15 25 100 127 208

sumuvwi 17 18 17 100 101 98

bcldens 8 11 19 100 136 238

masseqs 7 7 7 100 99 101

tflow up 22 23 23 100 101 101

smag 8 9 9 100 109 104

timeloop 299 308 367 100 103 123

Table 17: Different compiler flags on HSW. This table shows the individ-
ual improvements degradation that are imposed without FMA3 and without
Intel R© Advanced Vector Extensions 2 (Intel R© AVX2), respectively on a 2S
HSW. On the left-hand side, we show the absolute timings whereas the right-
hand side shows the relative effect. Colors are used to highlight significant
improvements.

27



3.4 Thread imbalance

As mentioned in the introduction, this model deals with high-resolution se-
tups and this fact combined with the fact that it uses z-grid coordinates in
the vertical (as opposed to sigma-coordinates) pose some severe challenges
to the task of balancing the work load.

We use the balance definitions from DeRose7, i.e. let max time be the
maximal time among all threads and let avg time be the average time for
the threads and let NT be the total number of threads. Then

imb time = max time− avg time

imb time% =
NT ∗ imb time

(NT − 1) ∗max time

That is, an imbalance of 100% for a component means that only one
thread spent time in that component.

Tables 18-19 show that the imbalance is changed by the sliced approach.
We see individual component-wise improvements stemming from a better
balancing that are up to 28% and we see that some components are more
neutral to the decomposition. Note also that the best sliced decomposition
does not imply the best imbalance% for all components but indeed for the
three worst balanced components in the default 1 slice case, namely two
heavy momeqs and turbulence and the tflow up.

In table 20 we have shown the imbalance for all three Intel Xeon processor-
based systems using the best sliced decomposition. Note that there is a
potential for gaining a couple of seconds if one is capable of improving the
balance. It should be noted that there could be additional seconds in the
components where we have barriers already. Moreover, we observe that for
most components the balance issues do not increase much as we go to higher
thread counts with vdiff being a notable exception, and perhaps a smaller
tendency for the two flop intensive components density and bcldens.

7http://opendl.ifip-tc6.org/db/conf/europar/europar2007/RoseHJ07.pdf

28



Slices 1 2 3 4 6 8 9 12 18 24 36 72

advection 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

deform 0.02 0.02 0.04 0.04 0.05 0.06 0.05 0.04 0.05 0.05 0.03 0.05

uvterm 0.71 1.31 1.34 1.82 1.42 0.86 0.94 0.66 0.71 0.71 1.35 0.61

momeqs 2.79 3.14 2.99 3.17 3.16 3.92 3.72 2.95 2.30 2.97 4.31 2.33

turbulence 1.34 1.30 1.35 1.48 1.25 1.83 1.75 1.39 1.13 1.19 4.43 1.62

vdiff 0.32 0.15 0.16 0.09 0.13 0.23 0.12 0.10 0.28 0.15 0.80 0.48

diffusion 0.03 0.00 0.02 0.00 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.00

density 0.41 0.36 0.36 0.30 0.54 0.56 0.60 0.49 0.44 0.50 2.06 0.99

sumuvwi 0.65 0.50 0.32 0.69 0.38 0.46 0.63 0.48 0.55 0.62 2.86 1.50

bcldens 0.13 0.21 0.24 0.25 0.35 0.41 0.38 0.37 0.35 0.34 1.67 0.83

masseqs 0.00 0.00 0.03 0.03 0.03 0.01 0.02 0.02 0.01 0.01 0.04 0.01

tflow up 0.79 0.46 0.33 0.64 0.72 0.42 0.50 0.55 0.47 0.57 0.65 0.47

smag 0.31 0.78 0.24 0.38 0.70 0.29 0.46 0.31 0.22 0.23 0.65 0.77

Table 18: Imbalance time for the BDW runs in table 13 and 14. Yellow is
used to highlight the components that have internal barriers, green is the
slicing that gives rise to the best timeloop timing and red the components
with the largest imbalance.

29



Slices 1 2 3 4 6 8 9 12 18 24 36 72

advection 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

deform 0.18 0.21 0.39 0.47 0.51 0.68 0.60 0.48 0.58 0.57 0.29 0.53

uvterm 5.54 10.34 11.67 15.72 13.47 8.88 9.65 7.02 7.72 7.71 13.97 7.01

momeqs 12.11 13.58 13.23 14.19 14.57 17.55 17.01 14.21 11.31 14.12 19.49 11.42

turbulence 8.38 8.17 8.48 9.25 7.93 11.17 10.80 8.76 7.23 7.57 23.54 10.10

vdiff 8.26 4.25 4.43 2.38 3.53 6.12 3.42 2.79 7.45 4.05 18.70 12.34

diffusion 0.22 0.03 0.17 0.01 0.19 0.19 0.18 0.12 0.14 0.08 0.13 0.00

density 4.13 3.74 3.81 3.20 5.65 5.82 6.35 5.21 4.73 5.31 18.94 10.02

sumuvwi 4.47 3.48 2.29 4.75 2.64 3.24 4.33 3.31 3.83 4.33 17.19 9.89

bcldens 1.91 3.18 3.71 3.76 5.34 6.24 5.75 5.64 5.36 5.26 21.43 11.92

masseqs 0.04 0.01 0.46 0.43 0.46 0.21 0.25 0.39 0.24 0.22 0.59 0.22

tflow up 3.77 2.32 1.68 3.29 3.72 2.19 2.61 2.88 2.49 3.03 3.22 2.51

smag 4.13 10.10 3.40 5.34 9.33 4.17 6.45 4.47 3.14 3.27 8.67 10.22

Table 19: Imbalance % for the BDW runs in table 13 and 14. Yellow is used
to highlight the components that have internal barriers, green is the slicing
that gives rise to the best timeloop timing and red the components with the
largest imbalance.

30



Component IVB [s] HSW [s] BDW [s] IVB [%] HSW [%] BDW [%]

advection 0.0 0.0 0.0 0.0 0.0 0.0

deform 0.1 0.0 0.0 0.4 0.4 0.6

uvterm 1.0 0.6 0.7 7.2 5.5 7.7

momeqs 3.3 2.5 2.33 9.7 9.2 11.3

turbulence 2.2 1.2 1.1 7.1 5.4 7.2

vdiff 0.2 0.2 0.3 2.6 3.1 7.4

diffusion 0.0 0.0 0.0 0.1 0.1 0.1

density 0.7 0.5 0.4 3.6 4.2 4.7

sumuvwi 0.7 0.8 0.5 3.4 4.8 3.8

bcldens 0.6 0.3 0.4 4.1 4.0 5.4

masseqs 0.0 0.0 0.0 0.1 0.5 0.2

tflow up 0.7 0.4 0.5 2.4 1.9 2.5

smag 0.9 0.2 0.2 7.9 2.8 3.1

Table 20: Individual imbalance time in seconds and the imbalance time
in imbalance % on different systems. Yellow is used to highlight the com-
ponents that have internal BARRIERs. These barriers will prevent us from
studying balancing issues based on timers surrounding these components.
They are maintained in the table solely to confirm this fact, i.e. the timers
surrounding these components does not reveal balance issues for the yellow
marked components. Red is used to mark the components that reveal po-
tential balance issues and dark red is used to mark an unfortunate tendency
where the imbalance seem to grow significantly with the number of threads.

31



3.5 HyperThreading

We will investigate whether or not HyperThreading pays off. Thus, we
repeated the fastest sliced decomposition runs with and without Hyper-
Threading and will study the performance of the individual components.
This experiment could hint if we have components that are limited by the
D1 and L2 cache. The fact that hyperthreads (on the core) share the first
two levels of the cache system implies that if one thread is already pushing
the cache to its limits then we do not expect to see improvements by adding
more threads on that same core that will compete on the same resources.

Tables 21-23 seem to suggest that the importance of HyperThreading
decreases (from 13% to 1%) with the newer architectures having more and
more cores. Moreover, the benefits seem to be tied to the individual com-
ponents and the effect varies from one component to the next, and even
components that improve on one system degrades on another system. It
seems that the highly BW bound components are challenges when it comes
to benefit from HyperThreading and this is actually quite reasonable in the
sense that the threads do share D1/I1 and L2. On the other hand, as ex-
pected, the compute bound components really benefit from HyperThreading.

32



Component 48 24 48 24

[s] [s] [%] [%]

advection 157 181 100 115

deform 13 14 100 108

uvterm 13 16 100 123

momeqs 35 40 100 114

turbulence 31 38 100 123

vdiff 8 9 100 113

diffusion 13 16 100 123

density 19 21 100 111

sumuvwi 22 21 100 95

bcldens 14 15 100 107

masseqs 9 10 100 111

tflow up 29 29 100 100

smag 11 10 100 91

timeloop 387 438 100 113

Table 21: Results of running with and without HyperThreading on IVB
in second (left) and in percent relative to the 48 threads (right). Affinity
settings as described in subsection 2.5. Green highlights the components
that improve most from using HyperThreading.

33



Component 56 28 56 28

[s] [s] [%] [%]

advection 125 119 100 95

deform 10 11 100 109

uvterm 11 11 100 101

momeqs 28 31 100 112

turbulence 23 28 100 122

vdiff 7 8 100 113

diffusion 10 10 100 98

density 12 14 100 116

sumuvwi 17 18 100 106

bcldens 8 11 100 136

masseqs 7 7 100 98

tflow up 22 23 100 102

smag 8 9 100 110

timeloop 299 309 100 103

Table 22: Results of running with and without HyperThreading on HSW
in second (left) and in percent relative to the 56 threads (right). Green
highlights the components that improve most from using HyperThreading.

34



Component 72 36 72 36

[s] [s] [%] [%]

advection 104 99 100 96

deform 9 8 100 96

uvterm 9 9 100 97

momeqs 21 24 100 117

turbulence 16 20 100 126

vdiff 4 4 100 113

diffusion 9 8 100 94

density 9 11 100 117

sumuvwi 15 15 100 97

bcldens 7 8 100 121

masseqs 6 6 100 93

tflow up 19 19 100 100

smag 7 7 100 100

timeloop 244 247 100 101

Table 23: Results of running with and without HyperThreading on BDW
in second (left) and in percent relative to the 72 threads (right). Green
highlights the components that improve most from using HyperThreading.

35



3.6 Frequency variations

Nowadays it is possible to run code on the very same CPU but at differ-
ent frequencies, the frequency being chosen at runtime. This allows one to
run highly BW bound code at lower frequency and thereby save some watts
but the timings attained from such experiments also allow one to do rather
accurate single node extrapolations to different SKUs and even different
incarnations of the Intel Xeon processor architectures. Tables 24-25 and ta-
bles 26-27 show the results of running at different frequencies on HSW and
on BDW, respectively. Moreover, the BDW tables show the corresponding
power measurements. The aim of this experiment is to classify the frequency
bound components and also to assess to which extent that they are bound to
the frequency. We will also try to reveal if there are cost benefits of running
at lower frequencies.

Table 27 reveals that there is a small cost savings in running at a lower
frequency: I.e. reducing frequency by 57% from 2.3 GHz to 1.3 GHz results
in a 20% reduction in power but also the time required to complete the
model run will increase by 20%, thus 4% is gained on the energy budget.
The table also shows that the compute bound components gain up to 40%
by running at the default frequency over the lower frequencies (or the degra-
dation is up to 70% at the lowest frequency compared to default frequency).
The tables re-confirms the classification of the compute bound components
and can also be used to order them.

36



Component 1.9 GHz 2.1 GHz 2.5 GHz 2.6 GHz

advection 131 127 126 125

deform 10 10 10 10

uvterm 11 11 11 11

momeqs 34 32 28 28

turbulence 30 28 23 23

vdiff 9 8 7 7

diffusion 11 11 10 10

density 15 14 12 12

sumuvwi 19 17 17 18

bcldens 11 10 9 8

masseqs 7 7 7 7

tflow up 23 23 22 23

smag 9 8 9 9

timeloop 331 317 302 299

Table 24: Timings in seconds attained under different frequencies on HSW.

Component 1.9 GHz 2.1 GHz 2.5 GHz 2.6 GHz

advection 105 102 101 100

deform 100 98 99 100

uvterm 100 96 98 100

momeqs 121 114 101 100

turbulence 133 121 103 100

vdiff 136 123 104 100

diffusion 104 104 100 100

density 128 118 103 100

sumuvwi 107 99 98 100

bcldens 134 122 104 100

masseqs 102 98 98 100

tflow up 101 99 99 100

smag 99 97 107 100

timeloop 111 106 101 100

Table 25: Results of running with different frequencies on HSW. Numbers
are in percent [%] relative to the 2.6 GHz results. Green highlights the most
strongly frequency bound components.

37



Component 1.3 GHz 1.5 GHz 1.7 GHz 1.9 GHz 2.1 GHz 2.2 GHz 2.3 GHz

advection 114 111 108 103 104 104 103

deform 9 9 9 9 9 9 9

uvterm 9 10 10 10 9 10 10

momeqs 32 28 26 21 22 22 21

turbulence 27 24 21 16 17 16 16

vdiff 5 5 4 4 4 4 4

diffusion 9 9 9 9 9 9 9

density 15 14 12 10 10 10 10

sumuvwi 15 15 15 15 15 15 15

bcldens 11 10 9 7 7 7 7

masseqs 6 6 6 6 6 6 6

tflow up 20 20 19 20 19 19 19

smag 7 7 7 7 7 7 8

timeloop 291 276 265 242 248 245 244

power [watt] 366 385 432 422 457 467 459

Table 26: Timings in seconds of frequency runs on BDW. The last row of the
table is the measured power consumption. This is measured system power
and not just CPU and/or memory.

38



Component 1.3 GHz 1.5 GHz 1.7 GHz 1.9 GHz 2.1 GHz 2.2 GHz 2.3 GHz

advection 111 107 105 100 101 101 100

deform 97 96 97 96 94 96 100

uvterm 98 99 98 100 96 101 100

momeqs 149 132 122 97 103 103 100

turbulence 167 146 130 98 107 101 100

vdiff 137 121 111 102 101 101 100

diffusion 108 104 103 99 102 102 100

density 160 141 127 99 106 103 100

sumuvwi 101 99 102 102 99 98 100

bcldens 171 148 131 99 109 102 100

masseqs 102 101 101 103 103 99 100

tflow up 103 102 102 102 101 101 100

smag 93 92 94 93 89 94 100

timeloop 120 113 109 99 102 101 100

power [%] 80 84 94 92 100 102 100

Table 27: Results of running with different frequencies on BDW. Numbers
are in percent [%] relative to the 2.3 GHz results. Green highlights the
most strongly frequency bound components. The last row of the table is the
measured power consumption relative to the 2.3 GHz run. This is measured
system power and not just CPU and/or memory.

39



3.7 Individual scaling within the node

The computational components are split into those that never attain peak
performance and those that actually do. The ones that attain peak perfor-
mance are all memory BW bound components. The components that are
memory BW bound show a classic scaling curve with a ramp tapering off
when we move towards the end of socket 1 and then again rising almost lin-
early from the start of socket 2, see e.g. figure 6. The ones that never attain
peak performance will scale all the way, see e.g. figure 5. That is, when we
look at the scaling/speedup aspect we need to be careful in stating the refer-
ence and the placement strategy, since these both have a high impact on the
shape of the curves and we should not be unsatisfied by an apparent poor
scaling graph since it may simply reveal that we reach peak performance
without using all threads available to us, nor should we be satisfied with an
apparently ideal linear scaling unless we actually get close to the peak per-
formance when using all threads available. Figure 4 summarizes the scaling
of the whole timeloop on the different incarnations of the Intel Xeon pro-
cessor architectures and we notice the overall BW bound shape of the curves.

40



Figure 4: Scaling of the whole timeloop on the different generations of
Intel R© Xeon R© processors. IVB is shown in blue, HSW in green, and BDW
in red.

41



Figure 5: Example showing scaling of one of the FLOP bound components
(bcldens).

42



Figure 6: Example showing a typical scaling image of one of the BW bound
components (advection). The slope of the scaling plot clearly shows how
the BW is exhausted on one socket and then when the second socket comes
into play the performance is improved again until this become exhausted
too.

43



4 Intel R© Xeon PhiTM coprocessor

In this section we present out-of-the box performance on KNC and we will
cross-compare KNC performance with IVB performance.

4.1 Default decomposition

In the previous section, we started off with the default decomposition that
is used in HBM. Table 28 shows the as-is performance attained on KNC
using 240 threads versus the performance that we attained using the 48
threads available on the 2S IVB system. The table shows that the overall
performance on KNC is slightly better than what we can attain on 2S IVB
using the same default decomposition on both but when we look at the in-
dividual components we see large differences in attained performance. The
BW bound components perform well on KNC, but the components with the
non-SIMD friendly trisolvers and reduction (marked in red) behave poorly
on KNC as compared to IVB. This is no surprise and it totally confirms our
expectations. The table also shows that KNC with default decomposion is
on par with the best performance on IVB that we can attain when we allow
for sliced decompositions.

It is, however, slightly disappointing that we are far from the extrap-
olated performance of 49% suggested by the IVB/KNC ratio for both the
HPL and the stream Triad. A similar behavior is also found for KNL versus
BDW, and we therefore have postponed further discussion on this issue to
the KNL section, see section 5.1.

Table 29 extends table 9 with a column for KNC, and one notes that
the 13 chosen components are still representative for explaining the overall
timeloop performance. It is interesting but not surprising to observe that
the static trend seen for the Intel Xeon processor line is not carried over to
KNC, i.e. the fraction that the different components accounts for is slightly
different.

It should also be mentioned that the sliced decomposition does not per-
form so well on KNC as we revealed on the Intel Xeon processor line. Ac-
tually, running without slices outperforms all the sliced runs that we tried.
The fact that this pattern repeats itself on KNL made us postpone the treat-
ment of this issue to the KNL section, see section 5.4.

44



Component IVB [s] IVBS [s] KNC [s] IVB [%] IVBS [%] KNC [%]

advection 191 157 156 100 83 82

deform 15 13 8 100 85 55

uvterm 19 13 12 100 71 65

momeqs 37 35 51 100 96 139

turbulence 32 31 53 100 99 169

vdiff 8 8 16 100 102 212

diffusion 17 13 11 100 76 68

density 19 19 18 100 101 97

sumuvwi 22 22 12 100 102 54

bcldens 14 14 14 100 102 101

masseqs 11 9 8 100 84 73

tflow up 30 28 18 100 94 60

smag 11 11 7 100 94 64

timeloop 437 387 401 100 89 92

Table 28: Worst case thread timing attained when running with a single
MPI tasks and all available threads on the node, 2S IVB versus 1 KNC
card. The first column is IVB run with the same decomposition as the
KNC run whereas the second column IVBS is the best attainable timing
we could get on IVB by using a sliced decomposition. The bold timeloop
line is the timing attained around a serial block including all barriers and
smaller components within the timeloop whereas the remaining timers are
all from within a threaded context and represents the worst-case timing
among all the threads. It is important to stress that one should not expect
that the worst-case timings sum to the timeloop timings simply because
they are worst-case timings and also because we have left out some tiny
blocks because they do not contribute to the overall picture. Red marks the
components that perform poorly relatively speaking.

45



Component IVB HSW BDW KNC

advection 43 44 45 39

deform 3 4 4 2

uvterm 4 4 5 3

momeqs 8 9 8 13

turbulence 7 7 6 13

vdiff 2 2 1 4

diffusion 4 4 4 3

density 4 4 3 5

sumuvwi 5 5 5 3

bcldens 3 2 2 3

masseqs 2 2 3 2

tflow up 7 7 7 5

smag 3 3 3 2

All 96 97 95 96

Table 29: Timings in percent relative to the timeloop timings in table 8
and 28. It reveals the fractions of time within the timeloop that we have
not accounted for (3%-5%) by focusing solely on the 13 components. Red
marks the components that perform poorly relatively speaking.

46



4.2 Compiler flags

This subsection is devoted to the choice of compiler flags. We have tried
many combinations of compiler flags and the conclusion of this study was
that a couple of flags do contribute to the performance. We found that
-O2 -mmic served as a better baseline than -O3 -mmic and tried several
combinations of flags from table 15. It turned out that the streaming flags

-opt-streaming-stores always -opt-streaming-cache-evict=0

did improve the performance slightly for a couple of the memory BW bound
components, notably sumuvwi and deform. Finally, it was also found that
for a couple of compenents the flags

-fimf-precision=low -fimf-domain-exclusion=15

had significant impact, notably momeqs, turbulence and vdiff, i.e. those
that are relatively heavy on e.g. DIV operations through the trisolverr. Ta-
ble 30 summarizes the findings of this study and it should be mentioned that
the best combination of flags additionally combined with -no-vec implies
that the timeloop increases to 1050 seconds (not shown), so SIMD is, as
expected, far more important on KNC than it was on the Intel Xeon pro-
cessors in the sense that SIMD alone accounts for an overall performance
factor of more than 2.6.

47



Component cf1 [s] cf2 [s] cf3 [s] cf1 [%] cf2 [%] cf3 [%]

advection 162 163 156 100 101 96

deform 10 8 8 100 81 98

uvterm 13 12 12 100 95 99

momeqs 69 68 51 100 99 76

turbulence 68 64 53 100 94 83

vdiff 22 22 16 100 98 75

diffusion 13 13 11 100 100 89

density 21 21 18 100 97 89

sumuvwi 15 12 12 100 78 98

bcldens 16 16 14 100 97 88

masseqs 8 8 8 100 97 100

tflow up 20 19 18 100 96 96

smag 8 8 7 100 96 97

timeloop 463 451 401 100 97 89

Table 30: Compiler flags study on KNC. The table summa-
rizes the compiler flags that had most impact on the perfor-
mance. The flag cf1 is shorthand notation for -O2 -mmic whereas
cf2 is shorthand notation for cf1 plus -opt-streaming-stores always

-opt-streaming-cache-evict=0 and cf3 is shorthand notation for cf2 plus
-fimf-precision=low -fimf-domain-exclusion=15. Green is used to
highlight the components that are most affected by the additional compiler
flags.

48



4.3 Imbalance

This section will reveal the imbalance numbers for the default decomposi-
tion run on KNC described above. Moreover, it will cross-compare these
numbers with the ones attained for the fastest sliced IVB run from the Intel
Xeon processor section, cf. IVB numbers from table 20. We have repeated
these numbers in table 31 that also shows the KNC numbers.

Component IVB [s] KNC [s] IVB [%] KNC [%]

advection 0.0 0.0 0.0 0.0

deform 0.1 0.0 0.4 0.5

uvterm 1.0 2.3 7.2 18.3

momeqs 3.3 4.5 9.7 8.8

turbulence 2.2 7.7 7.1 14.5

vdiff 0.2 1.3 2.6 7.7

diffusion 0.0 0.0 0.1 0.1

density 0.7 0.7 3.6 3.9

sumuvwi 0.7 0.6 3.4 4.7

bcldens 0.6 0.7 4.1 5.4

masseqs 0.0 0.0 0.1 0.3

tflow up 0.7 0.5 2.4 2.9

smag 0.9 0.4 7.9 4.9

Table 31: Imbalance numbers for the KNC run with respect to the de-
fault decomposition and from the fastest sliced version attainable on IVB,
cf. table 20. Yellow is used to highlight the components that have internal
barriers. Red is used to highlight the components for which the imbalance
grows significantly from IVB to KNC.

49



5 Intel Xeon phi, KNL

In this section we present out-of-the box performance on KNL and we will
cross-compare KNL performance with BDW performance and with KNC
performance.

5.1 Default decomposition

Table 32 cross-compares BDW performance with KNL performance. As-
suming that BDW performance is reasonable then we conclude that our
KNL performance could be better. That is, if we compare the attained 65%
relative KNL/BDW performance to the similar relative HPL and Triad per-
formance of 69% and 29%, respectively, we observe that performance gain is
much closer to the HPL gain than to the Triad gain by moving from BDW
to KNL (a similar feature was observed from IVB to KNC). This is primar-
ily due to a few components performing relatively poor. Thus, if we focus
on top-5 (marked in red in table 32) we have: vdiff, turbulence, momeqs,
bcldens and density, that is, three components that have the non-SIMD
friendly trisolver as a major component and two that are really flop intensive
but that also have reductions.

The first three account for 26% of the total time on KNL and this finding
is no real surprise since non-SIMD friendly components do not match an ar-
chitecture with 2 VPU units capable of doing 512-bit SIMD instructions. If
we in the future manage to find a proper solution for the trisolver issue and
thereby reduce time by (say) a factor of 2 for these three components, then
the timeloop would take 158 seconds and BDW versus KNL performance
ratio would then be 57% which would better match our expected target than
the attained 65% in table 32.

The latter two that account for 7% of the total time on KNL, on the other
hand, surprises us. The performance attained in bcldens and density does
not follow the HPL patterns from table 6 at all, so these two components do
not show the expected performance. This needs to be investigated further;
we cannot explain this issue at present.

Table 33 extends table 29 for KNL too, and one notes that KNL differs
slightly from the other 4 in the sense that there is a significant contribution
besides the 13 usual components that needs to be investigated in order to

50



Component BDW [s] BDWS [s] KNL [s] BDW [%] BDWS [%] KNL [%]

advection 127 103 66 100 81 52

deform 10 9 3 100 86 33

uvterm 13 9 5 100 72 38

momeqs 23 21 22 100 88 94

turbulence 16 16 20 100 97 123

vdiff 4 4 6 100 97 151

diffusion 12 9 5 100 74 47

density 10 9 8 100 95 78

sumuvwi 15 15 5 100 99 35

bcldens 7 7 6 100 100 91

masseqs 7 6 4 100 82 53

tflow up 21 19 8 100 90 38

smag 8 7 4 100 91 46

timeloop 279 239 182 100 86 65

Table 32: Worst case thread timings attained when running with a single
MPI tasks and all available threads on the node, 2S BDW versus 1 KNL
socket. The BDW and the KNL columns are from the default decomposition,
whereas the BDWS columns are from the best attainable slice decomposi-
tion. The bold timeloop line is the timing attained around a serial block
including all barriers and smaller components within the timeloop whereas
the remaining timers are all from within a threaded context and represent
the worst-case timing among all the threads. It is important to stress that
one should not expect that the worst-case timings sum to the timeloop tim-
ings simply because they are worst-case timings and also because we have
left out some tiny blocks because they do not contribute to the overall pic-
ture. Red is used to mark the components that does not perform so well on
KNL, and green is used to mark the fastest platform when looking at the
whole timeloop.

51



explain the overall timeloop performance. It appears that the additional
component is the barriers in the hydrodynamics module which accounts for
11 seconds, and including these 11 seconds into the pool we again account
for 95% of the total timeloop time.

Component IVB HSW BDW KNC KNL

advection 43 44 45 39 36

deform 3 4 4 2 2

uvterm 4 4 5 3 3

momeqs 8 9 8 13 12

turbulence 7 7 6 13 11

vdiff 2 2 1 4 3

diffusion 4 4 4 3 3

density 4 4 3 5 4

sumuvwi 5 5 5 3 3

bcldens 3 2 2 3 3

masseqs 2 2 3 2 2

tflow up 7 7 7 5 4

smag 3 3 3 2 2

All 96 97 95 96 89

Table 33: Timings in percent relative to the timeloop timings in table 8,
28 and 32. It reveals the fraction of time within the timeloop that we have
not accounted for (3%-5%) in the first four columns and 11% in the KNL
column by focusing solely on the 13 components. Red is used to highlight
the fact that the 13 components no longer give a proper explanation of the
timeloop.

52



5.2 Compiler flags

This subsection is devoted to the choice of compiler flags on KNL. We have
tried many combinations of compiler flags and the conclusion of this study
was that a couple of flags do contribute to the performance. We found that
-O2 -xMIC-AVX512 served as a better baseline than -O3 -xMIC-AVX512 and
tried several combinations of flags from table 15. It turned out that the only
flag that had a significant impact for a couple of subroutines was

-fimf-precision=low -fimf-domain-exclusion=15

Table 34 summarizes the findings of this study. One observes that SIMD
is still important (i.e. a factor of 1.8) but not quite as important as it was
on KNC (factor 2.6). Moreover, default flag -O2 -xMIC-AVX512 does give
quite good performance.

Component cf1 [s] cf2 [s] cf3 [s] cf1 [%] cf2 [%] cf3 [%]

advection 75 78 127 100 103 170

deform 3 3 5 100 98 158

uvterm 5 5 6 100 95 120

momeqs 22 19 38 100 84 174

turbulence 20 18 38 100 90 191

vdiff 6 5 6 100 78 96

diffusion 5 6 9 100 110 163

density 8 8 26 100 99 333

sumuvwi 5 5 6 100 102 122

bcldens 6 6 22 100 94 350

masseqs 5 4 5 100 76 102

tflow up 8 8 12 100 103 144

smag 3 4 6 100 106 179

timeloop 190 183 342 100 96 180

Table 34: Compiler flags study on KNL. The flag cf1 is shorthand nota-
tion for -O2 -xMIC-AVX512 whereas cf2 is shorthand notation for cf1 plus
-fimf-precision=low -fimf-domain-exclusion=15. Finally, cf3 is short-
hand notation for cf2 plus -no-vec.

53



5.3 KNC versus KNL

In this section we will cross-compare KNC performance with KNL perfor-
mance and see what we can learn from this.

Table 35 cross-compares KNC performance with KNL performance and
it shows that KNC is an excellent proxy for KNL performance in the sense
that all components show consistent timings in the range from 1

3
to 1

2
. The

KNL/KNC ratio for stream triad and HPL is 41% and 55%, respectively.
From table 35 we see that most components, as expected, are close to the
triad ratio, and we see that some even have a lower percentage. We even
see that flop bound components which have a high fraction of serial compu-
tations (i.e. the trisolver) perform way better than the HPL ratio predicts,
which must be due to the scalar performance is a factor of 3 faster on KNL
than on KNC. Thus, KNL performance coincides with our expectations
gained from our KNC runs.

We may use the study given in table 35 to derive a naive, empirical
model for estimation of KNL performance when the KNC performance is
known. The timings for BW bound components are simply weighted by the
triad KNL/KNC ratio of 0.40. The timings for flop bound components are
weighted by the HPL KNL/KNC ratio of 0.56 except for those flop bound
components that contain a significant amount of serial compute work; for
these the serial fraction is divided by 3. From our experience with HBM
we have learned (not shown) that the fraction of serial work in momeqs,
turbulence, and vdiff may very roughly be estimated to 1

3
. Thus, from

the KNC component timings (in seconds) we find:

0.40*(156+8+12+11+12+8+18+7)

+ 0.56*((51+53+16)*2/3 + (18+14)) + (51+53+16)*1/3/3 = 169

which is pretty close to the measured KNL timings for the components:

66+3+5+22+20+6+5+8+5+6+4+8+4 = 162

To account for the remainder, i.e. the timeloop time minus sum of component
times, we know from section 5.1 that these are primarily due to explicit
OpenMP barriers, and assuming that the cost of these barriers is roughly
proportional to the actual number of OpenMP threads we may extrapolate
the remainder from KNC to KNL as

(401 - (156+8+12+11+12+8+18+7+51+53+16+18+14))*256/240 = 18

54



which is in good agreement with

182 - (66+3+5+22+20+6+5+8+5+6+4+8+4) = 20

that one gets from the KNL-seconds in table 35. The complete estimate
from KNC to KNL is thus

169 + 18 = 187

Component KNC [s] KNL [s] KNC [%] KNL [%]

advection 156 66 100 42

deform 8 3 100 40

uvterm 12 5 100 40

momeqs 51 22 100 43

turbulence 53 20 100 37

vdiff 16 6 100 36

diffusion 11 5 100 48

density 18 8 100 42

sumuvwi 12 5 100 44

bcldens 14 6 100 43

masseqs 8 4 100 50

tflow up 18 8 100 44

smag 7 4 100 48

timeloop 401 182 100 45

Table 35: Worst case thread timing attained when running with a single
MPI tasks and all available threads on a KNC card versus a KNL socket.
Times are in seconds in the left part of the table. The right part of the
table lists the timings in percent relative to KNC. The bold timeloop line is
the timing attained around a serial block including all barriers and smaller
components within the timeloop whereas the remaining timers are all from
within a threaded context and represents the worst-case timing among all the
threads. It is important to stress that one should not expect that the worst-
case timings sum to the timeloop timings simply because they are worst-case
timings and also because we have left out some tiny blocks because they do
not contribute to the overall picture.

55



5.4 Sliced decomposition

Table 36 shows that the sliced approach that gave a 12%-14% improvement
on the Intel Xeon processors does not improve the performance on KNL at
all. This is consistent with similar findings on KNC (not shown). This is
an interesting finding that will provide new insights. Note that time even
increases by more than a factor 12 at the largest slice count compared to
the default decomposition.

Component 1 2 4 8 16 32 64 128 256

advection 66 69 72 84 70 79 76 79 721

deform 3 4 4 4 4 4 3 4 33

uvterm 5 5 5 5 5 6 5 6 56

momeqs 22 24 23 24 24 26 24 32 456

turbulence 20 22 22 22 21 23 21 28 342

vdiff 6 6 6 6 6 6 6 9 134

diffusion 5 5 6 5 5 5 5 5 51

density 8 9 8 8 8 9 9 11 148

sumuvwi 5 5 5 5 5 5 5 7 36

bcldens 6 6 6 7 7 7 7 9 122

masseqs 4 4 4 4 4 4 3 5 37

tflow up 8 8 8 9 8 9 8 8 51

smag 4 4 4 4 3 4 4 5 50

timeloop 182 189 194 201 194 207 196 227 2339

Table 36: Timings attained using a varying number of slices on KNL. The
heading of the column denote the number of slices used. Green indicates
the best timing and red the worst.

According to table 1 BB 2 has 331 lines in the W/E direction implying
that the 256 threads will roughly get a line each in the default decomposition.
Moreover, 4 consecutive threads will (with compact placement) roughly loop
through 4 W/E lines and one can imagine how the 4 hardware threads will
process these lines in a relatively aligned fashion. This will impose maxi-
mum D1/L2 overlap between the threads and since these cache layers are
shared this will be good for performance. Once we add the slices we expect
that the overlap will decrease since data for threads on the same core will
be more separated, and this will show as less good performance. This is our
working hypothesis in trying to explain the findings in table 36.

56



This hypothesis can be justified by conducting the experiments with less
threads per core. We do not expect to see the sliced decomposition decrease
the performance with 1 thread/core. The results of this study are shown in
tables 37-39. With 1 thread/core we do indeed see improved performance
by using slices. With 2 and 3 threads/core the variation in performance
with number of slices is relatively modest and not at all so wild as with
4 threads/core. This confirms of hypothesis excellently.

Component 1 4 8 16 32 64

advection 235 230 217 212 213 211

deform 9 10 10 10 9 9

uvterm 17 19 20 19 18 17

momeqs 72 74 78 76 75 75

turbulence 66 68 70 65 66 71

vdiff 17 17 18 18 18 19

diffusion 16 15 15 14 14 14

density 26 27 28 27 27 27

sumuvwi 12 13 13 12 12 13

bcldens 21 22 23 22 22 22

masseqs 10 11 11 10 10 10

tflow up 24 23 23 22 22 22

smag 10 10 11 10 10 10

timeloop 546 547 546 526 527 528

Table 37: Timings attained using a varying number of slices with 1 hardware
thread per core on KNL. The heading of the column denotes the number of
slices used. Green indicates the best timing.

57



Component 1 2 4 8 32 64 128

advection 108 124 115 112 123 109 130

deform 5 5 5 5 5 5 6

uvterm 9 10 10 10 10 9 11

momeqs 38 39 39 40 40 38 51

turbulence 33 38 37 36 37 37 50

vdiff 9 9 9 9 9 9 14

diffusion 7 8 7 8 8 7 8

density 14 14 14 14 15 14 19

sumuvwi 6 7 7 7 7 7 10

bcldens 11 12 11 12 12 11 15

masseqs 5 6 6 6 5 5 7

tflow up 11 12 12 11 12 12 13

smag 5 6 6 5 5 5 7

timeloop 267 295 283 281 296 274 347

Table 38: Timings attained using a varying number of slices with 2 hardware
threads per core on KNL. The heading of the column denote the number of
slices used. Green indicates the best timing.

58



Component 1 2 4 8 16 32 64

advection 83 79 78 77 79 79 84

deform 4 4 4 4 4 4 3

uvterm 6 7 7 7 7 8 7

momeqs 25 27 27 28 27 29 26

turbulence 24 26 25 25 25 26 25

vdiff 6 6 6 6 6 6 6

diffusion 6 5 5 5 5 5 5

density 9 10 10 10 10 11 10

sumuvwi 5 5 5 5 5 5 5

bcldens 8 8 8 8 8 8 8

masseqs 4 4 4 4 4 4 4

tflow up 9 8 8 8 8 8 9

smag 4 4 4 4 4 4 4

timeloop 197 200 197 198 199 204 202

Table 39: Timings attained using a varying number of slices with 3 hardware
threads per core on KNL. The heading of the column denote the number of
slices used. Green indicates the best timing.

59



6 Summary

In this section, we will briefly summarize the initial findings and present the
performance results.

6.1 Findings on Intel Xeon processor

SIMD. The SIMD instruction sets Intel AVX and Intel AVX2 will certainly
improve flop intensive kernels, but what kind of gains can one expect on
larger legacy codes? We set out to investigate the effects of Intel AVX and
Intel AVX2 when it comes to HBM. As shown in table 16-17 we do see a
huge improvement for some individual components (e.g. density, bcldens,
turbulence, momeqs) that are not already attaining the peak BW and thus
completely bound by that. We even see improvements for the components
that are close to attaining the peak BW without the additional pressure
that one can put on the memory system by using Intel AVX and Intel AVX2
(advection). All in all we see almost 20% performance boost on HSW due
to SIMD alone.

Fused multiply and add. As expected, FMA3 certainly improves perfor-
mance for the most flop intensive components density and bcldens. It
is, however, somewhat disappointing to us to see the relatively small im-
provement for turbulence when using FMA3 since it contains some quite
flop intensive parts, including similar computations as those in density and
bcldens; this is likely due to this component being quite bound by the serial
trisolver and reduction loops, and we will need to investigate this further at
a later stage.

Hybrid versus single task. We found that we were not able to improve
performance by using MPI instead of OpenMP on the node, i.e. we showed
that whatever we could attain with MPI was attainable by OpenMP solely
and actually single-task performance was always slightly faster than the
cases where we traded some OpenMP threads with MPI tasks. It should be
stressed that this finding does not prove that OpenMP is better than MPI.
All it shows is that with identical decomposition we have not been able to
beat the single-task performance and among all decompositions, single-task
performance was also the fastest. The MPI halo swaps in HBM are done
using isend and irecv and all threads participate in the communication as
well as the wrapping and unwrapping of packages. The abstraction that we
use a distributed memory model (MPI) on a single node does add overhead

60



and so does the additional thread barrier needed for the MPI halo swaps.
Thus, it definitely does not come as a huge surprise to us that we can indeed
measure this overhead. Having said that, we are pleased to find the overhead
is relatively small ... as long as we do not use all available hardware threads
for MPI tasks but leave some for OpenMP threads; using all the hardware
threads for MPI is close to a catastrophe for performance.

HyperThreading. We observed that the importance of hyperthreads de-
creased going from IVB to BDW and our hypothesis is that the shared
cache components (D1, I1, L2) are already pushed to their limits with a sin-
gle thread per core. Actually, table 23 shows that the components that are
highly BW bound are hurt by running with HyperThreading and this con-
firms our hypothesis. The components that are highly bound on frequency
and flops, on the other hand, will benefit from HyperThreading until they
become BW bound too. It will be interesting to follow this trend on the
Intel Xeon Phi processor-based systems.

Decomposition strategy. We are not surprised to find that decreasing the
perimeter of water columns belonging to each thread will improve the per-
formance since decreasing the perimeter means less communication (cache
coherence) between the threads. It was interesting to observe that we can
gain 12%-14% performance improvement just by introducing the sliced ap-
proach.

Imbalance. The overall idea behind the imbalance study was to ensure that
we did not loose too many seconds due to a poor balance of the problem
and to find the components that would need extra attention with respect
to balancing. We found that indeed there is room for improvements here.
The most striking finding is that imbalance is (as seen over all components)
most severe where we have significant scalar portions, i.e. in components
that contains the tri - solver and reduction - type loops and those that are
very flop intensive. This means, that the implementation is more sensitive to
the distribution of column lengths in the decomposition rather than to the
distribution of number of wet points. Imbalance does not seem to become
worse in components that have a lot of neighbor to neighbor communication.

Frequency and power. The study showed that some components are
very sensitive to changing the frequency while others are virtually unaf-
fected. The most sensitive components are also those which a priori were
classified as compute bound components, and for these the degradation by

61



running at the lowest frequency compared to the default frequency was up
70%. Maybe this can be used as an automatic tool to discriminate compute
bound computational components from the pool of all components?

However academically interesting it is to study the performance of HBM
at different clock frequencies, table 27 reveals that there is only little gained
on the energy budget: Running the full HBM at lower frequency just pro-
longs the execution time (in seconds) at almost the same rate as the power
consumption (in Watt) goes down, such that the energy consumption (in
kWh) stays virtually unaffected.

Performance. First off, we will assume that the cores across the different
Intel Xeon processor incarnations are identical and we will confirm that we
at least get the performance that one should attain given the more cores
available on the node. Thus, from a core count perspective we should at
least reduce the time by 14% from IVB to HSW, and from IVB to BDW we
should at least reduce the time by 33%. The result is shown in table 40.

IVB HSW BDW

#core 100 86 67

Triad 100 80 67

HPL 100 52 38

HBM Measured 100 77 63

Table 40: Relative performance numbers. The row with measured values
refers to the best timings attained for the whole timeloop in HBM. All
numbers are in percent [%] relative our reference IVB.

Note that the additional cores indeed contribute to the performance,
i.e. the implementation appears to scale with the number of cores, or ac-
tually better. The measured HBM scaling with hardware is somewhere
between that of triad and HPL, closer to the triad scaling. The fact that
the implementation is not solely BW bound but has flop bounds components
too allows us to improve performance beyond what one could expect from
the stream triad numbers. Still, the majority of the code is mostly BW
bound so we do not get close to the improvements that one achieves with
HPL. These results coincide with our intuitive expectations.

62



If we focus on what matters most to the end users, namely the total
runtime for the application, we see that the performance gains more or
less follows the performance gains that are attainable by the stream triad
benchmark, i.e. 20% from IVB to HSW and yet another 20% from HSW to
BDW. Thus, with a well-established reference for the most time-consuming
part this is the realistic expectations that one could hope for without any
further code optimization efforts.

6.2 Intel Xeon processor performance results

Now it is time to convert the best attained time-to-solution (timeloop took)
into nodes-needed-for-production and kilowatts-required-for-production re-
sults. This summary is shown in table 41 and numbers refer to this perfor-
mance study, i.e. refer to revision 16049 of the HBM code.

BB2nm IVB HSW BDW

Initalization [s] 2 2 2

Timeloop [s] 386 299 239

Power CPU [watt] 165 264 208

Power Mem [watt] 7 29 57

Power System [watt] 641 734 447

Energy [kwh] 1.37 1.24 0.28

Nodes 3 2 2

FD [/hour] 7.0 6.0 7.4

Table 41: This is based on the 6H timings and simple extrapolations. The
forecast days (FD) per hour is based on the integral part of the nodes re-
quired to fulfill the minimum requirement of doing a single forecast day in
less than 10 minutes.

Figure 7 summarizes the timings we have attained on the 3 Intel Xeon
processor-based architectures that we have studied in this paper, and com-
pares to what it takes to be production ready from a time-to-solution view-
point. The 8.5 minutes or 510 seconds stems from the Next Generation
Global Prediction System (NGGPS)8 project in the USA whereas the 240
FCdays/day or 6 minutes per FCday is the most strict requirement stated

8https://www2.cisl.ucar.edu/sites/default/files/Michalakes Slides.pdf

63



at ECMWF9. Figure 8 shows the watt-hours required to run the setup using
the 4 different architectures.

Figure 7: Timings attained on the 3 Intel R© Xeon R© processor-based archi-
tectures. The three horizontal lines mark three different definitions of what
it takes to be a production run from a time-to-solution viewpoint.

6.3 Findings on Intel Xeon Phi processor

The main conclusions with respect to issues found may be stated as follows:
The three issues described in section 5.1, i.e. trisolver, disappointing per-
formance of flop intensive components, and increased barrier costs, plus the
decomposition issue described in section 5.4, should be targets of further
investigations in near future since understanding and fixing these holds the
key for unlocking the true performance potential of HBM on hardware such
as KNL.

Trisolver performance. We understand the issue with the trisolver, and
we believe we can fix this by implementing a more SIMD-friendly version
that vectorizes across the columns. We do, however, not know yet if this fix
is sufficient to bring the KNC and KNL performance into the expected ball

9http://www.ecmwf.int/sites/default/files/elibrary/2014/13647-ecmwf-scalability-
programme.pdf

64



Figure 8: Watt-hours required to run the setup using the 3 different
Intel R© Xeon R© processor-based architectures that we have investigated in
this paper.

park.

FLOP performance. The issue on poor performance of flop intensive
components is not understood fully yet. Full compute performance requires
that all available hardware threads participate at full speed each. We have
seen that is this hard to achieve in practice. We expect that this may be
one reason for troubles we see, but further investigation should clarify this.

Barrier costs. We observe increased barrier costs on KNL (and KNC). Of
course, one would intuitively expect that the involved joins-forks could be
more costly the larger the thread count. It seems that this barrier cost is
O(NT ) with NT being the number of threads, and this cost become signif-
icant for large NT . We should therefore be more careful in our implemen-
tation and we should try to arrange the needed barriers more intelligently.
One way towards improvement is to replace OMP BARRIER which synchro-
nizes everything by a synchronization using OMP FLUSH of only the needed
data.

Decomposition. Finally, we need to find a better way to do thread decom-
position on KNC and KNL (or any platform with more hardware threads

65



one each core for that matter; the issue is just more pronounced the larger
the hardware threads count on each core). The decomposition need to take
the core access of data into account, not the individual threads. One poten-
tial issue is cache re-usage which seems to be better utilized with the default
decomposition than with the sliced decomposition. This might require data
permutation (e.g. space filling curves) such that data columns are arranged
on the core in a way equally suitable for all threads on that core.

6.4 Updated results

The entire report was done as a performance study of revision 16049 of
the trunk. Before completing this report, we re-ran the complete model
with the most recent release candidate of the code, namely trunk revision
17154. Some of the findings from the present paper has been used to improve
the performance of the model going from revision 16049 to revision 17154.
Findings of these runs are summarized in the plots 9-12 and table 42. It
should be mentioned that all power and performance measurements done
in this section were done with Turbo Disabled to ensure consistency. It
should also be stressed that the KNL runs were done with not only with the
7210 variant that we have used during the present performance study but
also using the 7250 variant of KNL.

BB2nm BDW KNL

Timeloop [s] 236 135

Speedup 1.00 1.75

Power System [Watt] 423 372

Speedup (Perf/Watt) 1.00 1.95

Table 42: Note that the KNL used in this table is the 7250 variant, and
not 7210 which we used for the performance study in this paper.

66



Figure 9: Timings attained on the 2 architectures. The three horizontal
lines mark three different definitions of what it takes to be a production run
from a time-to-solution viewpoint. A single KNL node is sufficient to meet
the DMI local 10 minutes (600 seconds) requirement for a single FD and
almost sufficient to meet the NGPPS 8.5 minutes requirement.

Figure 10: Updated timings attained using the most recent version of the
HBM code on BDW, KNC and two KNLs.

67



Figure 11: Cross-comparing performance efficiency.

Figure 12: Overall performance summary.

68



A Appendix: Description of the timeloop compo-
nents

In this appendix we give a brief summary of the functionality and compua-
tional characteristics of each of the 13 components.

The short name given in italic for each component is the individual
identifier used throughout this paper.

A.1 Tracer Advection (advection)

The advection is a rather involved component which implement a TVD
scheme and it is the only truly full 3D component of the entire model, thus
a need to look at neighbors in all directions though not at the same time.
It computes flux on and transport through the 6 faces on the grid cell with
limiters. There are lots of conditional operations based on the flow direc-
tion, i.e. control dependency in the vertical innermost k-loops. Composed
of linear equations, short operator length (max±1), explicit FD scheme.
The math in the k-loops is relatively simple, almost entirely short-latency
flop operations. Short operator length was maintained through split of suc-
cessive operator into separate components with appropriate OMP BARRIERs
between. A typical loop in this part of the code will need to do read-only
on two neighbors grid-cells (east-west, north-south, up-down) when dealing
with actual grid point.

This component constitutes a self-contained collection of a dozen sepa-
rated operator components with appropriate OMP BARRIERs and we therefore
expect no imbalance issues for this component taken as a whole though this
apparently well-balanced component is really just hiding balancing problems
of the individual components.

Accounting for more than 40% of the total run time, this component is
a natural candidate for doing optimization and it was heavily studied in [4].
Up to three nested levels of IF-branches (branching on flow direction) were
replaced by arithmetic selection involving min,max,sgn instead, yielding a
flop count up to 8 times more but in a much more SIMD-friendly way allow-
ing for better streaming of data. Later we have also succeed at hiding most
of the div operations by storing the reciprocal divisor and use mul instead.

The flops involved thus include mostly ordinary operations (add, sub,

69



mul, abs, min, max, sgn) plus only a few instances of long-latency div

operations.

A.2 Horizontal Tracer Diffusion (diffusion)

Extracts coefficients, set up and solve 2D horizontal tracer diffusion equa-
tions by an explicit FD scheme with short operator length (±1), i.e. a plain
CSFT scheme with build-in algebraic stabilizer, limiting the diffusion nu-
merical coefficient by relaxation.

Wrt grid-point neighbor communication this component is looking to the
side, both in e-w directions and in n-s directions.

The flops involved are simple operations (add, sub, mul) and long-
latency div operations.

A.3 Vertical Diffusion (vdiff)

Extract coefficients, set up and solve tracer 1D vertical diffusion equation.
It uses an implicit FD scheme with operator length equal to the local col-
umn length. It solves the equations by using a tri-diagonal solver (BABE
algorithm on two simultaneous sets of equations) and thus there are flow
dependencies.

Grid-point neighbor communication is only up/down in the column, not
even R/O to the sides.

The flops involved are simple operations (add, sub, mul) and long-
latency div operations.

A.4 Density (density)

First, a sanity check is performed on salinity s and temperature t followed
by a OMP BARRIER. Then, calculate the temperature, salinity and pressure
dependency in the density, ρ, which is found via UNESCO equation of state
of sea water, which may be expressed as P ∗Q/(Q− p). Higher order poly-
nomial P (s, s′, t) and Q(s, s′, t, p) are in variables s, s′, t, p where s′ = s

√
s

and p is hydrostatic pressure. There is flow dependency in k-loop when cal-
culating p (i.e. reduction type).

70



Grid-point neighbor communication is only up/down in the column, not
even R/O to the sides.

The flops involved include both ordinary operations (add, sub, mul,

max, min) but also a few long-latency operations (div, sqrt).

A.5 Turbulence and Mixing (turbulence)

The turbulence model code solves a coupled system of two partial differential
equations for vertical transport (vertical diffusion) of turbulent kinetic en-
ergy and frequency with non-linear source/sink terms requiring an implicit
scheme both with respect to the FD scheme and with respect to the han-
dling of the sink terms. Thus, the operator length equals the column length.
The problem is further complicated by compute intense algebraic stability
functions which determine the vertical diffusion coefficients and thereby pose
some severe non-linear stability and realisability issues. The setup of the two
tri-diagonal systems is indeed very flop intensive but once the systems are
set up, the solution is found using the non-SIMD friendly Thomas algorithm.

As to the grid-point communication, the turbulence model is a pure ver-
tical process but it uses horizontal centering of the forcing, that is, of wind
and current. This implies that there is no explicit nor implicit column-to-
column communication of the turbulence variables, not even read-only. The
most important components in the current implementation is the compu-
tation of ∂ρ/∂s and ∂ρ/∂t where ρ is given by the UNESCO equation of
state (see above for density and below for bcldens) but in this case we do
the partial differentiation analytically and implement those expressions in
the code. There are also some tricky reduction components which we have
tried to separate out of the loops leaving the remaining part better suited
for SIMD-vectorization.

The flops involved in the turbulence model code include both short-cycle
operations but also long-latency operations. One major performance bottle-
neck in this component is the use of the non-SIMD implementation of the
tridiagonal solver.

We expect that this component will scale well and that it will benefit from
hyper-threading due to the lack of communication, the high flop intensity
and the non-optimal tridiagonal solver.

71



A.6 Momentum equations (momeqs)

It solves equations of motion (or momentum equations), two coupled non-
linear PDEs which are suitably linearized and time-centered to enable a split
into two non-coupled semi-implicit equations. Setup and solve a tridiagonal
system to find un, vn. Linear as well as non-linear terms. Implicit FD in
the vertical direction, explicit FD in the horizontal direction. Short operator
length in horizontal (±1) but the vertical operator length equals the local
column length.

Important components in the current implementation:
Setup of coefficient vertically with flow (and anti ?) loop dependencies.
(Setup of Smagorinsky terms has been pushed to its own component, see
below).
The tridiagonal solver (BABE).
Control dependency in k-loops on horizontal flow direction in the applied
vector-upwind scheme for the convective terms.

Summary of grid-point neighbor communication:
A 9 grid point stencil for the (linearized) convective terms with access of all
9 neighbor columns is required to setup the equation.

The flops involved include both ordinary operations but also a long-
latency operation (div).

A.7 Baroclinic Pressure Gradients (bcldens)

Calculates horizontal baroclinic pressure gradients. Density ρ is found via
UNESCO equation of state of sea water, see above for density. Then, the
two horizontal gradients are found by finite difference between two neighbor
columns.

Since the pressure levels must be the same in the two neighbor columns,
namely at the level of the velocity component between neighbor grid cells
and this level is different from the level of the scalar point (used in density
above) and different from each other point, we must make separate calcu-
lations of ρ for each velocity point and its neighbor, meaning we can not
re-use any columns when going to the next.

We can, however, split the computations a bit by doing most of the sym-

72



bolic algebra with pen and paper, not in the Fortran code.

There is flow dependency in k-loop when calculating the pressure (i.e.
reduction type).

The flops involved include both ordinary operations (add, sub, mul,

min) but also long-latency operations (div, sqrt).

A.8 Upwind Advection Scheme (tf low up)

Advection of s and t for use in the frequent updates of the baroclinic pres-
sure gradients (bcldens) when the regular s and t update is not sufficient.

Principally the same as the advection component, see above, except that
this tf low up component applies a very simple 3D upwind tracer advection
scheme which, considering all computational aspects, will considerably sim-
plify everything. It is called more frequent than the advection component,
though, meaning that it enters the timings with a significant time portion.

There is a OMP BARRIER between the calculation cell-face fluxes and the
tracer updating.

A.9 Time-averaged Fluxes (sumuvwi)

Makes time integration (i.e. a sum) of cell face fluxes (hxu, hyv,w) at the
most resent time step so that we can get the time- and cell-face-averaged
transports for the tracer advection and other things. Also makes a simple
copy of new, most recently updated un,vn to the old uo,vo to be ready for
the next time loop iteration.

That is, lots of load and stores and few flops. No neighbor communica-
tion.

A.10 Smagorinsky Terms for Momentum Equations (uvterms)

Calculate u- and v-Smagorinsky terms at correctly space-centered points to
be ready for direct use in momeqs. Takes the eddy viscosity from smag.

Simple math (add, sub, mul) and lots of horizontal neighbor commu-
nication.

73



A.11 Horizontal Eddy Viscosity (smag)

Calculates the horizontal eddy viscosity terms from the Smagorinsky model
based on the deformation terms, see (deform) below. Consists mainly of
square root of the sum of squares of stretch, divergence and shear, but also
has to look to the sides for doing a correct space-centering of the shear term
at the scalar point.

Simple math (add, sub, mul) and long-latency SQRT, plus horizontal
neighbor communication of shear.

A.12 Deformation Terms (deform)

Calculates the deformation terms for use in the Smagorinsky sub-grid scale
model, see (uvterms) and (smag) above, i.e.

stretch = ∂u/∂x− ∂v/∂y

divergence = ∂u/∂x+ ∂v/∂y

shear = ∂u/∂y + ∂v/∂x

Simple math (add,sub,mul) but lots of horizontal neighbor communication.

A.13 Mass Equation (masseqs)

Applies the incomprehensibility assumption (i.e. local mass preservation) to
obtain the vertical velocity component w and the surface elevation z.

Most critically, this requires two reduction loops over the vertical.

Simple math (add, sub, mul) but lots of horizontal RO neighbor com-
munication to read cell face fluxes.

74



References

[1] Per Berg and Jacob Weismann Poulsen. Implementation details for
HBM. DMI Technical Report No. 12-11. Technical report, DMI, Copen-
hagen, 2012.

[2] Jacob Weismann Poulsen and Per Berg. More details on HBM - general
modelling theory and survey of recent studies. DMI Technical Report
No. 12-16. Technical report, DMI, Copenhagen, 2012.

[3] Jacob Weismann Poulsen and Per Berg. Thread scaling with HBM. DMI
Technical Report No. 12-20. Technical report, DMI, Copenhagen, 2012.

[4] Jacob Weismann Poulsen, Per Berg, and Karthik Raman. Chapter 3 -
better concurrency and simd on hbm. In James Reinders and Jim Jeffers,
editors, High Performance Parallelism Pearls: Multicore and Many-core

Programming Approaches, volume 1, pages 43 – 67. Morgan Kaufmann,
Boston, MA, USA, 2015.

75



Notices

Intel technologies features and benefits depend on system configuration
and may require enabled hardware, software or service activation. Perfor-
mance varies depending on system configuration. Check with your system
manufacturer or retailer or learn more at intel.com.

No license (express or implied, by estoppel or otherwise) to any intellec-
tual property rights is granted by this document.

Intel disclaims all express and implied warranties, including without lim-
itation, the implied warranties of merchantability, fitness for a particular
purpose, and non-infringement, as well as any warranty arising from course
of performance, course of dealing, or usage in trade.

This document contains information on products, services and/or pro-
cesses in development. All information provided here is subject to change
without notice. Contact your Intel representative to obtain the latest fore-
cast, schedule, specifications and roadmaps.

The products and services described may contain defects or errors known
as errata which may cause deviations from published specifications. Current
characterized errata are available on request.

Copies of documents which have an order number and are referenced
in this document may be obtained by calling 1-800-548-4725 or by visiting
www.intel.com/design/literature.htm.

Intel, the Intel logo, Intel Xeon Phi, and Intel Xeon are trademarks of
Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.
2016 Intel Corporation

76


