Danish Meteorological Institute
Ministry for Climate and Energy

Technical Report 12-16

More details on HBM - general modelling theory and
survey of recent studies

Jacob Weismann Poulsen and Per Berg

R k i 3 4 -
Eoen PIp Lo i —
- 2 "3 : - e
= il | B
! g " '
E0°N _!——‘.!---—— g =
[g ‘ . S
: - i e,
| o -
1N o - Ze=mm e — e 3
| i
o 3 Cil
; RN =
E P et . .
wid G b RL ; :
i ""fi
45°N
e
:
40°N
35°N s -
&
- ¢ : L
305N Yo i ,
i ' = A

15°WW 10w 5°w 0 3°C 10°C 15°C 20°C 25°C 30°C 35°C 40°C

www.dmi.dk/dmi/tr12-16.pdf Copenhagen 2012

il Danish Meteorological Institute

@l Technical Report 12-16
Colophone

Serial title:
Technical Report 12-16

Title:
More details on HBM - general modelling theory and survey of recent studies

Subtitle:

Authors:
Jacob Weismann Poulsen and Per Berg

Other Contributers:

Responsible Institution:
Danish Meteorological Institute

Language:
English

Keywords:

operational ocean models, PDE, finite difference, stability analysis, CFL, von Neumann, model
implementation, numerical stability, floating points, code quality, parallelisation, scaling,
reproducibility, validation, verification, IEEE-754, software testing, comparative studies

Url:
www.dmi.dk/dmi/tr12-16.pdf

ISSN:
1399-1388

ISBN:

Version:
1.0

Website:
www.dmi.dk

Copyright:
Danish Meteorological Institute

www.dmi.dk/dmi/tr12-16.pdf

Technical Report 12-16

www.dmi.dk/dmi/tr12-16.pdf

Introduction

Design goals

Theory

3.1 From blackboard to silicon
3.2 Basic solution methods oL
3.3 Musings on time step size selection
3.4 Actual time step sizeso
3.5 Computational intensity

3.6

Introduction to the test cases
4.1 Benchmark systems

4.2 Summary of performance
4.3 Summary of performance with passive tracers
MyO V2.1

5.1 Short simulations

5.2
9.3
5.4
9.5
5.6
5.7
5.8

Pointwise cross-comparisons
Study of optimization issues
Performance
Longer simulation
The water level in the Baltic Sea
Sea levels around Denmark in 2011
Storm surge issue in @resund

VariantO
6.1 Short simulations
6.2 Passive tracer performance

Variant1l
7.1 Performance profiles

Variant2
8.1 Performance profiles

Variant3

74
75
75

82
82

88
88

93

page 1 of 113

Technical Report 12-16

A Appendix: Vector sum using floating points
B Appendix: Sea-level maps

C Appendix: Abbrevations.

www.dmi.dk/dmi/tr12-16.pdf

96
102

110

page 2 of 113

Technical Report 12-16

More details on HBM - general modelling theory
and survey of recent studies

Jacob Weismann Poulsen Per Berg

October 9, 2012

1 Introduction

The overall aim behind this paper is to document our as is findings with
the most recent release of the HBM source code on a number of newly con-
structed testcases. The 2.6 release of the source code is the first release that
has easy-to-use MPI support and thus the first release of the source code
that is suited for scaling studies. The MPI implementation has by no means
been tuned with respect to execution speed and this study will certainly re-
veal where we should put our efforts on tuning in the future. The sole focus
for the current MPI implementation has been on correctness, cf. section 2
on overall design goals for this model.

Moreover, we present a concise survey of the different testcases introducing
various numbers aiming at estimating the size of the problem implicitly de-
fined by the testcase at hand and numbers aiming at estimating the expected
computational resources required to deal with the testcase. Recently, these
definitions gave rise to a broad debate that also touched on how to assess
overall model quality. Eventually we decided to expose some of the theo-
retical foundations for the current implementation allowing a more founded
discussion when it comes to cross-comparing different issues, both across dif-
ferent testcases with the same model and across different models. Finally,
we decided to spice the theoretical treatment by exposing the different layers
that come into play when a model is transferred from a blackboard onto the
silicon. We have been urged to present material like this several times and
we have used this opportunity to put some of this in writing.

The motivation for gathering the material herein is that the feedback we
got and the debate that arose in the slipstream of our recent document [3]

www.dmi.dk/dmi/tr12-16.pdf page 3 of 113

Technical Report 12-16

indicated to us that more information was needed on both theoretical and
practical aspects: These are the two subject we cover here, more theory
and more results from model runs, and thus the present paper should be
considered a supplement to [3].

We start off by repeating our design goals in section 2. Then, section 3 is
devoted to the theory and in different subsections we describe different sub-
jects that one must consider when developing models. This theory section
is quite unique in the sense that to our knowledge it is the first time that
this kind of material has been gathered and presented as one contiguous
document; usually one needs to consult multiple textbooks and papers to
retrieve the same information. The theory section can be read alone but it
has of course most value when used in conjunction with a model develop-
ment project. It is our hope that with this theory section we have managed
to put sufficient attention on the treated subjects to start a debate on model
quality which we believe is needed.

The second part of the present document deals with the results and find-
ings we gathered for a number of real testcases of increasing complexity. In
section 4 we give an introduction to the testcases and we summarize and
compare the performance characteristics for the testcases to ease decisions
and planing related to our future modelling work. There is one section for
each testcase, cf. section 5, 6, 7, 8 and 9, respectively, which can be read as
self-contained case studies but they are also suited for comparisons. There
is naturally much more information available for the first testcase than for
the others since we have have had the opportunity to work much more with
that one, and together with the investigations shown in [3] on the same test
case section 5 demonstrates elements of what we find must necessarily be
included in a thorough model verification.

Acknowledgement: We wish to express our gratitude to Maria Grazia
Giuffreda from CSCS for granting us access to some of their systems. Fi-
nally, we would like to thank Rong Fu, DMI, for helping with some of the
plots and tables.

www.dmi.dk/dmi/tr12-16.pdf page 4 of 113

Technical Report 12-16

2 Design goals

We will here present (or rather repeat) the overall design goals behind the
model implementation before digging into the real stuff. The interested
reader is referred to [3] for a thorough description on how we achieve and
maintain these properties.

In this implementation of an ocean model
e we rate correctness higher than added functionality,

e we rate optimization with respect to correctness and functionality
higher than optimization with respect to speed,

e we rate optimization with respect to speed very high but never so high
that we sacrifice portability,

because we strongly believe that this is the right choice in the long run. It is
very important that model results are reproducible at any time, anywhere,
by anyone.

This implies that

e The code will run in serial (and we must be able to build it on systems
that have no support of MPI, openMP or openACC).

e The code will run with openMP solely (and we must be able to build
it on systems that have no support of MPI and openACC). It must be
possible to run it with a single thread.

e The code will run with MPI solely (and we must be able to build it
on systems that have no support of openMP and openACC). It must
be possible to run with a single MPI task too.

e The code will run with MPI and openMP. This is the default way of
running HBM (and we must be able to build it on systems that have
no support of openACC). It must be possible to run with a single MPI
task and/or a single thread.

The actual decomposition into a number of openMP threads and/or MPI
tasks is handled runtime, i.e. requires no re-compiles since each new compi-
lation produces a new executable code which in principle must be tested, so

www.dmi.dk/dmi/tr12-16.pdf page 5 of 113

Technical Report 12-16

re-compilation means re-validation, and an endless loop has begun.

Moreover, the application must be able to run in all configure incarnations
serial, openMP, MPI, and combinations hereof - and produce the exact same

results on any given test-case with any number of openMP threads and MPI
tasks.

www.dmi.dk/dmi/tr12-16.pdf page 6 of 113

Technical Report 12-16

3 Theory

Almost all scientific applications have errors. A sizeable minority (10 %)
produces only nonsense.
BRIAN VINTER, PROFESSOR IN COMPUTER SCIENCE

Here we describe the modelling approach from a more theoretical point of
view. The model implementations in the field of atmosphere, climate and
ocean modelling tend to be rather involved, rather large and often carry
a long development history too. Alas, it is therefore quite common that
most modellers do not have time nor interest in the implementation itself
and there is an on-going risk that their contributions will be buggy or that
their long simulation studies may be inflicted by plain software bugs and
hence could potentially be a waste of resources. When we are developing
these large models there are things that we can analyse and estimate prior
to the implementations and simulations and there are things that are too
complicated to be analysed beforehand. Having said that, we feel that it is
important that the latter is not used as an excuse for neglecting the former.
In general, we strive to be as pragmatic as possible and this basically boils
down to something as simple as analysing the components one by one and
then eventually combine all of them and study the behaviour by systematic
experimentation, i.e. by conducting short and long simulations and explain-
ing the outcome of these. In the present section we will try to convey this
idea.

In section 3.1 we attempt to present all the steps that one must go through
when going from the ideas on the blackboard until something that ends up
in an implementation; the focus in this section will be on analysing the im-
plementation aspects. Then, in section 3.2 we will give a short overview
of the basic solution methods that have been chosen for HBM, and in sec-
tions 3.3 and 3.4 we discus the computational restrictions these will pose
with respect to the time step sizes we can apply. The analysis of the time
step sizes is the solution scheme counterpart to the analysis of the under-
lying algorithms for solving the schemes. It is worth to note that analysis
become amenable by doing one component at the time and this approach
is used both when it comes to the time step size analysis and the analy-
sis of the algorithms. In section 3.5 we describe how we compare different
model setups in terms of how computationally demanding there are. There
are pitfalls enough in model development and especially when it comes to

www.dmi.dk/dmi/tr12-16.pdf page 7 of 113

Technical Report 12-16

model validation and verification the discussion might easily get blurry if
we are not careful, so finally, in section 3.6 we dwell some more on why we
believe that it all matters, why we should focus that implementation quality.

3.1 From blackboard to silicon

Admitted, there are many rather involved steps in establishing a model and
the aim of this section is to try to give a bird’s eye view of this whole pro-
cess. The overall goal being to stress how important each choice along the
way is to the final implementation and quality of the model. Moreover, we
wish to reveal the many different disciplines that the modelling group have
to master in order to reach a decent result in the end. The description of
each of these disciplines is overly simplified for obvious reasons but we hope
that the readers may find the short appetiser so interesting that some of the
references eventually are consulted.

Having said that, we have tried to put slightly more focus on the implemen-
tation aspects in this section since in the field of atmosphere and ocean mod-
elling this aspect is rarely described. In this field the essence of modelling is
to solve initial-boundary value problems for coupled partial differential equa-
tions (abbreviated PDE in the following). Thus, in theory one would start
off by stating the relevant equations on the blackboard and immediately
realises that one can not solve them analytically. Then one rush to the li-
brary and finds that there are many ways to approach these problems. First
one would have to make a choice on the discretization and consider which
of the usual methods (finite-difference methods, finite element methods, fi-
nite volume methods, integral methods, boundary element methods, spectral
methods, or pseudo-spectral methods) that seems most appealing. One will
also have to decide on a gridding method where the candidates falls into
two categories, namely structured or unstructured grids. It is important to
realize that even at this early stage we are actually making decisions that
are likely to impose severe challenges on our final implementation. There are
pros and cons for all methods and we are likely forced to make compromises
along the way, so we better be aware from an early point of what impacts
our choices might imply.

The HBM model chose the finite-difference method, c.f. section 3.2 where

we describe the chosen solution in details. At this point of time it is suffi-
cient to note that there are lots of finite-difference schemes to choose from

www.dmi.dk/dmi/tr12-16.pdf page 8 of 113

Technical Report 12-16

(e.g. Crank-Nicholson, FTCS, leapfrog, Lax-Wendroff,...) and at the early
stage of development where things are still being discussed on the blackboard
one often aims at neat mathematical properties such as convergence, con-
sistency, stability, good accuracy and so forth when considering the scheme
options and it is easy to forget that eventually we will have to implement
the scheme and make it work well under very different circumstances than
those given in the idealized world of R.

For the sake of completeness we now recall the most basic notions and most
important theoretical results (the Lax theorem, the CFL theorem and the
von Neumann theorem) pertaining to the field of finite differences. Let
h € R define the size of a space step and let k € R4 define the size of a
time step. The pair (h, k) defines a lattice Ly, = hZ x kZ C R x R as the
subset of points (zy,,t,) = (mh,nk) with m,n € Z. The [?-norm of a grid
function v: Ly — R is the number

5o 1/2
ol = (h > !vi!2>

1=—00

We will use the symbol l,% to denote the Banach space' of grid functions
with a finite l%—norm.

For a function v: Ly, — R we let v)), denote the value of v at the point
(Zm, tn). A function v: Ly, — R and two sets of constants {a;}, {b;} with
ag # 0 define a so-called one-step linear finite difference formula:

q q
an+l § : o
E : A5V Yy bJ Um+j

j=—1 j=—1

If a;j = 0 for j # 0 then we say that the formula is explicit. Otherwise the
formula is implicit. Alternatively, we can express the one-step linear finite
difference formula as a convolution (with a proper relationship between {a;}
and « and {b;} and J):

ax " = g

One can show that the one-step linear finite difference formula defines a
bounded linear operator S': l,% — Z%L specifying the mapping v" +— v"t1.
Using semi-discrete Fourier transforms on the convolutions above we obtain

1a complete normed vector space, see e.g.

http://en.wikipedia.org/wiki/Banach_space

www.dmi.dk/dmi/tr12-16.pdf page 9 of 113

Technical Report 12-16

&(&) and B(€) and we can define the amplification factor g(€) = B(€)/a(€).
Now, if 0 € Z%L then v = S™° and from Fourier analysis results we know
that [|v™|] < (|[g(&)le)™ [|v°||- With this background information of finite
differences we can present the important results in a compact fashion using
standard concepts from functional analysis, see e.g. [14] for a dense presen-
tation of functional analysis.

Let B be a Banach space and let D: B — B be a linear operator. The
problem
u(t) = Du(t), 0<t<T

u(0) = ug

where D is fixed but where ug may range over all elements in B is called an
wnitial value problem and it is said to be well-posed if and only if a unique
solution wu(t) exists for any initial data ug.

The family of bounded linear operators: Si: B — B is called the family
of finite differences formulas. Note that the subscript k& implies that the
coefficients of the finite difference formula may depend on the time step.
We typically see the notation v™ and we use Sy to advance from one step to
the next, i.e.

V" = St

implying that v™ = (S;)"v". Note that this definition of finite differences
formulas encompasses not only one-step explicit formulas but also implicit
and multistep formulas. We say that {S;} has order of accuracy p if and
only if

l|lu(t + k) — Spu(t)|] = OKPT™) as k — 0

for any t € [0;T]. We say that {Si} is consistent with w if and only if it has
order of accuracy p > 0. We say that {Sy} is convergent if and only if

7%;_% [10Sk)"u(0) — u(?)[| = 0

for any ¢t € [0;7]. We say that {Sy} is stable if and only if there exits a
constant C' such that
1(Se)" < C

for all n and k such that 0 < nk <T'. The famous theorem due to Lax states
that if {Sk} is a consistent approximation to a well-posed linear initial value

www.dmi.dk/dmi/tr12-16.pdf page 10 of 113

Technical Report 12-16

problem then {Sy} is convergent if and only if it is stable.

More generally, though, we are dealing with evolution equations formulated
as initial-boundary value problems like

ug(x,t) = Du(z,t), 0<t<T, x €Q
u(z,0) = up(x), = €
Gu(z,t) =0, 2€0Q, 0<t<T

where the spatial variable x is confined to a given domain €, D is a linear
differential operator in z, and G is an operator describing the conditions
for u on the boundary 912 of the domain. For problems in which the initial
and boundary data is appropriate to the nature of the differential equation
(sometimes known as properly posed problems), Lax’s theorem states that
for a consistent finite difference approximation, stability is the necessary and
sufficient condition for convergence (cf. e.g. chapter 14 in [4] for a discussion
on finite-difference equations and numerical methods).

That is, the question of convergence boils down to a question of stability
and there are two important theorems addressing this issue. These two theo-
rems are also the ones that one turns to when it comes to practical purposes,
cf. section 3.2.

The CFL (Courant, Friedrichs and Levy) condition is intuitively reasonable
and we will now introduce it and the corresponding theorem in the context
of finite difference schemes. Beforehand though, we need to describe depen-
dency domains. The mathematical domain of dependence D(z,t) of u(z,t) is
the set of points where the initial data u(z,0) may effect the solution u(z,t).
The numerical domain of dependence Dy (x,t) for a fixed value of k is the set
of points where the initial data v;-) may effect the computation of v(x,t). Let
Do(x,t) = limg_0 Dg(z,t). A finite difference scheme is said to satisfy the
CFL condition if and only if D(x,t) C Dy(z,t) for each pair (z,t). The CFL
theorem states that the CFL condition is a necessary condition for stability
of {Si} with {Si} being a consistent approximation to a well-posed linear
initial value problem.

The famous theorem due to von Neumann states that a one-step linear finite
difference formula is stable in l,zl if and only if the amplification factor satisfy

l9(&)] <14 O(k)

www.dmi.dk/dmi/tr12-16.pdf page 11 of 113

Technical Report 12-16

as k — 0, uniformly for all £ € [—n/h;7/h]. The reader may be familiar
with the first part, |g(£§)| < 1, which is most often stated in text books and
in papers. But, for completeness, when the solution of the PDE is increasing
exponentially in time, the necessary and suffcient condition for stability is
formally as stated above, i.e. augmenting Mk with M independent of k and
h to the right hand side.

It is finally worth mentioning that one never uses the definition of conver-
gence but always stick to either the CFL condition or the von Neumann
condition above when doing the analysis, cf. section 3.2. Moreover, it is
worth mentioning that instability typically emerges as a local phenomena
(but will eventually spread to the global set). This is relevant information
when one is to study the outcome of the model. Thus, it can be tricky
to distinguish stability issues from parallelizations bugs and nesting bugs
which also emerge as local phenomenas, or even from flaws in initial data or
boundary data errors. We typically check if the problem moves with differ-
ent number of tasks and threads (if it does then it is likely a parallelization
bug) and we typically study the size of the gradients (if the problem area
matches the area with the largest gradients then it is likely a stability issue).

This is classical material and we will refer the reader to the literature for a
proper treatment. The introduction above was done solely for the sake of
completeness allowing people with different background to get the overall
idea without having to consult external references.

As the derivations on the blackboard become more and more concrete, we
eventually find that solving quite a few of the complicated PDEs boils down
to solve a tridiagonal linear system of equations, cf. section 3.2. In general,
boundary value problems usually boil down to solving a large number of
simultaneous equations since the boundary conditions must be satisfied si-
multaneously. In this particular case the set of equations can be described
as a tridiagonal system of equations. That is, given vectors a, b, ¢, d we must
find vector s such that

bl C1 0 0 r s1 7 r dl T
as b Cc2 52 da
0 0 S3 = d3
p—1 bp—1 cpn—1 ‘ :

| 0 0 an by |L] Ldol

www.dmi.dk/dmi/tr12-16.pdf page 12 of 113

Technical Report 12-16

or more compactly expressed as

a;Si—1+ bis; +¢cisip1 =d;, i1=1,...,n, a1 =0, ¢, =0

Generally, when we search for algorithms we focus on various things such
as time complexity and space complexity which is often expressed as worst-
case complexity using O-notation. It is sometimes convenient to dig deeper
and look at the constants (e.g. an O(n?) algorithm may be faster than say
an O(nlogn) algorithm for certain types of dataset) and it is sometimes
also worth to look at other scenarios than worst-cases, e.g. average-case
behaviour or more generally a probabilistic analysis might in some circum-
stances be more relevant. The complexity in the O-notation is traditionally
based on the number of arithmetic operations involved in the algorithm at
hand, but very often we face more severe limitations from the memory ac-
cess pattern of the implemented algorithm than from the actual number of
e.g. multiplications and additions involved. Moreover, we need to focus on
the inherent dependencies within the algorithm if we are interested in paral-
lelization. In case the algorithm operates on floating point numbers then we
must also focus on stability and error bounds, c.f. the following paragraph
where we try to introduce some of the relevant concepts for floating point
algorithms.

In the case of systems of linear equations we know that we can solve them
using Gaussian elimination which have time complexity O(n?). Using Gaus-
sian elimination on a tridiagonal system of equations on the other hand boils
down to O(n) operations using double sweeping. The first sweep eliminates
the a;’s and a backward substitution then produces the solution, c.f. figure 1.
This method will lead to an exact solution in a finite number of arithmetic
operations assuming that all operations are done in R and that the matrix
is non-singular. Note that this method is based on the usual LU decom-
position where the system Ms = d is rewritten as LUs = d with L being
a lower triangular matrix and U being an upper triangular matrix. The
system is solved by setting Us = « and then find « such that La = d and
then find s such that Us = «. The first sweep decomposes M and solves
Us = a and the second sweep solves La = d. This observation is relevant
since the error bounds referred below are established for LU decompositions.

It is time to consider how we actually implement an algorithm like the one

outlined in figure 1. That is, we will now have to deal with the fact that we
move from the idealized world of R into the rather different world of binary

www.dmi.dk/dmi/tr12-16.pdf page 13 of 113

Technical Report 12-16

!- forward sweep
e = b(1)
s(1) = d(1)/e
doi=2,n

£f(i) = c(i-1)/e

e = b(i) - a(i)*£(i)
s(i) = (A1) - a(i)*s(i-1))/e
enddo

- backward sweep
doi=mn-1,1, -1

s(i) = s(i) - £(i+1)*s(i+1)
enddo

Figure 1: An exact algorithm for solving a tridiagonal system as long as
all operations are done in R. The method is known as the double-sweep
method, c.f. section 4.6.3 in [1]. Note that it requires 3n — 1 multiplications
and additions and 2n — 1 divisions and it takes 2n steps.

floating point numbers. Before we make any comments on the actual imple-
mentation we will make a short recap of basic notions within this field. First,
we give a short presentation of floating point numbers and then a short pre-
sentation of the notions used in the study of floating point algorithms. The
references [5], [9], [10] or http://www.cs.berkeley.edu/ wkahan/ have de-
tailed information on issues related with floating points. Let F denote a set
of floating point numbers with any finite precision and let F,, be the set of
floating point numbers using n-bit precision. In hardware, we will typically
find support for n = 32 and n = 64. The IEEE standard 754 defines how
the finite set of bit patterns:

0---0, 0---01, 0---011, ..., 1---1
— e N—— ——
n bits n bits n bits n bits

should be interpreted for n € {32,64} but the point here is that the set is
finite. It is evident from a mathematical point of view that mapping ele-
ments x — & from the uncountable set R into the finite set of floating point
numbers F is bound to fail. That is, no matter how large representation
errors Ax = |x — | we accept we will still have uncountable many numbers
that we cannot represent and most of the numbers that we can indeed rep-
resent have a rounding error Az > 0 that we must take into account in our
analysis. The fact that there are uncountable many numbers that we cannot
represent within a given presentation error is not the most critical issue since

www.dmi.dk/dmi/tr12-16.pdf page 14 of 113

Technical Report 12-16

the range that we can operate in is sufficient for most applications. On the
other hand, the fact that all our operations will suffer from rounding errors
may give rise to severe obstacles. As a relevant example assume that we
would have to do simple statistics such as computing the sum or the mean
of the elements of a vector of size N. In appendix A? we demonstrate how
naive implementations of the sum may provide us with wrong answers and
these examples should serve as a warning. If the outcome of the computa-
tions matters (which we of course will have all kinds of reasons to believe
that it does) then one should care about the way the implementation is done.

Before we head dive into analysing the algorithm itself we will introduce the
basic ideas used in this field of constructing stable floating point algorithms.
Let f: R~ R be a twice continuous differential function and let y = f(x).
Let § € F be the floating point representation of y € R. The difference
Ay = |y — g| is called the forward error. A reasonable question to pose is
what other values near = would give rise to the same ¢ or rather what is
the largest Ax for which f(z + Axz) still equals §. This number Az is called
the backward error. When we investigate floating point algorithms we are
interested in bounding the backward error and the motivation behind this
is that we consider the rounding errors as perturbations in the input data.
Using Taylor expansion we can express the relationship between changes in
input and output as:

y flx) | =

The relative condition number c(x) = xf (x)/f(z) of f around x measures
the relative change in the output for a given relative change in the input
or the relationship between forward and backward errors. If f has a large
condition number then a small relative change in the input will produce
a large relative change in f(x). Thus, the forward and backward errors
are related by the condition number. An example seems appropriate so let
f(x) = arcsin(z). Then for z near 1 we have arcsin(z) ~ m/2 and the
relative condition number ¢(z) = z/(v/1 — 22 arcsin(x)) approaches infinity
as = approaches 1. The definitions of forward and backward errors above
allow us to define what we call a stable algorithm which is quite different
from the definition of a difference scheme being stable. An algorithm is

= (wfl(x)) AT 4 o(Axy?

2In the testcases described in section 8 and 9 we have N = 6335114 for the IDW
subdomain so a simple sum will suffer from 6335114 rounding errors and this have severe
impact on the final result if we do not try deal with it.

www.dmi.dk/dmi/tr12-16.pdf page 15 of 113

Technical Report 12-16

said to be backward stable if the backward error is small for all inputs x.
Of course, "small” is a relative term and its definition will depend on the
context. Often, we want the error to be of the same order as, or perhaps
only a few orders of magnitude bigger than the unit round-off also known
as the machine epsilon. The unit round-off is 1/2 x 2P when operating
with precision p so the unit round-off is 2732 for 32-bit precision and 2764
for 64-bit precision. An algorithm is forward stable if its forward error
divided by the condition number of the problem is small. This means that
an algorithm is forward stable if it has a forward error of magnitude similar
to some backward stable algorithm. An algorithm is said to be forward-
backward stable or mized stable or numerically stable if it solves a nearby
problem approximately, i.e. if there exists a Az such that both Az is small
and Ay = |f(x + Az) — ¢| is small. Hence, a backward stable algorithm
is always forward-backward stable. We typically state the mixed stability
condition as:

§+ Ay = f(l‘+A$), Ay < 61|y|7 Az < 62|$|

Let us return to the double-sweep algorithm and recap the stability issues as
well as the well-established error bounds on this algorithm. Assuming that
there are no restrictions on the input, i.e. on ranges for a,b,c and d. Then
there is one obvious problem with the algorithm even when we operate in
R, namely that the matrix may be singular leading to zero divisions. Thus,
assume that the matrix is non-singular. Then when we move from R to F we
should be careful that e = b; —a; f; does not round to or is flushed? to zero or
becomes so small that the division will overflow. It is well-known that this
will not happen if the matrix is diagonally dominant, i.e. if |b;| > |a;| + |¢;].
Thus, when we setup the problem we should ensure that the matrix becomes
diagonally dominant to prevent the zero pivots. Initially, this condition was
tested at runtime but we now have solid experimental experience that allow
us to omit this test and only use it for debugging purposes. If one had the
time and patience one could probably also derive this experimental result
analytically but we have not done it. However, even for diagonally dominant
problems, say b; = 1 and |a;|+|c;| << 1, there is a risk that we encounter an
underflow in the product a;f; which we might have to deal with. Actually,
this is something we often experience when we cold-start the model. As for
the error bounds this algorithm is studied in e.g. [6] where they show that

3If e is so small that it has been represented by a denormalized number then depending
on compiler options (or platform since some platforms does not support denormalized
numbers) it may be set to zero.

www.dmi.dk/dmi/tr12-16.pdf page 16 of 113

Technical Report 12-16

for a diagonally dominant matrix M we have:

3(du + 3u? + u?)

with u being the unit round-off error. There are even more tight bounds in
the paper in special cases and more loose bounds when M is not diagonally
dominant. Note that the error bound above is independent of the size of
the matrix n. If this error bound (or the more tight ones from the paper)
seems insufficient for the data sets that we expect then we could try to im-
prove it using error-free transformations like it was done for summation in
appendix A. To the best of our knowledge such an implementation and a
related study has not been published before but [7] have conducted such
a study for triangular systems. Another study that we have not yet seen
published is what f(u) would look like if one was allowed to use the fuzed
operations? that was included in the most recent IEEE 754-2008 standard.
The bounds in [6] are all established without using fuzed operations which
is quite reasonable since they were not part of the standard when the paper
was published.

We have now reached a stage where we have an algorithm that provides
us with an exact solution in R and we understand the limitations and error
bounds when we implement the algorithm in I, i.e. we know the performance
of the solution method with respect to stability and error bounds. Thus,
it is time to consider what we can do in terms of performance with respect
to computational speed. The algorithm is inherently serial with its loop
carried dependencies, i.e. it has built-in execution-order constrains, more
specifically flow and anti dependencies in the first sweep and flow depen-
dencies in the second sweep. An algorithm with such constrains cannot be a
candidate for instruction level parallelization and vectorization of the loops
is out of the question; if we need parallelization we will have to do it on an
outer level covering chunks of double-sweep solvers, see e.g. our presenta-
tion in chapter 4 of [3]. Thus on our default platform (x86_64) we expect to
see the computations done with the non-vector SSE2 assembler instructions
divsd,subsd,mulsd on older x86_64 without FMACxx instructions and with
the non-vector assembler instructions vdivsd,vfnmaddsd on x86_64 with
the newly introduced FMACxx instructions. If written in Fortran90 as out-
lined in the code snipped in figure 1 then we should probably inline the code
manually since compilers will not be able to tell whether or not arrays are

‘e.g. a fuzed multiply-add operation, aka FMA.

www.dmi.dk/dmi/tr12-16.pdf page 17 of 113

Technical Report 12-16

stored with stride-one. Some compilers will generate multiple versions and
choose the right one at runtime while others will play safe and assume that
arrays are not stride-one. No matter what they choose we will pay a penalty
and thus should inline it manually whenever performance with respect to
speed matters. The fact that our first choice of algorithm turned out to
be inherently serial should not prevent us from moving on but we need to
find a new algorithm. This is still an active area of research and in this
introduction we will confine ourselves with referring the interested readers
to some relevant papers such as [18], [12], [17], [13]. Note that if we change
the algorithm then we will have to reconsider stability and error bounds and
we might need to do the analysis ourselves or find it elsewhere since it is
quite common for the papers that are introducing these new algorithm to
deal only with the algorithms in the R context, c.f. e.g. the reference pair
[13], [17].

In the paragraphs above we illustrated the steps that one must follow in
order to implement one of the solvers that we need in order to implement
this model. Eventually we will put many of these components together and
the idealized analysis may no longer hold. Moreover, there are many aspects
that one cannot analyse on a piece of paper. For instance, the latest IEEE
standard for floating points (IEEE 754-2008) does not specify mandatory
requirements for any elementary function such as e*, sin(x), ", In(x) and
so forth. The IEEE 754 (and the hardware that we use) allows us to do addi-
tions, subtractions, multiplications, divisions and square-roots with correct
rounding so the only functions that we can represent are those who can be
represented using a finite number of these operations. That is, polynomials
if using only the faster operations (additions, subtractions, multiplications)
and piecewise rational functions if using divisions too. Thus, elementary
functions are implemented (at least for 64-bit where table based method are
impossible) using either polynomial® or piecewise rational approximations®.
Again, in theory this sounds sufficient since according to the famous theorem
due to Weierstrass (1885) we know that we can approximate any continuous
function as accurate as we want using a polynomial (that is using only ad-
ditions, subtractions and multiplications). Alas, a few years earlier (1882),
Lindemann showed that the exponential of an algebraic number (different
from zero) is not algebraic and this fact poses a challenge to get the correct

5 Approximations using for instance Chebyshev, Legrendre, Jacobi or Laguerre polyno-
mials.
5Padé approximation is often mentioned in this context.

www.dmi.dk/dmi/tr12-16.pdf page 18 of 113

Technical Report 12-16

rounding when doing approximations. We need some definitions to explain
what is now known as the Table Maker’s Dilemma. A number y € F is called
a breakpoint if the rounding changes at y, i.e. if x < y < z then & < 2. We
can only represent rational numbers z € F and since the rational numbers
are algebraic we now know that e* is not algebraic and thus cannot be a
breakpoint. Now, assume that z € F and that f : R — R is such that
f(x) is very close to a breakpoint. The Table Maker’s Dilemma is that one
cannot say how many bits precision say m one have to have in f(z) to get
the rounding correct. Well, since we are operating on a finite set of elements
F we can just for each function f set my = maxm;(f) with m;(f) being
the number of bits required to handle f(z;) and with ¢ being the enumer-
ator for the elements in F. However, the problem is that we do not know
the magnitude of m. It should be mentioned that finding these bounds for
important functions is still an active area of research and the latest revision
of the IEEE-754 standard (2008) has consequently added recommendations
(but not made it mandatory) for rounding of several elementary functions.

The analysis we have done above coincides with the stability analysis that
we will do in the next section. By conducting the analysis of each compo-
nent one by one we allow ourselves to do it with pen and paper but the
simplification introduced by chopping up the task into self-contained tasks
must be confirmed in the real context and we need to do longer simulations
to measure the real effects.

At this point of time the reader may wonder - why do we bother? There are
so many factors that may influence the final outcome of our model and it
should thus be safe to neglect the issue expressed in the steps above, right?
For a start, our initial conditions are not perfect nor are our boundary con-
ditions so even the problem we are trying to solve is somewhat inaccurate.
At the end of the day we will compare the solution to this inaccurate presen-
tation of the problem with real observations which by the way are inaccurate
too and make a judgement on the result of the model. If we are disappointed
about the result then we have to consider how we can improve it and we
can try to fiddle with the parameters where parameters in this context have
a very broad definition. That is, we can study and try to improve initial
conditions, boundary conditions, the discretization (the resolution and the
description itself, i.e. the bathymetry), the physical parametrisation and the
choice of the values of the corresponding free parameters, However, if
there are underlying issues in the implementation itself then these studies
can be blurred and frankly speaking a waste of time. Our ultimate goal

www.dmi.dk/dmi/tr12-16.pdf page 19 of 113

Technical Report 12-16

is that these kinds of resource consuming activities (both in terms of man
hours and computational resources) are based on a solid foundation so the
findings are not obscured by implementation issues. We want the model
to reflect the underlying laws of physics through the equations we brought
forward on the blackboard, not being dictated by spurious implementation
effects. Think about it, why should e.g. the solution to Navier-Stokes equa-
tions depend on the number of cores that the modeller had chosen to run
the model on?

That is, we encourage that one does try to understand the theoretical re-
sults concerning the important algorithms used and that one does systematic
software testing which by the way is quite different from cross-comparing
observations with model results. A systematic software testing will hope-
fully reveal plain programming bugs, numerical issues and parallelization
issues but just as important it will reveal the magnitude of the uncertain-
ties introduced by compilers, libraries and other system aspects such as the
underlying hardware. Once we know this magnitude we also know when it
becomes meaningless to adjust the buttons to drag model outcome closer to
observations.

One of the arguments that we sometimes meet is that although it is not
proved that the atmosphere or the ocean is chaotic there are strong evi-
dence that it is, so we cannot expect identical results when we do simu-
lations. Well, it is important to distinguish between the definitions here.
What Lorentz showed was that small differences in the initial conditions
will amplify until they are not longer small. If we assume that the initial
conditions are not changed then we should still expect that results are re-
producible, so running the same model setup twice must lead to identical
results, running the same model setup with different decompositions must
lead to identical results unless we deliberately have chosen to construct the
implementation such that the outcome of the model depends on the chosen
decomposition in which case we must in some way or the other verify that
this behavior is as intended. The differences in the model results that we
may see when running on different platforms are not due to the chaotic be-
haviour (unless we can show that there are differences in the reading in of
the initial data or the forcing data) but due to system aspects and possible
a buggy implementation in the first place. Hopefully, one can show that
the differences found when cross-comparing are in the ballpark of expected
system differences but this is our responsibility to investigate this.

www.dmi.dk/dmi/tr12-16.pdf page 20 of 113

Technical Report 12-16

Recently, there have also been an increased interest in developing ensemble
forecast systems to substitute the single deterministic model integration and
the underlying ideas behind this seem very reasonable. Ensemble forecast-
ing is a form of Monte Carlo analysis where multiple numerical predictions
are conducted using slightly different initial conditions that are all plausi-
ble given the past and current set of observations. Again, this approach
sounds very appealing but in our point of view it requires a sound founda-
tion, i.e. that one have conducted proper software testing of the model(s)
used. If this is indeed the case then the EPS? runs can help forecasters in
judging whether the ocean/atmosphere is in a predictable or unpredictable
state and they can use it to judge the overall reliability of the forecast. How-
ever, if one or more of the EPS runs are based on a fragile foundation then
it becomes even harder for the forecasters and others to use the outcome
of the system. In our view EPS runs might blur systematic implementa-
tion bugs/issues and first become useful when significant efforts have been
spend on testing the foundations. This is not to say that we expect that
one will have a model without bugs but just to say that we should have put
effort into fixing all the obvious bugs and to estimate a confidence level of
the model results before we try to embrace additional layers of complexity.
When it comes down to it, ensemble averaging including just one bug is still
a buggy result. EPS is not stronger than the weakest link (unless that was
discarded as an outlier).

The same kind of caution should be taken with data assimilation. Both the
model and the assimilation procedure must be verified independently and
their implementations must be tested for correctness. We have more general
comments on data assimilation in the last section of this chapter.

In conclusion, the fact that there are many factors that may influence the fi-
nal outcome of our model should not be used as an excuse for ignoring plain
programming bugs, numerical issues and parallelization issues, nor should it
become a general disclaimer against the severe, but fortunately rare mistake
that the mathematical concept one started off with on the blackboard does
not describe the physical problem one wanted to model.

"EPS: Ensemble Prediction System.

www.dmi.dk/dmi/tr12-16.pdf page 21 of 113

Technical Report 12-16

3.2 Basic solution methods

We will give a brief description of the methods and algorithms we have
applied for solving governing equations which are often sets of partial differ-
ential equations in space and time, because this might not be evident to the
reader and it might be different from what other models do. We will con-
fine ourselves to cover the most computationally expensive parts of the code.

Detailed information on the grid, nesting procedure and data structures is
given in [3] and will not be repeated here.

We solve the coupled set of equations of motion and mass equation by a
split-step scheme. In the first step, we use the equations of motion to solve
for horizontal velocity (u,v) at time step n + 1 from knowledge of surface
elevation 7 and (u,v) at the previous time step n and forcing parameters.
In the second step, we use the mass equation and (u,v) at the new time
step to update n from time step n to n + 1. A motivation for this choice
and not solving for n, v and v at the same time is that the mass equation
is essentially 2D (using depth-integration of the 3D (u,v) field) with only
little computational demand, while the equations of motion are in 3D and
require some computationally heavy solution methods.

For the equations of motion we apply a vector-upwind scheme for the ad-
vective-momentum and cross-momentum terms. All horizontal terms are
treated explicitly with a forward-in-time, central-in-space scheme except for
the bottom friction term and for the sea ice drag term which have weight
0.5 on both the new and the old time step. Vertical diffusivity of momen-
tum is treated fully implicitly. For each water column, this gives rise to two
tri-diagonal linear systems of equations, one for v and one for v, which are
solved by the well-known double-sweep algorithm, cf. section 3.1.

Turbulence closure is obtained by use of the Smagorinsky sub-grid-scale
model for the horizontal directions and by a two-equation turbulence model
in the vertical direction. In the first, the eddy viscosity is obtained by
calculating shear and stretch of the resolved horizontal flow (u,v). The lat-
ter consists of a k-w model with algebraic structure functions, cf. [2], and
requires solution of two vertical transport equations with source and sink
terms; sinks and vertical diffusion are treated implicitly while other terms
are explicit. With linearization of non-linear sink terms this results in two
tri-diagonal linear systems of equations for each water column which can be

www.dmi.dk/dmi/tr12-16.pdf page 22 of 113

Technical Report 12-16

solved by standard methods.

Tracer advection is performed with a truly 3D control volume, TVD scheme®.
Explicit time stepping is applied. To speed up the computations for more
than one tracer, we have arranged the data structures and the advection
scheme such that the first index of the tracer component array as well as
the innermost loops run over the number of tracer components.

Horizontal tracer diffusion is solved explicitly while vertical tracer diffusion
is, like for momentum, solved implicitly via a standard tri-diagonal solver.
Also for tracer diffusion we have the number of components as the innermost
loop.

In all cases, low order finite differencing is applied for spatial derivatives.
This is especially important for the horizontal direction where we thereby
can maintain short operator lengths of plus/minus one single grid point. As
discussed in [3], this eases both serial and parallel optimizations, e.g. MPI
communication can take advantage of only one point wide halo zones. The
operator length also dictates where proper barriers should be placed in the
code, e.g. when halo-swaps between different MPI tasks are required or when
explicit barriers inside OpenMP parallel sections are needed to join and fork
the threads.

It should by now be clear that solution of tri-diagonal linear system of equa-
tions plays a major role in HBM and thus it is justified why we should spend
much resources on this subject, cf. section 3.1, and also why we should put
effort into tri-diagonal solvers on alternative hardware (cf. e.g. the GPU port
we discussed in [3]) and have an eye on the on-going the research in that area.

3.3 Musings on time step size selection

As shown in [3] and also from the cases presented later in the present report
(cf. sections 4 - 9) there is a lot we can do with the code as is in terms of
domain decomposition and parallelization. Large models in terms of number
of grid points do not necessarily take longer time to execute than a small
model; it is merely a matter of how many resources in terms of hardware
(cores) we choose to spend (within some limits, of course). And we can

8TVD scheme: Total Variation Diminishing.

www.dmi.dk/dmi/tr12-16.pdf page 23 of 113

Technical Report 12-16

even choose to dedicate development time on optimizing the code further
within each time step, e.g. 10 parts and MPI communication as well as
some of the number-crunching parts certainly has potential for being im-
proved. But, unfortunately, we cannot parallelize the time axis. Time is
inherently sequential; we must take time step n before we can start on time
step n + 1. So, a simulation must be run from start to end, time step by
time step in sequence, and we must be careful when selecting time step sizes.

Since we are dealing with explicit time stepping schemes, we are unavoid-
ably facing restrictions on the time step sizes we can apply for stability
reasons. Even in the cases where we apply implicit schemes, and thereby
by-passing restrictions on stability grounds, we should still keep the time
step size within reasonable limits in order to maintain satisfactory accu-
racy; recall that stability does not guarantee accuracy.

The dilemma is that a smaller time step size leads to more stable and more
accurate solutions but require longer wall clock time to complete the simu-
lation. Of course we would like to run our models as fast as possible using as
little resources as possible, but we would definitely not risk e.g. a storm surge
forecast to blow up during a storm just because we compromised on the time
step size. When we are dealing with production models we must know the
model specifications (including the time step size) and the simulation time
window a priori. A typical researcher’s strategy of reducing the time step
size and make a re-run in case of failure is not an option we can afford when
we are running operational models in a tight time window; we can usually
only upgrade our operational models at the most once or twice per year.
Therefore we must make justified choices of the time step sizes during the
development and calibration phases of the modelling project. ”Better safe
than sorry” is the appropriate approach here.

The actual stability criterion depends on the specific discrete scheme and
the specific PDE at hand, but in general terms, the finer the grid resolution
the more demanding will the restriction on the time step size be. That is
(still in very general terms), for hyperbolic problems (e.g. wave equations
and advection) we will set an upper limit on a dimensionless velocity (or
CFL number) and have criteria in the form of

VAt
Al < f’l)

while for parabolic problems (e.g. diffusion) we will limit a dimensionless

www.dmi.dk/dmi/tr12-16.pdf page 24 of 113

Technical Report 12-16

diffusion coefficient and the criteria read something like

DAt
Al?

In the above, At is the time step size, V is a velocity scale, and D is a
diffusion coefficient. In the denominator Al is a measure of the size of the
applied grid spacing, e.g., for 1D vertical problems Al = Az, and for 2D
horizontal problems Al = /2/Ax2 + 2/Ay?. The limits f, and f; are some
finite numbers closely related to the specific solver, typically O(1) for sta-
bility of explicit schemes and O(10) for accuracy of implicit schemes.

< fa

For finite difference schemes, it is common practise to try to estimate the
stability criteria from e.g. linear stability analysis in the von Neumann sense
(cf. e.g. Chapter 19 of [15]) while, even for stable schemes, we must often re-
sort to numerical experimentation to find suitable limits within which we still
maintain satisfactory accuracy. It also happens that the stability analysis is
simply too complicated to treat analytically due to multi dimensions, multi
variables, many terms, non-linear terms, non-constant coefficients, compli-
cated geometry, etc, so the analysis is very much about ”playing safe” and
identify worst-case scenarios. Remember, stability is a local feature, and
sometimes it is possible to do local linearization and to replace non-constant
coefficients by constants locally, etc., and in this way escape the stability
analysis which otherwise seems hopeless. In any case, the chosen criteria
must prove their worth through numerical experiments with real, full-scale,
long-term simulations which cover an appropriate range of situations. For
classification of PDEs and introduction to basic finite differencing, cf. a clas-
sical text book like [4]. For a thorough introduction to computational fluid
dynamics, cf. another classic [1].

Please note that in the type of problems we deal with here, as a rule of
thumb, the horizontal velocity scales are most often some orders of magni-
tudes larger than the vertical velocity scales, and the horizontal grid spacing
is in the order of 1000 meters while the vertical grid spacing is 1 meter.
Therefore, in practical application, we often find ourselves restricted by the
first type of criteria above in the horizontal direction and by the second in
the vertical direction. The last one can hit us quite severely due to the
squared Al in the denominator. Our experience is that many modellers
sometimes forget this fact, e.g. when increasing the vertical resolution from
say 4 m to 1 m with a required decrease in time step size by a factor of 16.
This should also be kept in mind when comparing different model setups,

www.dmi.dk/dmi/tr12-16.pdf page 25 of 113

Technical Report 12-16

for example through their computational intensity, cf. section 3.5.

3.4 Actual time step sizes

We do not make an attempt at performing stability analysis of the full set
of discretized Navier-Stokes equations; there are simply too many variables,
terms and varying coefficients. Instead we resort to term-by-term worst-
case analysis which results in simple, practical guidelines for the selection
of time step sizes. Even if we could perform analyses on the complete set of
finite difference equations in idealized configurations with say flat bottom
and constant coefficients, that would likely not tell us more.

Horizontal Smagorinsky terms:

The concept of the Smagorinsky sub-grid-scale model is to act as resistance
against shear and stretch deformations of the flow. An eddy viscosity, Ep,
is calculated from stretch and shear of the resolved horizontal flow

ou v\? v Ou\?
E, =1L? — = — 4+ —
h \/<8m 8y> * <8x + 8y>
where L is the length scale given by
L? = C2,,,, ArAy with Cypngg = 0.2

smag

Analysing separately for the Smagorinsky terms we are facing a parabolic
problem which, when discretized into a so-called FTCS? scheme, should

satisfy
2 2
EpAt (— + —> <1
Ax? Ay?

according to linear stability analysis in von Neumann sense. We should never
run into troubles with the Smagorinsky model, not even if more diffusive
terms are present, so we implemented a runtime stability assurance that
keeps Ej, sufficiently low, i.e.

0.1

1 1
At (m + A—yz)
everywhere. Our model calibration must confirm if there is a need for larger
By, possibly through lower At.

Ep <

9FTCS: Forward-in-Time, Central-in-Space.

www.dmi.dk/dmi/tr12-16.pdf page 26 of 113

Technical Report 12-16

Background diffusion:

The model has an artificial Laplacian diffusion augmented to the equations
of motion. Linear stability analysis for this term alone shows that our scheme
is conditionally stable provided that

2 2
DAt <A—xf+A—y2> <1

The intention is to have a tiny background diffusion acting as a stabilizer
so a criterion of this kind must under no circumstances become a problem
because then the whole idea of having it is destroyed. However, in certain
situations we have seen that a fixed value of D could lead to spurious
problems if the modeller is not cautious. For the so-called artificial viscosity
method cf. a text book like chapter 14 in [4].

Barotropic, free surface mode:
Here we reduce the stability analysis to the well-known 2D, depth-averaged
wave equation at constant depth H:

oy (2 20)

ot or Oy
Ou On Ov 0On
o Yoo Yoy
When discretized in a straight-forward way and solved with our split-step
scheme these are turned into a FTCS scheme which is known to be uncondi-
tionally unstable, and we therefore need some kind of stabilizer. Fortunately,
in the full system of equations we do have stabilizing terms like bottom fric-
tion and conditionally stable background diffusion and Smagorinsky terms,
see above. It can be shown, that if we augment any kind of diffusive term
with coefficient D to the right hand side of the equations of motion, and
apply a scheme that in itself is stable, i.e. obey

2 2
DAt<A—x?+A—y2><l

which is the case with both the Smagorinsky model and the background
Laplacian diffusion, then our split-step FTCS scheme is conditionally stable
provided that the following CFL criterion is fulfilled:

2 2
CFL—CZ'J'AZ? W—FA—y? <1

)

www.dmi.dk/dmi/tr12-16.pdf page 27 of 113

Technical Report 12-16

where the celerity of gravity waves is given by
Cij=9Hi;

It is the location (7, j) where we find the largest value of CFL that determines
stability and accuracy. During model initializations a check is performed to
verify that this CFL criterion is fulfilled everywhere in every domain.

Flow at high Froude number:
It is quite common in the oceanographic community to focus on At for the
barotropic, free surface mode. This is quite reasonable and natural since
ocean circulation models most often operates on open waters and deals with
flows at relatively low Froude numbers, i.e. sub-critical flow
4]
F,. = C <1

where the free surface mode is the fastest moving mode. But for flows with
large gradients, e.g. with flooding-drying or with steep bottom topography,
we can have near-critical, F,. ~ 1, or even super-critical flow, F;. > 1, and in
such cases the momentum advective terms become dominating. We cannot
exclude these situations from our operational applications since they are
likely occurring e.g. with flooding/drying in the Wadden Sea and for low-
water flows over sills. Fortunately, we are saved by the applied upwinding
which has been shown to be crucially important in such situations, cf. [8]. If
we analyse the applied forward-in-time, upwind-in-space scheme we arrive

at
|u|

|v]
At <E + A_y> <1
which we also need to take into account. There is no built-in check for this
criterion in the code so it is entirely up to the user during his/her model
calibration to ensure that it is fulfilled.

Vertical diffusion:

As described in the previous section 3.2 we apply an implicit scheme when-
ever we encounter vertical diffusion terms. Even though the scheme is un-
conditionally stable and is renowned for its relatively inexpensive high-order
accuracy (cf. e.g. sections 4.6-9 in [1]) numerical experimentation shows that
the solution can be very much off with huge, nasty wiggles if the dimension-
less diffusion coefficient is not kept sufficiently small, say less than something
between 10 and 15. We here apply the rather conservative limit

DAt
Az?

<10

www.dmi.dk/dmi/tr12-16.pdf page 28 of 113

Technical Report 12-16

It is the location (4, j, k) with the largest value of D; ;/ Azi ;. that deter-
mines At. However, we do not know the maximum value of D; ; ;. before we
run the model because this is obtained from model prognostics calculated
through the mixing scheme, cf. [2], but we do know that D; ;; locally can
become quite large for a short period, e.g. due to strong surface cooling.
Therefore we stick to a practical approach and put a limit on D; ;; such
that the above criterion is always satisfied; our model calibration must then
show us if we resolve processes sufficiently well or if we need smaller At to
open up for larger D.

3D tracer advection:

Choosing the time step size for tracer advection follows the principle that
”you cannot cut a bald head”, which here means that during a time step we
cannot empty the control volume (i.e. the grid cell) for more substance than
it contains; it is physical and numerical nonsense in this context to operate
with negative tracer concentrations or negative cell volumes or things like
that. Thus, for stability we must assure that the transport out of each grid
cell during one time step will never exceed what that grid cell contained at
the beginning of the time step; this can also be formulated in a CFL-like way.
That is, say, for the sake of simplicity, that the local flow is such that there
is a transport into the considered grid cell across all grid cell faces except
the eastward cell face where the transport is out. The grid cell volume is
hAxAy and the outward transport is h,uAyAt with u > 0 in this example.
Then, the stability criterion for this situation becomes:

(hxu)i,j,kAt

<1
th,kAl‘i

This formulation can be more restrictive than the classical CFL criterion for
equidistant grids of constant cell height, i.e. uAt/Axz < 1, which states that
the signal is only allowed to propagate less than one grid spacing per time
step. In our case the cell face height, h,, can locally be significantly larger
than the centre cell height, h, during a period with pronounced low water
(e.g. a storm) and/or near steep bottom topography. We do not know the
sea surface variations and the current speeds a priori so we must here rely on
our knowledge of the model physics, i.e. we must gather enough information
through e.g. long simulations to evaluate a proper value for the maximum al-
lowable At for each testcase. We must of course generally take into account
transport across all six grid cell faces, not only a single one, by augmenting
the left hand side of the above by (hyv);—1 ;kAt/h; /Ay if, for example,
we also have transport out of the northern face of the grid cell. We have

www.dmi.dk/dmi/tr12-16.pdf page 29 of 113

Technical Report 12-16

implemented a method that checks for violation of the stability criterion for
tracer advection locally at each grid cell during runtime; this is a valuable
tool during the development and calibration phases to aid finding a proper
At and do fine-tuning of the grid (through h; ;); but during operational
runs it should not come into play.

Horizontal tracer diffusion:

Horizontal tracer diffusion is calculated from an effective horizontal eddy
diffusivity, Dcyr, which is obtained from the horizontal Smagorinsky eddy
viscosity for momentum, Ej, by a relaxation according to:

0.25E

Depp= ——h
I 701+ EpAt/L?

The stability criterion for the 2D, explicit diffusion scheme applied here,
assuming locally constant Dy, is:

2 2
Deffﬂ"jAt <A—:EZ2 + A—y2> <1
so with the above expressions we get a maximum value

0.01Az; Ay
Deff,mam = T

which then yields an wunconditionally stable scheme for horizontal tracers
diffusion. And just as for vertical diffusion our model calibration must show
if processes are resolved sufficiently well or if a smaller At is needed to open
up for larger Dcyy.

Special cases and other considerations:

For the 2D cases above, the stability criteria have all been developed from
idealized, smooth configurations. Usually, criteria based on 2D and 3D for-
mulations are relatively more restrictive than their 1D counterparts (e.g. the
criterion for diffusion is At < 0.5Az2/D in 1D while it is At < 0.25Az2/D
in 2D with Ay = Ax), so we are on the safe side. This also holds if we
consider more odd layout of the grid (e.g. with corners and narrow channels
to describe changes in topography), the criteria obtained from analysis of
full 2D or 3D equations reflect the worst-case scenario.

We have treated the equations that are most fundamental to our present
model implementation, and these are also those that constitute the most

www.dmi.dk/dmi/tr12-16.pdf page 30 of 113

Technical Report 12-16

time consuming parts of the model and those parts that usually put the
most severe restrictions on the time step sizes we can apply. However, we
do at this point need to stress that our presentation here does not cover ev-
ery single component of the full model system, and occasionally the we see
model applications that run into trouble due to violated restrictions in other
model components, e.g. when including an add-on ecological model (which
is passive to the physics) using explicit time stepping under conditions with
large sink terms.

Finally, we must make a remark regarding the prescribed initial and bound-
ary conditions. All the way through this theory chapter we have taken the
pragmatic attitude towards the available initial and boundary data that
these reflect the nature of the physical problem at hand and thus are appro-
priate to the corresponding PDE and its discretization. There is, unfortu-
nately, no guarantee that this assumption will always hold since these data
are often collected from external sources (i.e. observations or a third-party’s
model product), and troubles due to e.g. inadequate forcing at the open
model boundaries might be confused with a stability problem of the finite
difference scheme. In such cases the medicine is not to lower the time step
size or increase coefficients which have smoothing effects (such as friction
and diffusion parameters). Rather, as a pre-processing step, the initial and
boundary data should be screened and prepared thoroughly.

3.5 Computational intensity

This paper will describe testcases of increasing complexity in terms of com-
putational resources. We have tried to come up with a simple crude estimate
of the complexity of a testcase. A very simplified description of the problem
is that we need to solve a couple of PDEs and the discretization of the space
and the time thus defines the size of the overall computation problem. How-
ever, we are solving PDEs in both 2D and 3D so should we account for both
types? We are highly dominated by the 3D problems so a first estimate of
the computational intensity I for a model setup would be the sum over all
nested areas of the number of 3D water points in that area divided by the
time step size (in seconds) used in that area, i.e.

narea

I=" iw3(ia)/dt(ia)
ia=1

The model at hand is a hydrostatic model and we have 7 prognostic variables

www.dmi.dk/dmi/tr12-16.pdf page 31 of 113

Technical Report 12-16

(u, v, s, t, tke, diss, avv). The definition above will not be useful in
answering questions like how expensive would it be to deal with a non-
hydrostatic formulation or say to run with 9 or 25 additional passive tracers.
Thus, in order to take additional 3D PDEs into account we need to refine
the previous definition with (ensuring that I = I,,(0)):

narea
I(n) = (n+7)* Y iw3(ia)/dt(ia)
ia=1
A non-hydrostatic formulation would have 9 prognostic variables (the pre-
vious 7 plus w, p) so the definition above allows us to estimate that.

To ease comparison between the computation requirements of different mod-
els and different setups, it is useful to look at the relative computational
intensity, I, and I,,, which is the intensity of the model setup in question
normalized by the intensity of a well-known model setup. Here, we choose to
normalize by the specific computational intensity of a certain test-case'® that
has been commonly used at DMI for quick tests as well as longer model sim-
ulations (climate studies, re-analysis). This test-case has I = 10552.5 sec™!.

Note that we do not wish to add any diagnostic variables to the intensity
numbers since we regards these as temporary computations required by the
overall solution method (e.g. w) or as computations that could be done of-
fline afterwards. We have not even tried to take the fact that some areas will
update some variables (u, v, z) twice per computational cycle and others (s,
t, n*passive, tke, diss, avv) only every second computational cycle into
account. That is, our definition of I, and I, is nothing but a first crude
estimate of the size of the problem. Having said that, it has been a quite
useful working estimate for us, though.

Needless to mention there are two parameters that one can adjust to get a
higher I, number but the two parameters are not totally independent. One
can either increase the number of wetpoints or decrease the time steps used
but it should be stressed that while increasing the number of wetpoint can
be hidden by adding more resources into the solution (say more compute
nodes) this is not the case with the time steps. The only parallelism that
we have across time steps is the asynchronous parallelism and that is quite
limited to things like 10.

10T his test-case is formally known as the test03 test-case.

www.dmi.dk/dmi/tr12-16.pdf page 32 of 113

Technical Report 12-16

It should be stressed that the complexity number is not suited for cross-
comparing fundamentally different approaches to solving the PDEs. For
instance, a purely implicit scheme is not bound by the same stability crite-
ria as a simple explicit scheme and one would thus end up with very different
time step sizes and thus very different complexity measures.

3.6 Why is all this important?

Let us summarize what it involves to develop a model:

A We have identified a physical problem (PP) that is diagnosed through
a physical quantity @ (or a set of quantities).

B We develop/select a set of equations that describe the problem math-
ematically, e.g. a set of PDEs that is meant to describe PP as an
initial-boundary value problem (IBVP) in R, such that if we know the
initial and boundary values then we can describe the behavior of @
through the PDE.

C We develop/select a solution method, e.g. a finite-difference scheme
(FDS) to approximate the PDE and we make sure that the FDS has
all the necessary properties (convergence, consistency, stability, accu-
racy), still working in R.

D We implement the FDS in F,, using a decent programming language
and various kinds of hardware and software features (including paral-
lelization, vectorization, FMAs, etc.) and use this implementation to
predict an estimate for) in F,,, called @Q,,.

It is not necessarily a good idea to evaluate the model from observations
Qops of the quantity if that is the only thing one does. Traditionally, there
is a tendency in the ocean modelling community to decide the quality of the
model by performing raw comparisons of Qs and Q,. But, unfortunately,
there can be quite a distance between a recording of (). from the nature
to the @Q,, one gets from the model.

e First of all, the Qs is not at all a solution to our IBVP, and it is
not even certain that Qs describes the PP we started out with (due
to e.g. instrument failure). If Qs is meant to enter the evaluation
process, it must be ensured that it describes a quantity that is actually
modelled and that it does not include effects that are not part of the

www.dmi.dk/dmi/tr12-16.pdf page 33 of 113

Technical Report 12-16

model. The observations to be used in the evaluation process must
undergo a thorough quality assurance process, just like we require for
the model.

e Secondly, one must ensure that each of the single steps A-D above
are correct individually, i.e. that the IBVP really describes the PP,
that the FDS really is a useful approximation to to the PDE, that
the implementation into the world of F,, is in order. One cannot skip
say the verification of the implementation and just settle with a quick
textbook-lookup insurance of point B or C.

Not that this document should turn into sharing of war stories, but we do
actually have examples of operational model components failing in all of the
above-mentioned steps A-D, making it very little useful for the public as
well as the scientific society, cluttering the discussion and the decision mak-
ing, and eventually wasting a lot of valuable man-time and project money.
This is why we maintain our design goals, this is why we put effort into
describing what we do when striving towards our goals. We are not saying
that a single person should be responsible for carrying out all the analysis
and development through to the end, but at the very least it should be doc-
umented what has been done in order to verify the quality.

In this context, it seems reasonable to add a final comment on the use of
data assimilation in this area. In theory, data assimilation solves a well-
defined problem and the outcome of using it is meant to please those mainly
interested in verification scores, i.e. how close the model outcome is to the
observations measured. In practice, it is not that simple. Let us summarize
the underlying assumptions that must hold:

e The set of observations does indeed describe the PP that the model
(in terms of the PDEs) is meant to describe.

e Observations are always correct, i.e. a better verification score is by-
definition an improvement.

e It is possible to setup automatic procedures that will do perfect qual-
ity assurance of the observations (and still have a non-empty set of
observations left to assimilate).

e Time interpolation or time nudging of observations does not pose a
problem to us (assuming that we are not trying to do 4dvar).

www.dmi.dk/dmi/tr12-16.pdf page 34 of 113

Technical Report 12-16

e Uni-variate analysis does not pose a problem to us, e.g. we can adjust
say the T field as we please without introducing problems with the
state of any of the other variables, say S. Basically assuming that
there is no relationship between the variables in our set of prognostic
variables and thus basically contradicting the underlying assumption
behind the model.

e The fact that the result of the data assimilation is not a model-state
does not pose a problem to the model.

e There is not always a one-to-one mapping between an observation and
a related prognostic variable in the model. In these cases we assume
that we can construct an exact and flawless mapping that allow us to
use the observation.

There are several examples in this paper showing that some of these assump-
tions are extremely hard to justify in real life. Finally, it should be stressed
that we do not try to say that data assimilation is not useful. All we say is
that one should be careful not to focus too much on verification scores solely.

www.dmi.dk/dmi/tr12-16.pdf page 35 of 113

Technical Report 12-16

4 Introduction to the test cases

Table 1 summarizes the setups that we describe in the following sections.
These range from present day’s operational setup, MyO v2.1, to setups we
aim at running in the future. Note that the largest problem in the table is
80 times harder than the one we run in production today. With this range
of applications at hand we feel that we have prepared a solid foundation for
decision making on future operational setups.

Testcase | 3D grid points iw3 fiws dt I(0) | Irv(9) | Ir0(25)
MyO v2.1 23357904 2838057 | 12.5% 15 14.3 32.7 51.1
variant(Q 68435880 8279907 | 12.1% | 12.5 60.6 137.1 214.3
variant1 74560380 9667032 | 13.0% 10 89.6 204.8 320.0
variant2 129061336 | 14418360 | 11.2% 5 227.7 540.5 813.2
variant3 165983872 | 27554107 | 16.6% 5 321.2 734.2 1147.1

Table 1: The test cases described in the present report. The time step
size dt is the smallest used in these nested setups. The number w3 is the
number of 3D wetpoints whereas f;,3 expresses the fraction of all the 3D
points that are indeed wetpoints. Please consult the appropriate tables in
the respective sections to see the specific time step size of each of the nested
domains.

The difference between the MyO v2.1 and the variantO case is the horizontal
resolution in the Baltic Sea domain which is 3 n.m. and 1 n.m., respectively.
The 1 n.m. resolution in the variant0 case puts a more demanding restriction
on the time step size. Also, there is slightly more layers in the BS domain
of variantQ.

Compared to variantO, variantl has the 1 n.m. WS domain extended to
cover Skagerrak which, due to the deep Norwegian Trench requires a lower
time step size. In this extended WSNS domain the vertical resolution is also
increased. The NS domain is of course reduced in variantl, and we call this
domain rNS; see e.g. table 23.

In variant2 we have increased the horizontal resolution in rNS to 1 n.m., and
in IDW we have increased it to 0.25 n.m. which requires a time step size of

5 seconds, see e.g. table 25.

The final variant3 setup is a large pan-European setup. It includes vari-

www.dmi.dk/dmi/tr12-16.pdf page 36 of 113

Technical Report 12-16

ant2 to cover the North Sea - Baltic Sea region, but has an enclosing North
Atlantic domain which also nests to a Mediterranean Sea domain, see e.g. fig-
ure 41 and table 26.

Please note that even though the timings and profiles for the different setups
we show in this report have indeed really been attained on the machines as
described using the exact same source code (release 2.6), it is very likely
that we will learn from future model analysis and evaluations, as described
in section 3.4 that we will have to decrease the time step size for e.g. tracer
advection and/or diffusion and/or turbulence. Likewise, it is indeed possi-
ble that new, smarter features will be implemented which also affect timings
and profiles.

It should further be noted, though this should by now be considered trivial,
that the code itself as well as runs of each of the shown setups has passed
our usual testing procedure, i.e. checking ANSI compliance, for stack and
bounds violations, for safe parallel implementations. Thus, the results for
each point along each shown scaling graph are binary identical.

4.1 Benchmark systems

Throughout this paper we will present results from runs conducted on two
cray systems, namely our local cray XT5 (12-way cc-NUMA node with
16Gb shared memory on most nodes and 8 nodes with 32Gb, each socket is
equipped with Istanbul AMD Opteron at 2.4 GHz) and the cray XE6 system
at CSCS (32-way cc-NUMA node with 32Gb shared memory, each socket is
equipped with AMD Opteron 6272 2.1 GHz Interlagos processors).

4.2 Summary of performance

Table 5 summarizes the performance attained on our local XT5 system. The
I, ratio between the cases is not reflected in the sustained timings but it
should also be kept in mind that we use a different number of cores to reach
the sustained performance in the table. Note that we have excluded the
variant3d setup. This is not because we cannot run it on our local system
but we need the use the nodes with 32GB of memory. Alas, we only have 8
of these nodes so we cannot do a relevant scaling study on our local system
nor get a number for a reasonable sustained performance. Table 6 presents

www.dmi.dk/dmi/tr12-16.pdf page 37 of 113

Technical Report 12-16

Compiler

IEEE flags

cray / 7.4.2.106

-01 -Ofp0 -K trap=fp

intel / 12.0.4.191

-0O0 -traceback -fp-model precise -fp-stack-check -fpeQ

gfortran / 4.5.3

-fsignaling-nans -ftrapping-math -fno-unsafe-math-optimizations

pathscale / 3.2.99

-fno-unsafe-math-optimizations
-OPT:IEEE_arithmetic,IEEE_arith=1 -TENV:simd_imask=0OFF

pgi / 11.10.0

-00 -Kieee -Ktrap=fp -Mchkstk -Mchkfpstk -Mnoflushz
-Mnofpapprox -Mnofprelaxed

Table 2: List of compilers on the X'T'5 system and the corresponding compiler
flags used for IEEE builds in this study.

Compiler

TUNE flags

cray / 7.4.2.106

-02 -eo -Oipad

intel / 12.0.4.191

-03 -fno-alias -ipo -static

gfortran / 4.5.3

-03 -funroll-loops -ffast-math -finline-functions -finline-limit=5000

pathscale / 3.2.99

-03

pgi / 11.10.0

-fastsse -Mipa=fast,inline

Table 3: List of compilers used on the cray XT5 system at DMI and the
corresponding compiler flags used for TUNE builds.

Compiler TUNE flags

cray / 8.0.1 -02 -eo

intel / 12.0.3.174 -03

gfortran / 4.5.3 -03 -funroll-loops -ffast-math
pathscale / 4.0.12.1 | -O3

pgi / 11.10.0 -03 -Mipa=inline

Table 4: List of compilers used on the cray XE6 system at CSCS and the
corresponding compiler flags used for TUNE builds.

www.dmi.dk/dmi/tr12-16.pdf

page 38 of 113

Technical Report 12-16

the numbers attained on the cray XE6 system at CSCS. Note that they have
32GB of memory on every node so it is indeed possible to run also the larger
variant3 case at scale.

XT5, DMI variant0 variantl variant2
24 hour forecast < 11 minutes < 18 minutes | < 60 minutes
10 days forecast < 120 minutes | < 180 minutes < 10 hours
1 year simulation ~ 3 days =~ 4.5 days ~ 15 days
1 decade simulation =~ 30 days =~ 45 days ~ 150 days

Table 5: Sustained performance on our local cray XT5 system. Note that
we use a different number of cores to reach the sustained performance in
each of the cases.

XE6, CSCS variant0Q variantl variant2 variant3
24 hour forecast < 8 minutes < 15 minutes | < 44 minutes | < 60 minutes
10 days forecast < 74 minutes | < 142 minutes < 7.3 hours < 10 hours
1 year simulation =~ 2 days ~ 3.6 days ~ 11.2 days =~ 16 days
1 decade simulation ~ 19 days ~ 36 days ~ 112 days =~ 152 days

Table 6: Sustained performance on the cray XE6 system at CSCS. Note
that we use a different number of cores to reach the sustained performance
in each of the cases.

4.3 Summary of performance with passive tracers

There is an increasing interest in running the model with a number of pas-
sive tracers. Currently, there are two bio-geo-chemical coupler models in the
trunk version of the code (DMI-ergom and DMU-ergom) and it thus seems
appropriate to evaluate the current performance with passive tracers too.
We will confine ourselves to look at 9 (the number of passive tracers used
in the DMI-ergom coupler) and 25 (the best estimate of an upper bound on
the number of passive tracers in the foreseeable future).

Table 7 summarizes sustained performance on our local XT5 with the dif-
ferent cases running with 9 passive tracers. Note that the ratio ﬁz(gg for
the variant0 testcase is 2.3 and that this ratio coincides pretty well with the
sustained timing ratio 25/11 which is 2.3 too. We do not have sufficient

memory to run variantO with 25 tracers on our local system with more than

www.dmi.dk/dmi/tr12-16.pdf page 39 of 113

Technical Report 12-16

11 tasks so we cannot give proper numbers for that case on our local sys-
tem. Table 8 summarizes sustained performance on the system at CSCS.
Note that we can indeed run variant0 with 25 tracers on that system but
again we run into memory issues when exceeding 22 tasks (704 AMD In-
terlagos cores) and it still scales at these core counts so fixing the memory
issues will probably lead to better numbers.

XT5, DMI MyO v2.1 ergom variant0_9
24 hour forecast < 16 minutes | < 25 minutes
10 days forecast 2.4 hours < 4.1 hours
1 year simulation =~ 4 days ~ 7 days
1 decade simulation ~ 41 days ~ 65 days

Table 7: Sustained performance on our local cray XT5 system with 9 passive
tracers. The ergom model is used in the MyO v2.1 case whereas it is the
benchmark coupler that we use in the variantO case.

XE6, CSCS

MyO v2.1 ergom

variant0_9

variant0_25

24 hour forecast

< 11 minutes

< 13 minutes

< 26 minutes

10 days forecast 1.7 hours | < 130 minutes | < 153 minutes
1 year simulation =~ 2.6 days =~ 3.3 days =~ 6.4 days
1 decade simulation ~ 26 days ~ 33 days ~ 64 days

Table 8: Sustained performance on the cray XE6 system at CSCS with
passive tracers. The ergom model is used in the MyO v2.1 case whereas it
is the benchmark coupler that we use in the variantO case. Note that we
run the variantO case with 9 and 25 passive tracers, respectively.

www.dmi.dk/dmi/tr12-16.pdf page 40 of 113

Technical Report 12-16

5 MyO V2.1

Table 9 summarizes this setup and figure 2 shows how the four sub-domains
nest to each other. The I, number for the whole setup is 14.3. There are
lots of interesting details on this case in [3] where we documented the techni-
cal and numerical performance based on physics variables from short model
runs. Here we confine ourselves to describe short simulation findings with
the passive ergom tracers and finding for the physics parameters from a long
simulation, i.e. items that were not covered in [3]. We will also present as
1s findings on the current performance of this testcase.

IDW BS WS NS
resolution [n.m.] 0.5 3.0 1.0 3.0
mmx [N/S] 482 248 149 348
nmx [W/E] 396 189 156 194
kmx 75 109 24 50
gridpoints 14315400 5109048 557856 3375600
iw2 80904 13056 11581 18908
iw3 1583550 671985 103441 479081
fiws 11.1% 13.1% 18.5% 14.1%
© [latitude] 57 35 45N | 65 52 30N | 55 41 30N | 65 52 30N
A [longitude] 09 20 25E | 14 37 30E | 06 10 50E | 4 07 30W
Ap 0030 030 0100 030
AN 0050 050 0140 050
at [sec] 15 30 30 30
maxdepth [m] 78.00 394.40 53.60 696.25
min Az 827.62 3787.40 1740.97 3787.40
CFL 0.948 0.725 0.751 0.957
I 10.0 2.1 0.6 1.5

Table 9: MyO operational setup, version V2.1. The total I, number for the
setup is 14.3.

The documentation of the MyOV2.1 model setup is structured in the fol-
lowing way: First, in section 5.1 we describe the things that one can learn
immediately from the series of short simulations using different compilers
and compiler options. Then, still with the short simulations, we go into
more details and describe a pointwise comparison (section 5.2), a study of
compiler issue (section 5.3), and the perfomance of the test case (section 5.4).

www.dmi.dk/dmi/tr12-16.pdf page 41 of 113

Technical Report 12-16

After that, we look at a longer simulation (approx. five and half years) in
section 5.5, and also here we go details and study specific issues related to
water level predictions: We look at the water levels in the Baltic Sea (sec-
tion 5.6), around Denmark (section 5.7), and in @resund (section 5.8). It is
our hope that we through these sections have given enough insight into the
kind of analysis we believe is necessary to do before operationalizing a model.

Figure 2: Nesting of the four domains in the MyO V2.1 case and the variant0
case. The difference between the two cases is the resolution in the Baltic
Sea domain (BS) which is 3 n.m. and 1 n.m., respectively.

www.dmi.dk/dmi/tr12-16.pdf page 42 of 113

Technical Report 12-16

5.1 Short simulations

We have conducted a number of short simulations with different compilers
and different compiler flags, cf. table 2 and table 3. We have cross-compared
the results stemming from these simulations in order to study how sensible
the code and the current test-case is to the choice of compiler, compiler
flags and platform. Thus, we attempt to bound the differences in the results
emerging from different compilers, i.e. to determine the worst-case differ-
ences £5(f) we see across all the runs for each statistical fingerprint s (avg,
minimum, maximum) and each prognostic ergom variable f. Let e4(f) and
ds(f) be defined by:

es(f) = rgllfglscl(f) — 5e,(f)]
_ ma‘XCLCz ‘361 (f) - 302 (f)‘
) = sm () oea ()

with s., (p) and s, (p) being the statistics s for parameter f obtained by
compiler ¢; and ¢y respectively. We have shown the bounds obtained for
the pure IEEE builds in table 10 and for both IEEE and TUNE builds in
table 12. Note that all these results are serial runs but as we will see later
the parallel results are binary identical to the serial results so it is sufficient
to study the outcome from serial runs.

Browsing these tables it seems that two numbers stick out, namely min(7})
in WS and max(75) in IDW, and that calls for a more careful analysis. In
tabel 11 we have listed the actual values obtained with each compiler, and
from those numbers it might be suggested to exclude a couple of outliers:
If we do not include the result from intel for max(7%) in IDW and the re-
sults from pgi and gfortran for min(7}) in WS, we see that the e drops by
a factor of more than 14 in magnitude. The resulting € values are still high
compared to the corresponding values in the other areas so in this case we
cannot simply blame the relatively high e alone on certain single compilers’
ability to do numerics: There is, unfortunately, no shortcut here, the imple-
mentation of the equations in the source code must be reviewed if the issue
should be properly understood and perhaps even dealt with. Whether or
not the above findings are related to the physics, e.g. to a the large pointwise
difference for salinity in WS during flooding/drying, see e.g. figure 19 in [3],
is yet to be investigated.

www.dmi.dk/dmi/tr12-16.pdf page 43 of 113

Technical Report 12-16

NS (¢/6)

IDW (£/5)

WS (e/6)

BS (g/9)

avg benthos

1.29¢-07 / 3.51e-09

2.51e-07 / 8.84e-09

5.80e-07 / 1.04e-08

5.16e-07 / 1.48e-08

min benthos

4.00e-10 / 9.60e-09

0.00e+4-00 / 0.00e+00

4.40e-09 / 1.46e-09

3.92e-08 / 1.67e-08

max benthos

5.68e-07 / 1.26e-09

3.70e-09 / 1.12e-12

0.00e+4-00 / 0.00e+00

3.82e-08 / 2.52e-11

avg Tq 1.10e-07 / 2.03e-06 4.83e-08 / 1.46e-06 2.54e-07 / 5.47e-06 1.31e-07 / 4.26e-06
min Tq 0.00e+-00 / 0.00e+00 2.28e-07 / 2.54e-05 1.18e-04 / 6.52e-03 5.00e-10 / 1.06e-06
max T4 2.20e-07 / 1.09e-07 4.47e-07 / 5.58e-08 0.00e+-00 / 0.00e+00 7.76e-06 / 3.99e-07
avg T 1.42e-07 / 1.14e-07 2.23e-06 / 4.24e-06 5.01e-07 / 6.44e-06 8.13e-07 / 9.28e-07
min Th 6.00e-10 / 3.03e-08 4.22e-08 / 2.34e-06 2.56e-08 / 1.90e-06 0.00e+-00 / 0.00e+00
max To 1.11e-06 / 1.16e-07 8.95e-04 / 1.25e-05 0.00e+4-00 / 0.00e+00 1.19e-07 / 3.09e-09
avg T3 4.13e-08 / 4.67e-07 5.67e-08 / 8.67e-07 1.75e-07 / 5.99e-06 8.19e-08 / 5.62e-07
min T3 1.51e-08 / 5.23e-06 4.50e-09 / 1.68e-06 7.00e-10 / 1.34e-07 1.00e-10 / 3.33e-08
max T3 3.00e-09 / 4.63e-09 1.93e-07 / 8.92e-08 0.00e+-00 / 0.00e+00 9.60e-07 / 3.22e-07
avg Ty 5.57e-08 / 9.16e-07 1.81e-08 / 2.27e-06 2.41e-08 / 1.21e-06 1.29e-07 / 4.72e-06
min Ty 0.00e+-00 / 0.00e+00 1.35e-08 / 1.51e-04 3.00e-10 / 2.19e-07 0.00e+-00 / 0.00e+00
max Ty 3.39e-08 / 3.74e-09 3.83e-06 / 4.43e-07 0.00e+-00 / 0.00e+00 9.30e-06 / 8.58e-07
avg Ty 6.74e-08 / 4.50e-07 3.06e-07 / 1.40e-06 3.46e-07 / 1.06e-06 3.24e-07 / 3.42e-06
min T 0.00e+-00 / 0.00e+00 0.00e+4-00 / 0.00e+00 0.00e+4-00 / 0.00e+00 0.00e+-00 / 0.00e+00
max T5 6.94e-06 / 2.09e-06 1.54e-06 / 3.57e-07 2.31e-06 / 2.65e-07 4.80e-06 / 3.78e-07
avg Tg 0.00e+4-00 / 0.00e+00 0.00e+4-00 / 0.00e+00 0.00e+4-00 / 0.00e+00 0.00e+4-00 / 0.00e+00
min Tg 0.00e+4-00 / 0.00e+00 0.00e+4-00 / 0.00e+00 0.00e+4-00 / 0.00e+00 0.00e+4-00 / 0.00e+00
max Tg 5.60e-09 / 7.70e-07 0.00e+-00 / 0.00e+00 0.00e+-00 / 0.00e+00 0.00e+-00 / 0.00e+00
avg T 2.20e-08 / 4.63e-07 9.92e-08 / 3.02e-06 5.08e-08 / 7.64e-07 3.07e-08 / 1.70e-06
min T 0.00e+-00 / 0.00e+00 0.00e+-00 / 0.00e+00 0.00e+-00 / 0.00e+00 0.00e+-00 / 0.00e+00
max T7 2.00e-10 / 2.55e-10 6.60e-09 / 8.41e-09 0.00e+-00 / 0.00e+00 4.37e-08 / 5.63e-08
avg Ty 5.77e-08 / 2.31e-07 1.55e-07 / 1.74e-06 6.56e-07 / 3.50e-06 5.84e-07 / 4.32e-06
min Tg 0.00e+-00 / 0.00e+00 2.18e-08 / 4.23e-06 2.63e-08 / 4.27e-06 1.00e-10 / 4.16e-08
max Tg 5.31e-08 / 2.02e-08 7.64e-08 / 3.18e-09 5.33e-08 / 1.94e-08 3.47e-07 / 2.29e-08
avg Ty 1.24e-08 / 1.62e-08 9.67e-08 / 1.09e-07 9.47e-08 / 1.22e-07 4.39e-07 / 4.63e-07
min Ty 4.00e-09 / 1.59e-08 1.82e-08 / 6.26e-05 4.00e-09 / 7.37e-09 3.83e-08 / 3.97e-07
max Ty 0.00e+-00 / 0.00e+00 2.26e-07 / 1.68e-07 3.00e-10 / 2.05e-10 5.32e-08 / 4.14e-08

Table 10: Worst case differences on statistics for the eco variables between
the serial IEEE runs of the MyO operational setup, version V2.1.

www.dmi.dk/dmi/tr12-16.pdf

page 44 of 113

Technical Report 12-16

Compiler IDW, max 75 | WS, min T3
pgl 71.3978868949 | 0.0179272771*
cray 71.3978607591 | 0.0180448939
intel 71.3969921039* | 0.0180375865
gfortran 71.3978561956 | 0.0179619983*
pathscale 71.3978243987 | 0.0180366909
€, Taw 8.95e-04 1.18e-04

g, excluding outlier(s) | 6.25e-05 8.20e-06

Table 11: A closer look at max(7%) in IDW and min(7}) in WS from table 10.
Suggested outliers are indicated by *.

As shown in table 13 the parallel runs give results that are binary identical
with the serial results. This is true for all compilers used in this study when
we use the IEEE compliant compiler flags. But with TUNE flags, this prop-
erty does not hold for all five compilers in this test for all combinations of
openMP and MPI. The most likely reason for this unfortunate behavior is
that we used too aggressive optimization flags with some of the compilers.
Thus we need to find a useful combination of optimizations flags in the range
between the slow, pure IEEE flags and the faster, but also more fragile tun-
ing flags. This will indeed be possible as we have demonstrated in section 5.3.

On the other hand, if it for some compilers eventually turns out that we can-
not reproduce the serial results in parallel incarnations with tuning flags, we
must analyse the magnitude of the differences introduced, their locations,
etc, and reveal what kind of bug we are facing. Then, the code must be
fixed appropriately or, perhaps more likely in this particular case, we need
to get in contact with the compiler vendor to have the problem solved.

Another finding we did was that statistics for the nine ergom tracers printed
to ascii logfiles for runs with more than one MPI task was off compared to
statistics from other model runs despite the fact that the results dumped
to binary data files were identical. This turned out to be a flaw in the syn-
chronization of the gathering of eco-model tracer data to the global data
structure that stores ergom tracers between updating ergom dynamics and
printing global statistics. This flaw, which fortunately did not influence the
actual results in other ways than cluttering the printed min/ave/max statis-
tics for the nine ergom tracers in runs with more than one MPI task, has
been fixed now.

www.dmi.dk/dmi/tr12-16.pdf page 45 of 113

Technical Report 12-16

NS (¢/6)

IDW (£/5)

WS (e/6)

BS (g/9)

avg benthos

1.29¢-07 / 3.51e-09

3.50e-07 / 1.23e-08

5.80e-07 / 1.04e-08

8.38e-07 / 2.41e-08

min benthos

1.10e-09 / 2.64e-08

0.00e+-00 / 0.00e+00

5.80e-09 / 1.92e-09

4.05e-08 / 1.72e-08

max benthos

1.17e-06 / 2.60e-09

4.30e-09 / 1.30e-12

0.00e+-00 / 0.00e+00

4.15e-08 / 2.74e-11

avg Tq 1.56e-07 / 2.88e-06 1.05e-07 / 3.17e-06 8.80e-07 / 1.89e-05 1.31e-07 / 4.26e-06
min Tq 0.00e+-00 / 0.00e+00 2.28e-07 / 2.54e-05 1.21e-04 / 6.72e-03 5.00e-10 / 1.06e-06
max T 2.20e-07 / 1.09e-07 5.91e-07 / 7.38e-08 0.00e+4-00 / 0.00e+00 1.25e-05 / 6.41e-07
avg Ty 2.42e-07 / 1.94e-07 2.23e-06 / 4.24e-06 9.66e-07 / 1.24e-05 1.29e-06 / 1.47e-06
min Th 8.00e-10 / 4.04e-08 6.55e-08 / 3.64e-06 4.10e-08 / 3.04e-06 0.00e+4-00 / 0.00e+00
max To 1.99e-06 / 2.07e-07 1.47e-03 / 2.06e-05 0.00e+4-00 / 0.00e+00 3.32e-07 / 8.59e-09
avg T3 4.32e-08 / 4.88e-07 6.38e-08 / 9.76e-07 2.65e-07 / 9.06e-06 1.21e-07 / 8.33e-07
min T3 2.02e-08 / 7.00e-06 1.03e-08 / 3.84e-06 7.00e-10 / 1.34e-07 1.00e-10 / 3.33e-08
max T3 5.10e-09 / 7.88e-09 2.84e-07 / 1.31e-07 0.00e+-00 / 0.00e+00 1.52e-06 / 5.10e-07
avg Ty 1.87e-07 / 3.08e-06 2.27e-08 / 2.84e-06 5.02e-08 / 2.51e-06 1.29e-07 / 4.72e-06
min Ty 0.00e+-00 / 0.00e+00 1.48e-08 / 1.66e-04 3.00e-10 / 2.19e-07 0.00e+-00 / 0.00e+00
max Ty 7.42e-08 / 8.19e-09 7.45e-06 / 8.62e-07 0.00e+4-00 / 0.00e+00 1.41e-05 / 1.30e-06
avg Ts 6.74e-08 / 4.50e-07 3.06e-07 / 1.40e-06 1.03e-06 / 3.16e-06 4.79e-07 / 5.05e-06
min T 0.00e+-00 / 0.00e+00 0.00e+4-00 / 0.00e+00 0.00e+4-00 / 0.00e+00 0.00e+4-00 / 0.00e+00
max T 8.27e-06 / 2.50e-06 3.25e-06 / 7.53e-07 3.39e-06 / 3.90e-07 4.80e-06 / 3.78e-07
avg Tg 0.00e+-00 / 0.00e+00 0.00e+-00 / 0.00e+00 0.00e+-00 / 0.00e+00 0.00e+-00 / 0.00e+00
min Tg 0.00e+-00 / 0.00e+00 0.00e+-00 / 0.00e+00 0.00e+-00 / 0.00e+00 0.00e+-00 / 0.00e+00
max Tg 1.13e-08 / 1.55e-06 0.00e+-00 / 0.00e+00 0.00e+-00 / 0.00e+00 0.00e+-00 / 0.00e+00
avg T 3.55e-08 / 7.46e-07 1.17e-07 / 3.57e-06 1.18e-07 / 1.78e-06 3.52e-08 / 1.95e-06
min T 0.00e+-00 / 0.00e+00 0.00e+-00 / 0.00e+00 0.00e+-00 / 0.00e+00 0.00e+-00 / 0.00e+00
max T7 3.00e-10 / 3.83e-10 1.31e-08 / 1.67e-08 0.00e+4-00 / 0.00e+00 6.24e-08 / 8.04e-08
avg Ty 1.29e-07 / 5.18e-07 1.65e-07 / 1.86e-06 1.39e-06 / 7.42e-06 5.84e-07 / 4.32e-06
min Tg 0.00e+-00 / 0.00e+00 2.40e-08 / 4.66e-06 4.18e-08 / 6.78e-06 1.00e-10 / 4.16e-08
max Tg 5.31e-08 / 2.02e-08 1.68e-07 / 7.01e-09 5.33e-08 / 1.94e-08 4.84e-07 / 3.19e-08
avg Ty 1.98e-08 / 2.58e-08 1.43e-07 / 1.61e-07 1.36e-07 / 1.75e-07 4.39e-07 / 4.63e-07
min Ty 6.50e-09 / 2.59e-08 2.75e-08 / 9.46e-05 4.30e-09 / 7.92e-09 4.92e-08 / 5.09e-07
max Ty 1.00e-10 / 1.01e-10 4.01e-07 / 2.98e-07 3.00e-10 / 2.05e-10 1.40e-07 / 1.09e-07

Table 12: Worst case differences on statistics for the eco variables within
the pool of serial IEEE4+TUNE runs of the MyO operational setup, version

V2.1.

www.dmi.dk/dmi/tr12-16.pdf

page 46 of 113

Technical Report 12-16

md5sum

6 hours simulation files

b1917b977094£360786d8ed3863b9775

pathscale/0_0_dmiergom_ieee/biodat.00

b1917b977094£360786d8ed3863b9775

pathscale/0-12_dmiergom_openmp-ieee/biodat.00

b1917b977094£360786d8ed3863b9775

pathscale/8_0_dmiergom_mpi_ieee/biodat.00

b1917b977094£360786d8ed3863b9775

pathscale/8_12_dmiergom_mpi_-openmp_ieee/biodat.00

e9bbcf34b10db8744ccbecdf20e7653f

pathscale/0_0_dmiergom_ieee/tempdat.00

e9bbcf34b10db8744ccbecdf20e7653f

pathscale/0_12_dmiergom_openmp_ieee/tempdat.00

e9bbcf34b10db8744ccbecdf20e7653f

pathscale/8_0_dmiergom._mpi_ieee/tempdat.00

e9bbcf34b10db8744ccbecdf20e7653f

pathscale/8_12_dmiergom_mpi_openmp_ieee/tempdat.00

0bc0884e335800e242a1e610f9d61270

pathscale/0_0_dmiergom_ieee/bio_restart.00

0bc0884e335800e242a1e610f9d61270

pathscale/0-12_dmiergom_openmp-_ieee/bio_restart.00

0bc0884e335800e242a1e610f9d61270

pathscale/8_0_dmiergom_mpi_ieee/bio_restart.00

0bc0884e335800e242a1e610f9d61270

pathscale/8_12_dmiergom_mpi_openmp_ieee/bio_restart.00

2d64547e019eeae8bfedb2109328dbeb

pathscale/0_0_dmiergom_ieee/restart.00

2d64547e019eeae8bfedb2109328dbeb

pathscale/0_12_dmiergom_openmp_ieee/restart.00

2d64547e019eeae8bfedb2109328dbeb

pathscale/8_0_dmiergom_mpi_ieee/restart.00

2d64547e019eeae8bfedb2109328dbeb

pathscale/8_12_dmiergom_mpi_openmp_ieee/restart.00

Table 13: Comparison of 4 configure options (default, ~—enable-openmp,
--enable-mpi, --enable-openmp --enable-mpi) all using the
IEEE compiler flag. That is, IEEE-serial (0_0_ieee), IEEE-openMP
(0_12_openmp_ieee), ITEEE-MPI (8_0_mpi.icee) and IEEE-openMP-MPI
(8_12_openmp_mpi_ieee). Note that we get binary identical results across
the 4 configure options when using the IEEE flag category.

www.dmi.dk/dmi/tr12-16.pdf page 47 of 113

Technical Report 12-16

5.2 Pointwise cross-comparisons

Analysing the pointwise differences between two compilers can tell us a lot
about the uncertainty of the model result, but we need to be very careful
in judging the origin of these pointwise differences, i.e. whether they are
results of an unsafe implementation of the model code or if certain compil-
ers have some issue (e.g. with their implementation of elementary functions).

As an example!!, it was found that the largest discrepancy across compil-
ers occurred in the subsurface water, around the depths of the thermocline,
c.f. figure 3. Tracer 9 (dissolved oxygen) differes a couple of percent rela-
tive to its absolute variability. The figure clearly indicates that the largest
differences occur between 5-20 m depths while the difference in the surface
and bottom layers are very small. The different results across compilers in
the biological variables could be traced to a similar pattern in the temper-
ature, c.f. figure 3 where we see a difference of 0.3 °C between runs using
two different compilers and everything else unchanged.

It should be noted that a similar behavior as we see in figure 3 for temper-
ature is not observed for salinity; it should therefore be safe to rule out the
tracer advection and the tracer diffusion schemes as possible main sources
of the issue since these are the same used for all tracers tempeature, salin-
ity and eco-model tracers. Then we are left with two more or less obvious
suspects: the thermodynamics and the calculation of the diffusivity for tem-
perature (which is different from that of salinity, see [2]). Another possibility
is that input parameters can be interpreted slightly differently by different
compilers. Recent studies revealed that we still see the issues from figure 3
when we make a test run without the thermodynamics module activated.
At the time of writing we can unfortunately not say anything more specific
as to the cause of the issue; whether it should be found solely in the calcula-
tion of the diffusivity for temperature or it arises from a combination from
multiple source is yet to be investigated.

" Thanks to Lars Jonasson, DMI, for sharing his findings.

www.dmi.dk/dmi/tr12-16.pdf page 48 of 113

20+

301

detpth [m]

40t

50

60
-3 -2 -1 0 1 2 3 4 5 6
oxygen difference [umol / | m3]

20

30+

detpth [m]

40t

50

60 . . I . . .
-0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
temperature difference [deg C]

Figure 3: Profiles of the difference between gfortran and cray for the biolog-
ical tracer 9 (dissolved oxygen) and temperatures. The two profiles are not
taken at the same geographical location but are selected to show the largest
difference.

5.3 Study of optimization issues

As noted above, we did not get results from parallel runs which were binary
identical to the serial results when we used tuning flags for all compilers,
but only for the IEEE runs. We claimed, however, that we would be able
to have that necessary property for the TUNE runs too, simply be finding
and using a suitable combination of optimization flags.

Below we describe how we approached the problem for the pgi compiler and
for the cray compiler. We will use our findings for these two compilers in

www.dmi.dk/dmi/tr12-16.pdf page 49 of 113

Technical Report 12-16

the future, and if time permits and applications demand we will also study
and fix the behavior for other compilers but this is out of the scope of the
present report.

The pgi compiler:

First, we need to understand why the PGI compilers gives different MPI
parallel results when using the TUNE flag. Moreover, we need to under-
stand why we do not see this issue on the XE6 system at CSCS.

The observant reader may notice that there is a slight deviation in the com-
piler flags chosen on the two systems and a plausible explanation could thus
be that the issue is due to this. We tried different optimization flags and
ran 20 incarnations (1,...,20 MPI tasks) for each flag, cf. table 14. After
this finding, we reproduced the issue on the XE6 system at CSCS too.

Flags Result 1 node | 20 nodes
-02 binary identical 1242 sec | 256 sec
-0O2 -Mipa=fast,inline binary identical 1218 sec | 257 sec
-03 binary identical 1239 sec | 257 sec
-03 -Mipa=fast,inline binary identical 1215 sec | 258 sec
-fastsse -Mipa=fast,inline | not binary identical | 1207 sec | 250 sec
-fastsse not binary identical | 1201 sec | 249 sec

Table 14: List of compilers flags for the 11.10.0 release of the PGI com-
piler and reported behaviour. Note that when we see binary identical re-
sults the results are the same as with the other flags, e.g. -02 and -03
-Mipa=fast,inline produces binary identical results and so forth.

We were curious to see how large the deviations among the 20 runs actually
were. Thus, we will cross-compare statistics emerging in the 20 logfiles and
we will cross-compare the pointwise differences emerging in the 20 tempdat
files. As for the pointwise study, we will confine ourselves to study the
differences at the surface (L = 1) and at the bottom (the bottom layer is
attained at different levels L € 1,... Lyax depending on the point at hand
and by definition we let L = 0 be the bottom layer). Let the pointwise
deviation e,(f, L) for field f at layer L be defined by:

ep(f, L) = max |[fe (iw) = fe,(iw)]

tweL,c1,c2

www.dmi.dk/dmi/tr12-16.pdf page 50 of 113

Technical Report 12-16

with L here being either the surface layer or the bottom layer. We suspect
that differences caused by the -fastsse flag are due to vectorization of re-
duction loops. When the MPI ranks change, the lengths of arrays differs

and so they have different ”remainder” loops in vector mode.

Table 15 shows the worst-case pointwise differences whereas table
table 17 shows the worst-case statistical differences.

16 and

NS (¢/6) IDW (£/5) WS (¢/6) BS (¢/6)
ep(zlev, 1) 3.39e-04/1.40e-04 | 9.70e-04 /1.63e-03 | 1.56e-04 /8.03e-05 | 8.91e-03/1.06e-02
ep(salt, 0) 4.356-02/1.23e-03 | 6.46e-01 /1.85e-02 | 6.86e-03 /1.96e-04 | 8.76e-02/2.50e-03
ep(salt, 1) 1.41e-02/3.97e-04 | 2.16e-01 /6.16e-03 | 4.85e-03 /1.38e-04 | 9.53e-02/2.72e-03
ep(temp,0) | 5.97¢-02/4.34e-03 | 5.01e-01 /3.63e-02 | 6.71e-03 /4.63c-04 | 9.26¢-01/7.37e-02

ep(temp, 1)

4.88e-03/3.55e-04

8.24e-02 /6.08-03

4.50e-03 /3.11e-04

4.90e-01/3.90e-02

Table 15: Worst case pointwise differences when comparing the 20 TUNE
results emerging from the PGI compiler.

The cray compiler:

First, we notice that the cray binary runs pretty fast with the slow IEEE
flags, actually just as fast or faster than other compilers can do with their
aggressive optimization flags. So, it is really a luxury problem we are facing
with cray. Anyway, we will like to know the reason and to use some kind of
tuning to improve the execution speed.

As seen from table 3 we used two optimization flags with the cray compiler
on our local XT5, namely the default level 2 flag (-O2) for moderate opti-
mization, combined with the -ipab flag for aggressive interprocedural anal-
ysis (IPA). For the IEEE builds we used conservative optimization (-O1)
together with the flag for maximum safety of floating-point optimizations
(-Ofp0), cf. table 2. Thus, one would expect to be able to find a compromise
somewhere in the range laid out by these two sets of flags.

One thing to notice is that when nothing else is specified the cray compiler
will use the default setting for moderate floating-point optimization (-Ofp2).
Thus, explicitly requiring the safe -Ofp0 flag, we played with combinations of
the other involved flags (-O1 or -O2, and different -ipaN with N =0,...,5)
and found that with the flags

-Ofp0 -O1 -ipab

www.dmi.dk/dmi/tr12-16.pdf page 51 of 113

{
O
=

Technical Report 12-16

NS (¢/6)

IDW (¢/5)

WS (£/6)

BS (¢/6)

Avg salinity

2.43e-07 / 6.98e-09

6.30e-06 / 4.16e-07

3.92e-06 / 1.15e-07

1.56e-06 / 2.51e-07

RMS for salinity

2.14e-07 / 6.15e-09

8.00e-06 / 4.59e-07

3.95e-06 / 1.16e-07

1.36e-06 / 2.10e-07

STD for salinity

3.29e-06 / 2.63e-06

5.46e-06 / 6.33e-07

8.14e-07 / 4.25e-07

1.55e-06 / 8.88e-07

Avg temp

2.37e-07 / 2.98e-08

2.646-06 / 3.29e-07

2.22e-06 / 2.52e-07

1.54e-05 / 3.53e-06

RMS for temp

2.57-07 / 3.19e-08

3.47e-06 / 4.21e-07

2.14e-06 / 2.43e-07

1.00e-05 / 2.16e-06

STD for temp

2.68¢-07 / 2.20e-07

3.91e-06 / 2.05e-06

3.07e-06 / 3.64e-06

3.75e-05 / 2.32e-05

Min salinity

0.00e+-00 / 0.00e+00

0.00e+-00 / 0.00e+00

0.00e+-00 / 0.00e+00

0.00e+-00 / 0.00e+00

Max salinity

0.00e+-00 / 0.00e+00

1.06e-06 / 3.05e-08

4.13e-09 / 1.18e-10

1.32e-08 / 9.66e-10

Min temp

3.45e-08 / 6.45e-09

8.73e-07 / 4.21e-07

1.46e-07 / 2.20e-08

2.61e-07 / 1.91e-06

Max temp

0.00e+-00 / 0.00e+00

3.74e-08 / 2.71e-09

0.00e+-00 / 0.00e+00

7.52e-06 / 5.98e-07

Min u

0.00e+00 / 0.00e+00

2.94e-04 / 3.91e-04

0.00e+00 / 0.00e+00

5.06e-05 / 1.20e-04

Max u

3.82e-06 / 2.22e-06

2.35e-04 / 2.76e-04

3.56e-06 / 2.37e-06

6.22e-03 / 8.22e-03

Min v

1.17¢-05 / 1.04e-05

1.18e-04 / 1.56e-04

1.60e-12 / 1.28e-12

2.50e-05 / 6.22e-05

Max v

0.00e+00 / 0.00e+00

1.26e-04 / 1.09¢-04

1.78e-06 / 1.25e-06

5.96e-03 / 5.42e-03

Avg z

9.75e-07 / 9.44e-06

2.80e-06 / 1.74e-05

1.59e-06 / 2.70e-06

6.84e-07 / 2.11e-06

RMS for z

1.02e-06 / 1.43e-06

3.99e-06 / 1.83e-05

7.60e-07 / 1.08e-06

4.21e-06 / 1.19e-05

STD for z

8.84e-07 / 1.26e-06

2.95e-06 / 2.01le-05

1.29e-06 / 3.38e-06

8.99¢-06 / 6.35e-05

Min z

0.00e+-00 / 0.00e+00

0.00e+-00 / 0.00e+00

1.53e-08 / 7.47e-08

2.88e-05 / 4.97e-04

Max z

0.00e+-00 / 0.00e+00

1.21e-04 / 2.25e-04

0.00e+-00 / 0.00e+00

1.95e-05 / 2.29e-05

Table 16: Worst case differences on statistics between the 20 PGI runs of
the MyO operational setup, version V2.1.

www.dmi.dk/dmi/tr12-16.pdf

page 52 of 113

Technical Report 12-16

NS (g/9) IDW (e/6) WS (e/6) BS (g/9)
avg benthos 2.92e-08 / 7.95e-10 1.65e-07 / 5.80e-09 5.66e-08 / 1.02e-09 1.20e-06 / 3.46e-08
min benthos 0.00e+4-00 / 0.00e+00 0.00e+4-00 / 0.00e+00 1.00e-10 / 3.31le-11 6.45e-08 / 2.75e-08
max benthos 4.26e-07 / 9.45e-10 1.80e-09 / 5.46e-13 0.00e+4-00 / 0.00e+00 2.71e-08 / 1.79e-11
avg Tq 6.12e-08 / 1.13e-06 1.14e-07 / 3.42e-06 2.80e-07 / 6.02e-06 9.65e-08 / 3.13e-06
min Tq 0.00e+-00 / 0.00e+00 0.00e+-00 / 0.00e+00 8.73e-06 / 4.86e-04 4.00e-10 / 8.50e-07
max T4 0.00e+-00 / 0.00e+00 3.95e-07 / 4.93e-08 0.00e+-00 / 0.00e+00 6.02e-06 / 3.09e-07
avg T 6.42e-08 / 5.16e-08 2.49e-06 / 4.74e-06 3.29e-07 / 4.23e-06 1.12e-06 / 1.28e-06
min To 1.00e-10 / 5.05e-09 4.00e-10 / 2.22e-08 0.00e+4-00 / 0.00e+00 0.00e+4-00 / 0.00e+00
max To 5.79e-07 / 6.02e-08 1.67e-03 / 2.34e-05 0.00e+4-00 / 0.00e+00 2.77e-07 / 7.19e-09
avg T3 1.33e-08 / 1.50e-07 4.19e-08 / 6.41e-07 1.82e-07 / 6.24e-06 1.27e-07 / 8.74e-07
min T3 1.90e-09 / 6.58e-07 6.70e-09 / 2.50e-06 1.00e-10 / 1.91e-08 1.00e-10 / 3.33e-08
max T3 2.30e-09 / 3.55e-09 2.47e-07 / 1.14e-07 0.00e+-00 / 0.00e+00 7.74e-07 / 2.59e-07
avg Ty 1.29e-08 / 2.12e-07 2.09e-08 / 2.62e-06 5.00e-09 / 2.50e-07 1.35e-07 / 4.94e-06
min Ty 0.00e+-00 / 0.00e+00 1.37e-08 / 1.54e-04 0.00e+-00 / 0.00e+00 0.00e+-00 / 0.00e+00
max Ty 0.00e+-00 / 0.00e+00 5.77e-06 / 6.68e-07 0.00e+-00 / 0.00e+00 9.10e-06 / 8.40e-07
avg Ty 2.22e-08 / 1.48e-07 3.62e-07 / 1.66e-06 1.96e-07 / 6.03e-07 4.03e-07 / 4.25e-06
min T 0.00e+4-00 / 0.00e+00 0.00e+4-00 / 0.00e+00 0.00e+4-00 / 0.00e+00 0.00e+4-00 / 0.00e+00
max T5 0.00e+-00 / 0.00e+00 2.57e-06 / 5.95e-07 0.00e+4-00 / 0.00e+00 4.08e-06 / 3.22e-07
avg Tg 0.00e+4-00 / 0.00e+00 0.00e+4-00 / 0.00e+00 0.00e+4-00 / 0.00e+00 0.00e+4-00 / 0.00e+00
min Tg 0.00e+4-00 / 0.00e+00 0.00e+4-00 / 0.00e+00 0.00e+4-00 / 0.00e+00 0.00e+4-00 / 0.00e+00
max Tg 0.00e+-00 / 0.00e+00 0.00e+-00 / 0.00e+00 0.00e+-00 / 0.00e+00 0.00e+-00 / 0.00e+00
avg T 5.20e-09 / 1.09e-07 1.24e-07 / 3.78e-06 5.70e-08 / 8.57e-07 3.83e-08 / 2.12e-06
min T 0.00e+-00 / 0.00e+00 0.00e+-00 / 0.00e+00 0.00e+-00 / 0.00e+00 0.00e+-00 / 0.00e+00
max T7 0.00e+-00 / 0.00e+00 1.66e-08 / 2.12e-08 0.00e+-00 / 0.00e+00 1.20e-07 / 1.54e-07
avg Ty 4.50e-08 / 1.80e-07 1.47e-07 / 1.65e-06 3.74e-07 / 1.99e-06 6.24e-07 / 4.61e-06
min Ty 0.00e+-00 / 0.00e+00 1.36e-08 / 2.64e-06 0.00e+4-00 / 0.00e+00 1.00e-10 / 4.16e-08
max Tg 0.00e+4-00 / 0.00e+00 1.15e-07 / 4.80e-09 0.00e+4-00 / 0.00e+00 4.29e-07 / 2.83e-08
avg Ty 8.40e-09 / 1.10e-08 1.15e-07 / 1.30e-07 2.94e-08 / 3.77e-08 5.02e-07 / 5.30e-07
min Ty 2.90e-09 / 1.15e-08 2.05e-08 / 7.05e-05 0.00e+4-00 / 0.00e+00 5.97e-08 / 6.18e-07
max Ty 0.00e+-00 / 0.00e+00 2.54e-07 / 1.88e-07 0.00e+-00 / 0.00e+00 1.66e-07 / 1.29e-07

Table 17: Worst case differences on statistics for the eco variables between

the 20 PGI runs of the MyO operational setup, version V2.1.

www.dmi.dk/dmi/tr12-16.pdf page 53 of 113

Technical Report 12-16

we are able to obtain parallel results which are identical to the serial re-
sults. With these flags, it runs slightly faster than with the pure IEEE flags
of table 2 and slower than TUNE flags of table 3, but still fast enough to
outperform most of the other compilers with TUNE flags, only surpassed by
pgi with the above-mentioned flags.

5.4 Performance

First, we have studied the serial performance of the individual time steps
doing simple serial timings from within the source code. Looking at the
timing of the first 120 (out of the 720) individual time steps, we see that
they fall into five categories in this testcase, cf. figure 4. A default workload
(720 times) stemming from the basic physics model, an additional workload
from tracer advection and diffusion, called tflow, (360 times) on the even
time steps and an additional turbulence workload (360 times) on the odd
time steps. Then we have an additional ergom load (180 times) every fourth
time step and finally an additional workload due to IO (tempdat output and
forcing input for every 120 time steps). The timings of these categories are
summarized in table 18.

pgi | cray | pathscale | gnu | intel

[sec| | [sec] [sec] | [sec| | [sec]
d+tflow part 10.9 | 11.1 12.8 | 11.7 | 11.7
d—+turbulence part 3.3 3.2 3.7 3.2 3.4
ergom part 1.6 1.6 2.3 2.0 1.1
IO part 2.8 2.1 2.5 3.2 2.1
Total time 5405 | 5472 6362 | 5891 | 5663

Table 18: Serial timing of each category using different compilers. The values
above are average values. Note that one has to sum the column values to
get the average timing for the time step that involves the chosen columns.

Second, we have studied the parallel performance. The overall scaling of the
setup with the ergom tracers is shown for different compilers in figure 5 and
figure 6.

Finally, we had a look at the initialization prior to the timeloop and also

zoomed in on the 10 activities comparing the timings emerging from differ-
ent compilers cf. table 19. Note that 10 bathymetry is part of the Initial-

www.dmi.dk/dmi/tr12-16.pdf page 54 of 113

Technical Report 12-16

16

The first 1H timesteps of MyOWV2.1 with ergom tracers

14 |

12 r

10

Time

PGl ——

20

40

60 30
nstep

100

120

Figure 4: The individual time steps for the PGI compiler, serial tune

isation time and it should be mentioned that it is trivial to improve this.
One can simply add bathy_asc2bin=.true. or bathy_asc2mpibin=.true.
into the namelist cfglist in the configuration cfg.nml to convert the ascii
input files to binary fortran files or pure binary files in the MPI-IO sense.
One of these files can then be used instead of the ascii file (by specifying
bathy bin=.true. or bathy mpibin=.true., respectively to improve the
performance. We have included the numbers for binary bathymetry input

in table 19.
pgi cray | pathscale gnu intel
Initialisation 15.2/13.7 14.4 15.0/12.5 | 19.8/14.3 | 13.4/11.5
10 bathymetry 4.7/1.9 | 4.6/0.8 3.3/0.8 7.1/1.5 3.9/1.0
10 tempdat 5.0 4.0 5.5 6.4 4.3
IO restart 0.98 1.9 1.1 1.2 1.5

Table 19: Timings of the initialisation and from the most expensive IO parts
using different compilers.

We cannot state anything on performance without looking at some profiles

www.dmi.dk/dmi/tr12-16.pdf

page 55 of 113

Technical Report 12-16

Scaling of MyOW2.1 with ergom tracers on DM cray XT5 system - 24H simulatic
7000

g

cray ——
6000 | gfortran ———
pathscale ——
intel
5000 F---
4000
@
E
F 3000
2000
1000
0 1 1 1 1
0 50 100 150 200 250

Mumber of AMD Istanbul cores (12 cores per XT5 node)

Figure 5: Scaling of ergom using different compilers. Note that the 20
results (number of mpi tasks € {1,...,20}) from all compilers but the PGI
compiler above generate binary identical results (tempdat, restart, biodat,
bio_restart).

so we have gathered a few snapshots of profiles, cf. figure 7, 8, and 9. All
the profiles shown are done using PGI generated binaries.

5.5 Longer simulation

We have also conducted a longer simulation (August 2006 - December 2011,
both months included) of this case but without the extra set of passive er-
gom tracers. Simple statistics on the physical variables from this study is
shown in table 20.

One thing is to look at the attained ranges of different parameters from
e.g. table 20 and explain them from oceanographic knowledge of the do-
mains, i.e. explain that they fall within the expected ranges. Another thing
is to look at and understand the time evolution of the statistical fingerprints
of the physical parameters over the simulation period; that is to explain
trends, signals and extremes. We have plotted and looked at time series

www.dmi.dk/dmi/tr12-16.pdf page 56 of 113

Technical Report 12-16

NS IDW WS BS
u [4.63; 421] | [-2.19; 2.00] | [-2.41; 2.50] | [-2.02; 2.86]
v [3.99; 5.14] | [-3.35; 2.55] | [-2.79; 2.84] | [-2.43; 2.16]
s [0.00; 35.40] | [0.00; 35.01] | [0.00; 35.12] | [0.00; 18.98]
avg s | [34.58; 34.94] | [14.32; 19.65] | [32.72; 34.76] | [6.33; 6.74]
rms s | [34.61; 34.95] | [16.61; 21.41] | [32.79; 34.79] | [6.56; 7.02]
stds | [0.65; 1.54] | [7.64; 9.84] | [1.34; 2.95] | [1.71; 1.98]
t [1.83; 25.69] | [-1.79; 26.67] | [-1.87; 26.80] | [-0.44; 26.56]
avg t | [0.88; 12.24] | [0.66; 17.06] | [3.15; 19.44] | [2.06; 9.82]
rms t | [6.05; 12.97] | [1.72; 18.00] | [3.30; 19.44] | [2.81; 11.45]
std t | [0.88; 4.93] | [0.33; 6.11] | [0.24; 4.38] | [1.41; 6.64]
z [6.22; 7.90] | [-1.60; 1.76] | [-3.24; 5.36] | [-1.02; 2.99]
avg z | [-0.54; 0.78] | [-0.37; 1.05] | [-1.48; 2.50] | [-0.19; 1.04]
rms z | [0.24; 1.61] | [0.04; 1.07] | [0.22; 2.61] | [0.02; 1.09]
stdz | [0.23; 1.52] | [0.03; 0.84] | [0.17; 0.83] | [0.01; 0.44]

Table 20: Ranges attained for the shown parameters in each domain during
a simulation from the 1st of August 2006 until the 31th December 2011. The
statistics is collected for each parameter at a 6 hour interval throughout the
entire period.

www.dmi.dk/dmi/tr12-16.pdf page 57 of 113

Technical Report 12-16

Scaling of ergom on CSCS cray XES system - 24H simulation
4000

! pgl -
cray ——
3500 + anu

3000 r

2500 +

Time

2000 r

1500

1000 ¢

500

0 100 200 300 400 500 600 700 800
Mumber of AMD Interlagos cores (32 cores per XE6 node)

Figure 6: Scaling of ergom using different compilers. For the PGI and the
CRAY compiler all the MPI runs generate binary identical results (tempdat,
restart, biodat, bio_restart). This is not the case for the GNU compiler
unless we remove the —-ffast-math option from the compiler flags.

of the minimum, average and maximum values of temperature, salinity and
sea level for all for domains; we found no alarming or unexpected behavior
in the first three domains, so they will not be shown here. In the fourth
domain, BS, we did, however, find issues worth some more explanation.

Figure 10 shows the minimum, average and maximum value of z for the BS
domain. This figure and table 20 show that we seem to be on the safe side
with a top layer thickness of 2 meter since the modelled z never comes near
-2 m.

Also from figure 10 (as well as from the previous table 20) we can see that
the maximum value of z in BS in the model reaches 2.5-3 meter during the
storms in October 2006, January 2007 and in December 2011. If this reflects
the true behavior in nature or if it is a model artifact is a subject for further
investigations, cf. section 5.6.

www.dmi.dk/dmi/tr12-16.pdf page 58 of 113

Il Time% | Time | Calls |Group

Il 56.4% | 3117.380162 | 2880.0 |tflow_tflow_int_

Il 14.1% | 777.984000 | 3600.0 |momeqs_wrapping_momeqs_default_

|| 11.4% | 632.516147 | 1440.0 |turbmodels_turbmodel_

I 5.9% | 326.496113 | 720.0 |biomod_bio_dynamics_

Il 1.74 | 94.366162 | 3600.0 |smagorinsky_smag_

I 1.5% | 83.448810 | 1444.0 |thermodynamic_thermodyn_1_

Il 1.8% | 80.559519 | 720.0 |cmod_hydrodynamics_solvehydrodynamics_
I 1.3% | 72.235968 | 1444.0 |cmod_dens_dens_

I 1.1% | 61.041499 | 3600.0 |masseqs_masseqs_solver_z_

I 1.1% | 58.798057 | 3600.0 |smagorinsky_deform_

Figure 7: Serial profile of a 6H simulation for myo v2.1 with 9 ergom tracers,
PGI, tune flag

| Time% | Time | Calls |Group
| 100.0% | 1278.634534 | 500017.0 |Total

94.2% | 1204.080571 | 456709.0 |USER

|

|

| 13.1% | 167.500938 | 1440.0 |tflow_tflow_int_.REGION@1i.2471
| 12.1% | 155.043252 | 1440.0 |tflow_tflow_int_.REGION@1i.2431
| 11.7% | 149.262115 | 1440.0 |tflow_tflow_int_.REGION@1i.2485
| 8.9% | 113.708664 | 1440.0 |tflow_tflow_int_.REGION@1i.2498
| 6.6% | 84.453482 | 1440.0 |tflow_tflow_int_.REGION@1i.2516
| 6.2% | 78.723789 | 3600.0 |momeqgs_wrapping_momeqs_default_
| 5.8% | 74.765771 | 1440.0 |tflow_tflow_int_.REGION@1i.2454
| 5.5% | 70.225735 | 1440.0 |tflow_tflow_int_.REGION@1i.2602
| 4.8% | 60.915812 | 1440.0 |turbmodels_turbmodel_

| 3.1% | 40.161192 | 4320.0 |dmi_mpi_dmpi_gather_copy_cmp_

| 2.2% | 27.835280 | 720.0 |biomod_bio_dynamics_

| 1.7% | 21.742877 | 3600.0 |cmod_hydrodynamics_solvemasseq_.REGION@Li.564
| 1.1% | 14.525062 | 4320.0 |dmi_mpi_dmpi_gather_copy_

| 1.0% | 12.638315 | 3600.0 |smagorinsky_deform_

| 1.0% | 12.163902 | 3600.0 |smagorinsky_smag._

|

|

|

|

|

|

5.8% | 74.553165 | 43295.0 |OMP

1.7% | 21.991757 | 1440.0 [tflow_tflow_int_.REGION@1i.2471(ovhd)

1.1% | 13.743574 | 720.0 |coupler_coupler_dynamics_.REGION@1i.206 (ovhd)
0.0% | 0.000791 | 11.0 |PTHREAD
0.0% | 0.000007 | 2.0 |MPI

Figure 8: openmp_mpi, 12 threads, 1 task profile of a 6H simulation for
ergom, PGI, tune flag

www.dmi.dk/dmi/tr12-16.pdf page 59 of 113

Technical Report 12-16

Il Time% | Time | Calls |Group

Il Time% | Time | Imb. | Imb. | Calls |Group

I | | Time | Time% | | Function

Il 100.0% | 278.363530 | -1 -- | 505871.7 |Total

|

| 97.5% | 271.343673 | - -- | 459480.4 |USER

I

Il 37.5% | 104.344437 | 21.428275 | 17.9% | 28812.0 |dmi_mpi_dmpi_distribute_halo_nc_
Il 11.9% | 33.059488 | 4.767601 | 13.3% | 4320.0 |dmi_mpi_dmpi_gather_copy_cmp_

Il 10.8% | 30.023821 | 11.098111 | 28.4% | 41764.0 |dmi_mpi_dmpi_halo_nonblocking_
I 3.9% | 10.992847 | 3.534521 | 25.6% | 88.0 |dmi_mpi_dmpi_gather_all_nc_

Il 2.5% | 7.072585 | 10.895363 | 63.8% | 4320.0 |dmi_mpi_dmpi_gather_copy_

I 2.5% | 6.965319 | 0.806633 | 10.9% | 3162.0 |dmi_mpi_dmpi_gather_all_

I 2.2% | 6.181823 | 0.379245 | 6.1% | 1440.0 |tflow_tflow_int_.REGION@1i.2485
I 2.1% | 5.919510 | 0.222921 | 3.8% | 1440.0 |tflow_tflow_int_.REGION@1i.2431
I 2.0% | 5.696745 | 0.320462 | 5.6% | 1440.0 |tflow_tflow_int_.REGION@1i.2471
I 1.7% | 4.662225 | 5.135529 | 55.2% | 1080.0 |dmi_mpi_dmpi_barrier_

I 1.6% | 4.318479 | 0.244307 | 5.6% | 1440.0 |tflow_tflow_int_.REGION@1i.2498
Il 1.8% | 4.149626 | 0.744381 | 16.0% | 6.0 |dmi_mpi_dmpi_broadcast_met_info_
Il 1.4% | 3.803432 | 0.334207 | 8.5% | 1440.0 |tflow_tflow_int_.REGION@1i.2516
I 1.3% | 3.574325 | 1.283442 | 27.8% | 4.4 |dmi_mpi_dmpi_scatter_cmp_

Il 1.3% | 3.517650 | 0.383785 | 10.4% | 3600.0 |momeqs_wrapping momeqs_default_
I 1.2% | 3.239443 | 0.269464 | 8.1% | 1440.0 |turbmodels_turbmodel_

Il 1.1% | 3.193581 | 0.223689 | 6.9% | 1440.0 |tflow_tflow_int_.REGION@1li.2454
Il 1.0% | 2.806342 | 0.095372 | 3.5% | 1.0 lexit

Il 1.0% | 2.701762 | 0.256606 | 9.1% | 1440.0 |tflow_tflow_int_.REGION@1i.2602
I

| 2.0% | 5.673209 | -1 -- | 46378.2 |0OMP

I

| 1.1% | 2.958088 | 0.238067 | 7.8% | 1.0 | dmi_omp_domp_init_.REGION@1i.46(ovhd)
I

| 0.5% | 1.345873 | -1 -1 2.0 |MPI

| 0.0% | 0.000774 | 0.000144 | 16.5% | 11.0 |PTHREAD

Figure 9: openmp_mpi, 12 threads, 20 task profile of a 6H simulation for
ergom, PGI, tune flag

www.dmi.dk/dmi/tr12-16.pdf page 60 of 113

3 Jstat_ts_aderage_4_2:gnuplnt.tﬁt" e
" fstat_ts_ninnax_nin_4_z_gnuplot . txt" ——
" /stat_ts_minnax_max_4_z_gnuplot . txt"” ——
2,9 4
2 |
1.5
" 8.5 :| JW IN éf‘) 'd'lﬁﬂ tlj ﬂ‘h‘j}&ﬁkl'] |'|HMJHI:E I’;' . ‘WQJ %.tw“'“::' ;i;u .jfl u}w}r
! ” it I L | H “.II"ll'f) : '!| ,'l“""“'u A i 'Iul‘ Al !
i iy 1 "] 1‘ ;“ ll|| ':!.M 1&']‘%!‘! 1”!|r 'f'ﬂ'jll' y) 1!'1 |
4
-6.5 |
-1 F
e a 1é88 2;08 3é88 4éBB ﬁéﬂﬁ BABB ?éBB il laTs)

Tine {1 Aug 2886 - 31 Dec 2811)

Figure 10: Minimum (green), average (red) and maximum (blue) instanta-
neous values of water level in the BS domain, plotted every 6 hour.

Figure 11 shows statistical parameters for salinity in the BS domain. Dur-
ing the considered period there is hardly any inflow of dense water to this
BS model domain, so the maximum value has a clear decreasing trend as
expected due to vertical mixing. Later in the period there are some inflows
to the BS model domain of more or less significant magnitude which help
maintaining a level above 14 throughout the period. The average salinity
is slowly decreasing due to continuous fresh water supply from the rivers.
This is very much consistent with observations, cf. [11]: Since the major
Baltic inflow in 2003 there has not been added significant new salt to the
Baltic Sea, except during some minor events. The baroclinic inflow of Au-
gust /September 2006 (the beginning of our simulation period) was likely
the most significant during the considered period, and as shown in [11] the
bottom salinity in the Bornholm Deep decreased from approximately 16.3
in May 2007 to approximately 14.6 in May 2011. Our modelled maximum
salinity in BS is consistent with this decrease, though the modelled decrease
seems to be slightly too rapid. The reason being, we believe, mainly due to
insignificant spatial resolution; preliminary tests have shown that increasing
the horizontal resolution to 1 n.m. and improving the vertical resolution as

www.dmi.dk/dmi/tr12-16.pdf page 61 of 113

Technical Report 12-16

well will help on this problem (this is the variant0 setup, cf. section 6, which
will be reported elsewhere).

28

j "stat_tls_average_tli_salini.tg_‘gnuplut.t}ltt" e
", /stat_ts_ninnax_nin_4_salinity_gnuplot,tut™ ——

18 ".fstat_ts_ninnax_max_4_salinity_gnuplot,txt™ —— |

16

14 |

12

18

salinity

a 1888 2888 3888 4888 5688 6088 7888 8688
Tine {1 Aug 20086 - 31 Dec 2011}

Figure 11: Minimum (green), average (red) and maximum (blue) instanta-
neous values of salinity in the BS domain, plotted every 6 hour. Please note,
the minimum salinity is zero through out the period due to fresh water river
inflows, and therefore the green curve is coincident with the zero-line and
thus cannot be seen on this plot.

Figure 12 shows minimum, average and maximum temperature in the BS
domain with their respective expected annual patterns. One can speculate
if the apparent decrease in average temperature (both annual maxima and
annual minima of the red curve) is real, if it stems from the model adjusting
to the ”real word physics” from a start with an initial field that is too much
off, if it is related to the meteo forcing, or if this trend is simply just wrong.

5.6 The water level in the Baltic Sea

In this section we will try to explain the fact that the model reaches water
levels of 2.5-3 meter in the Baltic Sea during the storms in October 2006,
January 2007 and in December 2011. Below we have picked the 5 highest
high-water in the simulation in the BS domain from the 6 hours snapshot:

www.dmi.dk/dmi/tr12-16.pdf page 62 of 113

Technical Report 12-16

38

T T T T T

"stat_ts_average_4_temperature_gnuplot.txt™
", /stat_ts_ninnax_nin_4_tenperature_gnuplot.tut”
" fstat_ts_ninnax_nax_4_tenperature_gnuplot txt™

tenperature

BM,

=5

a 1888 2888 3888 4888 5688 6088 7888 8688
Tine {1 Aug 20086 - 31 Dec 2011}

Figure 12: Minimum (green), average (red) and maximum (blue) instanta-
neous values of temperature in the BS domain, plotted every 6 hour.

2.50 2006.10.28 00:00
2.63 2011.12.27 12:00
2.73 2011.12.26 12:00
2.87 2007.01.10 12:00
2.99 2011.12.27 18:00

i.e. they are associated with three events

2006.10.28
2007.01.10
2011.12.26-27

The two first are consistent with high-water Nos. 300 and 302 since 1702
measured in St. Petersburg!?, reaching 2.24 meter and 2.23 meter, respec-
tively (datum level of the observations can according to our experience be
some 25-35 cm lower than the model’s datum level in that area, cf. e.g. the
modification of the datum levels applied in figures 17 and 18 later in this

2yww.pices.int/publications/presentations/Climate_Change_2008/

Climate_Change_2008_W6/W6_Klevannyy_2.pdf

www.dmi.dk/dmi/tr12-16.pdf page 63 of 113

Technical Report 12-16

section). We know from previous storms that the water level sometimes
can be somewhat higher in the bottom of the Gulf of Riga as registered at
station Pérnu (see e.g. the report on the January 2005 event elsewhere!?),
But during the two events we deal with here, the 2.50 m and 2.87 m occur
in the model near St. Petersburg. Unfortunately, DMI’s data base of wa-
ter level observations only has data from St. Petersburg starting on June
2007 and data from the Kronstadt station has a huge gap from 2006.01.27 to
2007.06.13. We must therefore look at other stations in our attempt to verify
the events. In figures 13 and 14 we show comparisons between model results
and observation at the two Estonian stations Parnu and Tallinn: From these
plots we find the agreement satisfactory and in particular we cannot say that
the model over-predicts the water level in the Gulf of Finland, so we are con-
fident that the model results for these two events are not far from the reality.

Water Level, Parnu

Observation
200 Model

180~ -

160~ A

140+ |

N
N
S}
T
I

Water Level [cm]

=
1)
S}
T

@
<]

60

40

20

I 1 i
01/11/06 01/12/06 01/01/07 01/02/07
Time

Figure 13: Observed (blue) and modelled (red) water level at Estonian sta-
tion Parnu in the bottom of the Gulf of Riga during Oct ’06 - Feb ’07. An
arbitrary modification of +30 c¢m of the datum level of the observation data
has been applied to ease the comparison.

The last and highest of the above-mentioned events is during a known De-
cember storm of that year, and we need to confirm the model results with

Bhttp://ocean.dmi.dk/case_studies/surges/08;jan05. php

www.dmi.dk/dmi/tr12-16.pdf page 64 of 113

Technical Report 12-16

Water Level, Tallinn
T

Observation
140 Model -

100

80 |

Water Level [cm]

60| | \ Vil

40

204

I I I I
01/11/06 01/12/06 01/01/07 01/02/07
Time

Figure 14: Observed (blue) and modelled (red) water level at Estonian sta-
tion Tallinn in the Gulf of Finland during Oct ’06 - Feb '07. An arbitrary
modification of 430 cm the datum level of the observation data has been
applied to ease the comparison.

observation data, e.g. from Péarnu or St. Petersburg which are the two sta-
tion sites usually exposed to high-waters. We do have observations from
both these two stations during December 2011, but neither observations
nor model results give the above mentioned extremely high water levels at
Parnu, see figure 15 from which we might suspect the model to over-predict
the three last peaks. In the model, the 3 m water level occurs in the Neva
Bay, but we cannot use the observations at station St. Petersburg to con-
firm this because of the St. Petersburg Dam which we have not implemented
into our model. Actually, the first time ever use of this dam to hold back
the incoming Baltic water into Neva Bay was during the storm November
28, 2011'. We have compared to available observations at the three sta-
tions Tallinn, Kronstadt and St. Petersburg in the Gulf of Finland for the
whole simulation and found reasonable agreement in general at all three
stations (not shown here), also for storm events. If we put focus on the two
last months of 2011, we find a reasonable agreement between model results
and observations for the November 28'° and the December 26-27 storms in

“http://en.wikipedia.org/wiki/Saint_Petersburg _Dam
5 for more on the November 27-28 event, see section 5.8

www.dmi.dk/dmi/tr12-16.pdf page 65 of 113

Technical Report 12-16

Tallinn, cf. figure 16. In Kronstadt and St. Petersburg, cf. figures 17 and 18,
which are both positioned on the inside of the dam we clearly see the effects
of the dam for those events. To investigate further, we re-ran the December
2011 using the very latest DMI-HIRLAM model SKA'6 as forcing instead of
the S03 model but the results were pretty much similar. The model might
possibly over-predict the highest high-water events, but we find the overall
performance satisfactory and we find no reason not to continue, even-though
we cannot at present verify the model’s most extreme high-water levels.

Water Level, Parnu

N
o
S}

Observation B
Model h

Water Level [cm]
= = = = e
@ @) N IS @ @
3 3 S S 3 3 3
T T T T T T

IS
S
T

N
S}
T

o
T

I I
01/12/11 01/01/12
Time

Figure 15: Observed (blue) and modelled (red) water level at Estonian sta-
tion Parnu in the bottom of the Gulf of Riga during December 2011. An
arbitrary modification of 440 cm of the datum level of the observation data
has been applied to ease the comparison.

To some oceanographers the evolution of the modelled average water level
in the BS domain (red curve in figure 10) might seem somewhat drastic at a
first glance, especially with its relatively large amplitude signal and e.g. the
build-up during the 2006 October-November and 2011 November-December
storms. It is known in the oceanographic community that the mean wa-
ter level in the Baltic Sea can be monitored from the measurements at the

6The SKA model was put into production during that period and the previous S03
model was being out-phased. Data from SKA was available from 5 December.

www.dmi.dk/dmi/tr12-16.pdf page 66 of 113

Technical Report 12-16

Water Level, Tallinn
T
Observation |

140 Model 7

120 } ‘J 4
1
100 A

80

Water Level [cm]

60

40

20

I I I
01/11/11 01/12/11 01/01/12
Time

Figure 16: Observed (blue) and modelled (red) water level at Estonian sta-
tion Tallinn in the Gulf of Finland during November-December 2011. An
arbitrary modification of +40 cm the datum level of the observation data
has been applied to ease the comparison.

tide gauge station Landsort in the central part of the Baltic Sea. A long-
term data set is available from PSMSL'7. In figure 19 we show the monthly
mean water level from the Landsort station and compare it to the modelled
monthly mean water level for the BS domain (i.e. the monthly averaged
values of the red curve in figure 10). It seems quite clear that there is a high
degree of correlation between the two data sets. Thus, we feel confident that
we do not have artificial trends or unrealistic low-frequent signals introduced
into the model.

5.7 Sea levels around Denmark in 2011

The aim of this section is to share initial findings when looking at sealevel
results in 2011. Generally, we have tried to make it easy to get a survey of
the results by ploting all results on the same map. First, you can see the
positions of the Danish stations in figure 49/50 in appendix B and you can

"Permanent Service for Mean Sea Level, see
http://wuw.psmsl.org/data/obtaining/rlr.monthly.data/2132.rlrdata

www.dmi.dk/dmi/tr12-16.pdf page 67 of 113

Technical Report 12-16

Water Level, Kronstadt
250 ! H B

Observation
Model ‘

=
@
S
T

Water Level [cm]

N
o
S)
T
I

[o) it I |
011111 01/12/11 01/01/12
Time

Figure 17: Observed (blue) and modelled (red) water level at Russian station
Kronstadt in the Gulf of Finland during November-December 2011. An
arbitrary modification of +35 cm the datum level of the observation data
has been applied to ease the comparison.

also see the positions where modelled time-series are extracted to be cross-
compared with the observations. Note that the positions are not completely
identical, e.g. the locations of Skagen, Hanstholm and Tejn seem somewhat
inconsistent. Note also that the model setup does not cover all the stations,
e.g. stations placed in the Limfjord or in Randers Fjord are not present in
this ocean model setup since this model setup does not cover these (and
other) fjords.

It should not come as a big surprice that not all observations can be regarded
as valid data describing the state of the ocean and thereby being useful as a
source for model validation, and we have used a simple screening process'®
to get rid of the worst observations:

e None of the stations will have a sealevel less than -250 cm. The lowest
ever measured was -210/-220 cm.

e Maximum deviation on a 10 minute scale is 40 cm.

¥ Thanks to Jacob Woge Nielsen, DMI, for sharing his process.

www.dmi.dk/dmi/tr12-16.pdf page 68 of 113

Technical Report 12-16

Water Level, St. Petersburg

300 - !
Observation |
|

Model

“

N
=3
S)

T

Water Level [cm]
P
@
3
T

=
o
S)

50

(= L
01/11/11 01/12/11 01/01/12
Time

Figure 18: Observed (blue) and modelled (red) water level at Russian sta-
tion St. Petersburg in the bottom of the Gulf of Finland during November-
December 2011. An arbitrary modification of +25 cm of the datum level of
the observation data has been applied to ease the comparison.

e Maximum sea level

500 cm: 26359, 26361, 26346, 26136, 26137, 26143, 26144, 25236,
25347, 25343, 25344, 25147, 25149

400 cm: 24342, 24343, 24122, 24123, 24018, 24006
250 cm: the rest of the stations
200 cm: 32048, 32096

e No similiar measurements three times in a row, i.e. measurements must
change in order to be considered valid in the data set of observations

Using this screening on the observations we obtain an observation coverage
as shown in figure 51 in appendix B. Figure 54 shows the sealevel range
measured throughout 2011 for the screened sealevels and figure 55 shows
the sealevel range that the model produced . These figures cleary show that
the screening procedure above is insufficient, e.g. Hals Barre shows -249 cm.

www.dmi.dk/dmi/tr12-16.pdf page 69 of 113

06 .

Landsort
Model

A N\/\/ A

-04

-0.6

0.8 1 I
2008 2007 2008 2009 2010 2011 2012

Figure 19: Monthly mean water levels. Blue curve is from observations at
station Landsort. Green curve is the monthly mean value of the spatially
averaged BS z from the model results. For better visual comparison both
curves have been processed to having zero mean value over the shown 65
months long period.

When we cross-compare the screened observations with the model results
using simple statistics like:

N

. 1
bias = N Z;(:EZ — ;) (1)
R o

with z; being model outcome and y; being the screened observation at time-
point i where we apply a simple and straight-forward matching procedure'®
and we obtain the results in figure 52 in appendix B. Moreover, figure 53

9The fact that the timestamps and positions in the observations do not map exactly
one-to-one to our model outcome requires a strategy for time and space interpolation. We
have chosen to take the most simple approach, i.e. for timestamp interpolation - if there
exists a screened observation within an interval of + 5 minutes around the timepoint 4

www.dmi.dk/dmi/tr12-16.pdf page 70 of 113

Technical Report 12-16

in appendix B shows the hit-rate on each station when we define a hit to
be a residual between a screened observation and the model to be less than
20 cm. The 20 cm coincides with the uncertainty on the measurement itself.

5.8 Storm surge issue in Presund

The storm during the 27th and 28th November 2011 gave rise to storm
surges in the IDW. At several stations the water level reached about a 50-
year event?’, i.e. in resund with nearly 1.4 meter at the Copenhagen tide
gauge station KBH. There were two events: During the first event the water
was pulled away eastward from the southern part of IDW and south-western
Baltic while water was pushed in from north. This gave huge gradients over
short distances at the narrow passages in IDW, e.g. up to 2.5 meter differ-
ence between the KBH and Drogden stations. The second event was high
water everywhere in IDW. This came as a valuable opportunity test for our
models, especially the large gradients during the first event should put some
severe demands on the model’s capability. We often have storm surge in the
North Sea - Baltic Sea region, but it is not very often that we have extreme
high-water events in the Danish Straits?'.

Our models predicted the two events very well everywhere (not shown here)
except in the northern part of @resund where the KBH station is located. At
the KBH station the first peak was almost completely absent in the model
described here as well as in the forecast models DMI ran in production at
that time (i.e. the storm surge model and the MyOcean V2) which were all
based on the same bathymetry and grid in the area in and around @resund.

It is well-known that the 1 n.m. resolution can be too coarse to resolve the
narrow Danish straits and the flow therein, unless some kind of parametriza-
tion is performed. Since the model produces nice water levels just north of
@resund in the northern entrance to @resund and south of the Drogden Sill,
we can suspect either of the following cross-section and resistance issues or
combinations hereof: i) the northern entrance does not allow enough water

of the model then we use that one; and for space interpolation we have not done any
interpolation but assumes that the placements are consistent which we have seen is not
the case for all stations.

Onttp://www.dmi.dk/dmi/vinden_valtede_vandet

2lthe last similar, though not quite as severe, case was on 1st November 2006, cf.
http://ocean.dmi.dk/case_studies/surges/01nov06.php

www.dmi.dk/dmi/tr12-16.pdf page 71 of 113

Technical Report 12-16

sufficiently quickly into @resund, ii) the Drogden Sill area does not represent
sufficient resistance against southward outflow from (Jresund to hold back
the water, iii) the bottom friction in the area is too low.

We have tested these issues on the 27-28 November, 2011, storm surges and
found, cf. figure 20, in order of significance, that our model was indeed too
shallow and narrow around the northern entrance with too large resistance
against incoming water, that the bottom friction could be increased locally
in northern Qresund to give higher amplitude on the first peak at KBH
and obtain larger gradient across the Drogden Sill, and that the water level
prediction could benefit from a slightly more narrow cross section in the
Drogden Channel, without destroying the good signal on other stations. As
the figure shows small local adjustments can improve the modelled water
level significantly.

www.dmi.dk/dmi/tr12-16.pdf page 72 of 113

Technical Report 12-16

140

120

100

80

60

40

201/

Kobenhavn
sealevel [cm]

T T T
— seaobsdata — H15

— MyOv2.1

o \ S S S S N S S S N
\17'0\, \\'7'0\/ 47'0\/ (LQ\’ 47'0\/ \17'0\, \\'7'0\/ 47'0\/ (LQ\’ 47'0\/ N o>
\AO V\O \AO &0 V\O \AO V\O \AO &0 V\O \AO
SR A R R < - D U R S
Figure 20: The November 2011 storm surge events as seen from station

KBH. Observation from the data base (blue), original model result from the
MyOcean V2.1 run (green), and model result from a scenario (H15) after
some experimentation with adjusting the bathymetry and bottom friction
locally (red).

www.dmi.dk/dmi/tr12-16.pdf page 73 of 113

Technical Report 12-16

6 VariantO

This testcase is a beta version of the upcoming MyOcean setup (likely to
be named MyO V3). The resolution in the Baltic Sea is now 1 n.m. and we
have also improved both initial field and the bathymetry as well as increased
the vertical resolution in the deeper parts for this subdomain. Table 21 sum-
marizes the setup and figure 2 shows how the four sub-domains nest to each
other. The I, number for this setup is 60.6. This section will present the
findings that we have done with this setup. We have done some simple scal-
ing studies on our local cray XT5 installation as well as on the cray XE6
installation at CSCS. Moreover, we tried to present the time step view of
the overall algorithm and and zoomed in on the major IO activities to get
reference numbers in places prior to the planned IO rewrite in the future.
Finally, we have tried to measure the attained performance with different

number of passive tracers.

IDW BS WS NS
resolution [n.m.] 0.5 1.0 1.0 3.0
mmx [N/S] 482 720 149 348
nmx [W/E] 396 567 156 194
kmx T 122 24 50
gridpoints 14697144 49805280 557856 3375600
iw2 80884 119334 11581 18908
iw3 1583786 6113599 103441 479081
fiw3 10.8% 12.3% 18.5% 14.2%
o [latitude] 57 35 45N | 65 53 30N | 55 41 30N | 65 52 30N
A [longitude] 09 20 25E | 14 35 50E | 06 10 50E | 04 07 30W
Ay 00 30 0100 0100 03 00
AN 0050 0140 0140 0500
dt [sec] 12.5 12.5 25 25
maxdepth [m] 78.00 398.00 53.60 696.25
min Az 827.62 1261.65 1740.97 3787.40
CFL 0.790 0.910 0.626 0.797
I, 12.0 46.3 0.4 1.8

Table 21: The testcase termed variantO. The I, number for the setup is

60.6.

www.dmi.dk/dmi/tr12-16.pdf

page 74 of 113

Technical Report 12-16

6.1 Short simulations

Figure 21 and figure 22 shows the scaling on our local cray XT5 and the
cray XE6 at CSCS, respectively.

Scaling of variant0 on DMI cray xT5 system - 24H simulation

6000 —
pgr —
5500 - cray ——
gfortran ———
5000 |- pathscale ——
4500 intel
4000
» 3500
E
= 3000
2500
2000
1500
1000
500 1 1 1 1
0 50 100 150 200 250

Mumber of AMD Istanbul cores (12 cores per XT5 node)

Figure 21: Scaling of variant0 without passive tracers using automatically
generated I-slices performed on our local Cray XT5 with 12 openMP threads
on each MPI task and one MPI task on each node. Note that the 20 timings
for each compiler above gave rise to identical md5sums for the restart file.

Here we present a short summary of the profiles obtained with the PGI
compiler. Figure 23 shows a snapshot of a serial profile whereas figure 24
shows a snapshot of a threaded profile (1 MPT task, 12 threads) and finally
figure 25 shows a snapshot of a threaded MPI profile (20 tasks, 12 threads).

6.2 Passive tracer performance

We have tried to evaluate how much it would cost to run with an additional
number of passive tracers. For this purpose, we have added a configure
option --enable-bench-coupler that allows one to run tflow with any
number of passive tracers. We have confined ourselves to run with 9 (fig-

www.dmi.dk/dmi/tr12-16.pdf page 75 of 113

Technical Report 12-16

Scaling of variant0 on CSCS cray XE6 system - 24H simulation

pgi ——
4000 | cray
ou
3500 intel ——
3000
2500
@
E
= 2000
1500
1000
500
0 1 1 1 1 1 1 !
0 100 200 300 400 500 600 700 800

MNumber of AMD Interlagos cores (32 cores per XE6 node)

Figure 22: Scaling of variant0 without passive tracers using automatically
generated I-slices performed on the Cray XE6 system at CSCS with 32
openMP threads on each MPI task and one MPI task on each node. Note
that the 20 timings for each compiler above gave rise to identical md5sums
for the restart file. Even for the PGI compiler. The PGI compiler version
used on CSCS is the same as the one used locally, i.e. 11.10.0.

ure 26 and figure 27) and 25 passive tracers (figure 28). We found that one
ran out of memory on our local XT5 system when running with many tasks
(say above 35) and 9 tracers and that one would run out of memory when
running with more than 12 tasks and 25 tracers. Thus, the scaling study of
the runs with 25 tracers have been done only on the XE6 system.

It is worth mentioning that on the CNL systems the kernels are configured
to allow over-commit of memory so for those compilers that have not written
their own memory allocator the applications will die with 00M on CNL, c.f.
the kernel pseudo-file:

/proc/sys/vm/overcommit_memory

www.dmi.dk/dmi/tr12-16.pdf page 76 of 113

Technical Report 12-16

pgi cray | pathscale gnu intel
Initialisation 28.9/18.7 27.5 25.0 38.8 | 26.8/15.9
IO bathymetri /2.8 | 13.3/1.0 8.5/1.6 | 22.0/4.0 | 11.5/1.1
10 tempdat 14.0 8.3 18.0 12.5
IO restart 3.9 3.4 5.0 3.9

Table 22: Timings of the initialisation and from the most expensive IO parts
using different compilers. The two numbers in the initialisation/bathymetri
line are for ascii vs. binary fortran files for storing the bathymetri.

Il Time% | Time |
Il 34.9% | 3344.060794 |
Il 34.4% | 3289.960885 |
Il 13.5% | 1289.936352 |
Il 3.8% | 361.790890 |
Il 3.0% | 285.949189 |
Il 2.4% | 226.756856 |
Il 2.2% | 213.894891 |
Il 1.5% | 140.641739 |
Il 1.4% | 133.531607 |

Calls |Group

5184.0 |momeqs_wrapping_momeqs_default_

2304.0 |tflow_tflow_int_

1152.0 |turbmodels_turbmodel_

5184.0 |smagorinsky_smag_

864.0 |cmod_hydrodynamics_solvehydrodynamics_
5184.0 |smagorinsky_deform_

5184.0 |masseqs_masseqs_solver_z_

1156.0 |thermodynamic_thermodyn_1_

1156.0 |cmod_dens_dens_

Figure 23: Serial profile of a 6H simulation for Variant0, PGI, tune flag

Il Time% | Time | Calls |Group

I

Il 25.0% | 340.665730 | 5184.0 |momeqs_wrapping_momeqs_default_
I 9.8% | 133.348520 | 1152.0 |tflow_tflow_int_.REGION@1i.2433
Il 8.8%4 | 119.664981 | 1152.0 |turbmodels_turbmodel_

Il 6.5% | 88.235754 | 5184.0 |cmod_hydrodynamics_solvemasseq_.REGION@li.564
I 6.4 | 86.570924 | 1152.0 |tflow_tflow_int_.REGION@1i.2473
I 5.0% | 68.631243 | 1152.0 |tflow_tflow_int_.REGION@1i.2487
I 4.1% | 55.351749 | 5184.0 |smagorinsky_deform_

Il 3.6%4 | 48.823833 | 5184.0 |smagorinsky_smag_

I 3.5% | 47.114687 | 1152.0 |tflow_tflow_int_.REGION@1i.2500
I 3.3% | 45.017830 | 1152.0 |tflow_tflow_int_.REGION@1i.2604
Il 3.0% | 41.486708 | 1152.0 |tflow_tflow_int_.REGION@1i.2518
Il 2.8% | 38.635646 | 1152.0 |tflow_tflow_int_.REGION@1i.2456
I 2.8% | 38.423146 | 5184.0 |masseqs_masseqs_solver_z_

I 1.3% | 18.389167 | 3456.0 |dmi_mpi_dmpi_gather_copy_cmp_
Il 1.3% | 17.722863 | 577.0 |MAIN_

I 1.1% | 14.697439 | 1156.0 |thermodynamic_thermodyn_1_

I 1.1% | 14.591464 | 5184.0 |dmi_mpi_dmpi_gather_copy_

I

| 3.0% | 40.626639 | -1 -- | 51307.0 |OMP

| 0.0% | 0.000800 | 0.000000 | 0.0% | 11.0 |PTHREAD

| 0.0% | 0.000008 | - -1 2.0 |MPI

|

Figure 24: openmp_mpi, 12 threads, 1 task profile of a 6H simulation for
Variant0O, PGI, tune flag

www.dmi.dk/dmi/tr12-16.pdf

page 77 of 113

Technical Report 12-16

Il Time% | Time | Calls |Group

Il Time% | Time | Imb. | Imb. | Calls |Group

I | | Time | Time), | | Function

Il 100.0% | 200.430665 | -1 -- | 592591.6 |Total

|

It 95.9% | 192.285315 | -1 -- | 537578.9 |USER

I

Il 20.0% | 40.106402 | 6.889583 | 15.4% | 59332.0 |dmi_mpi_dmpi_halo_nonblocking_
Il 16.2% | 32.435089 | 6.330884 | 17.2% | 20744.0 |dmi_mpi_dmpi_distribute_halo_nc_
Il 7.5% | 15.074943 | 1.293811 | 8.3}, | 5184.0 |momeqs_wrapping_momeqs_default_
I 5.0% | 10.065974 | 2.838470 | 23.2% | 3866.0 |dmi_mpi_dmpi_gather_all_

Il 4.7% | 9.365783 | 3.231184 | 27.0% | 3456.0 |dmi_mpi_dmpi_gather_copy_cmp_

I 4.5% | 9.031637 | 0.757797 | 8.1% | 6.0 |dmi_mpi_dmpi_broadcast_met_info_
I 3.1% | 6.268156 | 1.056853 | 15.27% | 1152.0 |turbmodels_turbmodel_

I 3.0% | 6.066532 | 0.190502 | 3.2% | 1.0 |restart_readrestart_

Il 2.9% | 5.763540 | 0.135461 | 2.4% | 1152.0 |tflow_tflow_int_.REGION@1i.2433
I 2.2% | 4.441544 | 2.720642 | 40.0% | 5184.0 |dmi_mpi_dmpi_gather_copy_

I 2.2% | 4.375008 | 0.578508 | 12.3% | 4.0 |cmod_params_getparams_

I 1.7% | 3.459045 | 0.173162 | 5.0% | 1152.0 |tflow_tflow_int_.REGION@1i.2473
I 1.5% | 3.013457 | 0.535040 | 15.9% | 1152.0 |tflow_tflow_int_.REGION@1i.2487
Il 1.4% | 2.879061 | 0.090271 | 3.2% | 1.0 lexit

I 1.4% | 2.821230 | 0.143194 | 5.1 | 5184.0 |cmod_hydrodynamics_solvemasseq_.REGION@li.564
I 1.3% | 2.607475 | 4.288471 | 65.5% | 8640.0 |dmi_mpi_dmpi_gather_mcf_nb_

Il 1.2%4 | 2.427550 | 0.294507 | 11.4% | 5184.0 |smagorinsky_deform_

I 1.2% | 2.364569 | 2.142709 | 50.0% | 864.0 |dmi_mpi_dmpi_barrier_

I 1.0% | 2.017156 | 0.119113 | 5.9% | 1152.0 |tflow_tflow_int_.REGION@li.2604
I 1.0% | 2.013952 | 0.335887 | 15.0% | 5184.0 |masseqs_masseqs_solver_z_

I

| 2.4 | 4.803867 | - -- | 54999.6 |OMP

I

| 1.4% | 2.876969 | 0.276006 | 9.2% | 1.0 | dmi_omp_domp_init_.REGION@Li.46(ovhd)
I

I 1.7% | 3.340686 | - - 2.0 |MPI

I

| 1.7% | 3.340684 | 0.202856 | 6.0% | 1.0 | mpi_finalize

|

Figure 25: openmp_mpi, 12 threads, 20 task profile of a 6H simulation for
Variant0, PGI, tune flag

www.dmi.dk/dmi/tr12-16.pdf page 78 of 113

Technical Report 12-16

Scaling of variant0_coupler_9 on DMI cray XTS5 system - 24H simulation

poi ——

Time

0 50 100 150 200 250 300
Mumber of AMD Istanbul cores (12 cores per XT5 node)

Figure 26: Scaling of variant0 with 9 passive tracers using automatically
generated I-slices performed on our local Cray XT5 with 12 openMP threads
on each MPI task and one MPI task on each node.

www.dmi.dk/dmi/tr12-16.pdf page 79 of 113

Technical Report 12-16

Scaling of variant0_coupler_9 on CSCS cray XE6 system - 24H simulation
5000

pgi ——
cray —— |

Time

1000 | _x

0 50 100 150 200 250 300 350 400
MNumber of AMD Interlagos cores (32 cores per XE6 node)

Figure 27: Scaling of variant0 with 9 passive tracers using automatically
generated I-slices performed on the Cray XE6 with 32 openMP threads on
each MPI task and one MPI task on each node.

www.dmi.dk/dmi/tr12-16.pdf page 80 of 113

Technical Report 12-16

Scaling of variant0_coupler_25 on CSCS cray XE6 system - 244 simulation
3200

cray ——
3000

2800
2600 -

2400

Time

2200

2000 -

1800

1600

1400

80 100 120 140 160 180 200 220 240 260 280
MNumber of AMD Interlagos cores (32 cores per XE6 node)

Figure 28: Scaling of variantO with 25 passive tracers using automatically
generated I-slices performed on the Cray XE6 with 32 openMP threads on
each MPI task and one MPI task on each node.

www.dmi.dk/dmi/tr12-16.pdf page 81 of 113

Technical Report 12-16

7 Variantl

Table 23 summarizes the setup and figure 29 shows how the four sub-domains
nest to each other. The I, number for this setup is 89.6 and the scaling at-
tained (as is) is shown in figure 30.

IDW BS WSNS rNS
resolution [n.m.] 0.5 1.0 1.0 3.0
mmx [N/S] 482 720 380 220
nmx [W/E] 396 567 208 127
kmx 7 122 110 46
gridpoints 14697144 49805280 8772716 1285240
iw2 80884 119334 32515 15593
iw3 1583786 6113599 1560598 409049
fiws 10.8% 12.3% 17.8% 31.8%
© [latitude] 57 35 45N | 65 53 30N | 59 41 30N 59 28 30N
A [longitude] 09 20 25E | 14 35 50E | 06 10 50E | 04 07 30W
Ay 00 30 0100 0100 0300
AX 00 50 0140 0140 0500
dt [sec] 10 10 10 20
maxdepth [m] 78.00 398.00 696.25 336.96
min Az 827.62 1261.65 1558.76 4706.49
CFL 0.632 0.728 0.957 0.441
I, 15.0 57.9 14.8 1.9

Table 23: The testcase termed variantl. The I, number for the setup is
89.6.

We show a few snapshots of profiles below. All the profiles shown below are
done using PGI generated binaries.

7.1 Performance profiles

Here we present a short summary of the profiles obtained with the PGI
compiler. Figure 33 shows a snapshot of a serial profile whereas figure 34
shows a snapshot of a threaded profile (1 MPT task, 12 threads) and finally
figure 35 shows a snapshot of a threaded MPI profile (20 tasks, 12 threads).

www.dmi.dk/dmi/tr12-16.pdf page 82 of 113

Figure 29: Nesting of the four domains in the variantl case and the variant2
case.

pgi cray | pathscale gnu intel
Initialisation | /20.9 31.9/ 31.1/ 45.1/ | 33.0/18.5
IO bathy /3.0 | 15.2/1.1 10.5/1.8 | 24.4/4.2 | 13.2/1.5
IO tmpdat 16.0 12.1 10.8 21.1 124
IO restart 4.3 3.1 3.6 5.7 3.2

Table 24: Timings of the serial IO activities and also the initialization prior
to the timeloop emerging from different compilers. Note that 10 bathymetry
is part of the Initialisation time. The first number in the first two lines is for
ascii bathymetry files whereas the second timings is for binary bathymetry
files. Note that we have not tried to run all combinations.

www.dmi.dk/dmi/tr12-16.pdf page 83 of 113

Technical Report 12-16

Scaling of variantl on DMI cray XT5 system - 24H simulation

8000 —
Py ——
7000 |
6000 |

5000 t

Time

4000 +

3000

2000 +

1000

0 50 100 150 200 250
Mumber of AMD Istanbul cores (12 cores per XT5 node)

Figure 30: Scaling of the variant 1 using automatically generated I-slices
performed on our local Cray XT5 with 12 openMP threads on each MPI
task and one MPI task on each node.

www.dmi.dk/dmi/tr12-16.pdf page 84 of 113

Technical Report 12-16

Scaling of variantl on CSCS cray XES system - 24H simulation

4500

aay ——

4000 +

3500

3000 -

2500 +

Time

2000

1500 F

1000 ¢

500

0 200 400 600 800 1000 1200 1400 1600
MNumber of AMD Interlagos cores (32 cores per XE6 node)

Figure 31: Scaling of variantl without passive tracers using automatically
generated I-slices performed on the Cray XE6 system at CSCS with 32
openMP threads on each MPI task and one MPI task on each node. Note
that the 20 timings for each compiler above gave rise to identical md5sums
for the restart file. Even for the PGI compiler. The PGI compiler version
used on CSCS is the same as the one used locally, i.e. 11.10.0.

www.dmi.dk/dmi/tr12-16.pdf page 85 of 113

Technical Report 12-16

The first 30 timesteps in a 6H simulation of Variantl, serial tune

24 T T T T
PGl | ——
Cray |——
22+ .
GMNU j——
Intel §———
0 r pafiscale 1
18 + .
16 .
@
E
=14 L .
12 .
10 .
8r | | | | | |]
6 L L L
0 5 10 15 20 25 30

Figure 32: Serial timing of the individual time steps in the Variant1 testcase.

Il 35.0% | 4832.201451 | 0.000000 | 0.0% | 7560.0 |momeqs_wrapping_momeqs_default_
Il 34.2% | 4715.862602 | 0.000000 | 0.0% | 2880.0 |tflow_tflow_int_
|| 13.5% | 1862.331507 | 0.000000 | 0.0% | 1440.0 |turbmodels_turbmodel_
Il 3.8%4 | 530.070468 | 0.000000 | 0.0% | 7560.0 |smagorinsky_smag_
Il 3.1% | 430.994808 | 0.000000 | 0.0% | 1080.0 |cmod_hydrodynamics_solvehydrodynamics_
I 2.4% | 334.680119 | 0.000000 | 0.0% | 7560.0 |smagorinsky_deform_
I 2.3% | 313.201253 | 0.000000 | 0.0% | 7560.0 |masseqs_masseqs_solver_z_
I 1.4% | 198.135918 | 0.000000 | 0.0% | 1444.0 |thermodynamic_thermodyn_1_
I 1.4% | 194.307058 | 0.000000 | 0.0% | 1444.0 |cmod_dens_dens_
Figure 33: Serial profile of a 6H simulation for Variantl, PGI, tune flag

www.dmi.dk/dmi/tr12-16.pdf page 86 of 113

Il Time% | Time | Calls |Group

I

Il 25.2% | 494.773661 | 0.000000 | 0.0% | 7560.0 |momeqs_wrapping_momeqs_default_
Il 9.8% | 192.398774 | 0.000000 | 0.0% | 1440.0 |tflow_tflow_int_.REGION@1li.2433
Il 8.8% | 172.813665 | 0.000000 | 0.0% | 1440.0 |turbmodels_turbmodel_

Il 6.6% | 130.562263 | 0.000000 | 0.0% | 7560.0 |cmod_hydrodynamics_solvemasseq_.REGION@1i.564
Il 6.4% | 125.803213 | 0.000000 | 0.0% | 1440.0 |tflow_tflow_int_.REGION@li.2473
Il 5.2% | 101.932754 | 0.000000 | 0.0% | 1440.0 |tflow_tflow_int_.REGIONQ1i.2487
Il 4.1% | 80.877956 | 0.000000 | 0.0% | 7560.0 |smagorinsky_deform_

Il 3.6%4 | 70.578510 | 0.000000 | 0.0% | 7560.0 |smagorinsky_smag_

Il 3.6% | 70.011629 | 0.000000 | 0.0% | 1440.0 |tflow_tflow_int_.REGION@1i.2500
Il 3.4% | 66.143257 | 0.000000 | 0.0% | 1440.0 |tflow_tflow_int_.REGIONO1i.2604
Il 3.2% | 62.224711 | 0.000000 | 0.0% | 1440.0 |tflow_tflow_int_.REGIONO1i.2518
Il 2.9% | 56.965955 | 0.000000 | 0.0% | 1440.0 |tflow_tflow_int_.REGION@1i.2456
Il 2.9% | 56.503301 | 0.000000 | 0.0% | 7560.0 Imasseqs_masseqs_solver_z_

Il 1.3% | 25.418023 | 0.000000 | 0.0% | 7560.0 |dmi_mpi_dmpi_gather_copy_

Il 1.1% | 21.796339 | 0.000000 | 0.0% | 4320.0 |dmi_mpi_dmpi_gather_copy_cmp_
Il 1.0%4 | 19.895360 | 0.000000 | 0.0% | 1444.0 |thermodynamic_thermodyn_1_

Il 1.0% | 18.788083 | 0.000000 | 0.0% | 1444.0 |cmod_dens_dens_

I

| 2.8% | 54.700627 | -1 -- | 71419.0 |OMP

I 0.0% | 0.000764 | 0.000000 | 0.0% | 11.0 |PTHREAD

| 0.0% | 0.000008 | -1 - 2.0 |MPI

|

Figure 34: openmp_mpi, 12 threads, 1 task profile of a 6H simulation for
Variantl, PGI, tune flag

Il Time% | Time | Calls |Group

Il Time% | Time | Imb. | Imb. | Calls |Group

I | | Time | Time) | | Function

11 100.0% | 317.862961 | -1 -- | 831621.3 |Total

|

It 97.0% | 308.217329 | -1 -- | 755789.9 |USER

il

Il 25.0% | 79.324438 | 13.135650 | 15.0% | 87124.0 |dmi_mpi_dmpi_halo_nonblocking_
Il 17.9% | 57.010310 | 6.714954 | 11.1% | 25928.0 |dmi_mpi_dmpi_distribute_halo_nc_
Il 6.9% | 22.009895 | 2.216656 | 9.6} | 7560.0 |momeqs_wrapping momeqs_default_
I 4.8% | 15.104692 | 4.376259 | 23.6% | 4320.0 |dmi_mpi_dmpi_gather_copy_cmp_
I 3.7% | 11.879094 | 0.125675 | 1.1% | 1.0 |restart_readrestart_

I 3.4% | 10.649024 | 0.818472 | 7.5% | 6.0 |dmi_mpi_dmpi_broadcast_met_info_
I 3.3% | 10.390019 | 14.127070 | 60.7% | 7560.0 |dmi_mpi_dmpi_gather_copy_

I 3.2% | 10.281579 | 2.246290 | 18.9% | 4610.0 |dmi_mpi_dmpi_gather_all_

I 2.8% | 8.999333 | 1.116842 | 11.6% | 1440.0 |turbmodels_turbmodel_

I 2.6% | 8.240736 | 0.236056 | 2.9% | 1440.0 |tflow_tflow_int_.REGION@1i.2433
Il 1.6% | 5.244724 | 0.477431 | 8.8} | 4.0 |cmod_params_getparams_

I 1.6% | 5.116321 | 10.766107 | 71.4% | 12960.0 |dmi_mpi_dmpi_gather_mcf_nb_

I 1.5% | 4.738231 | 0.280837 | 5.9% | 1440.0 |tflow_tflow_int_.REGION@1i.2473
I 1.3% | 4.161589 | 0.130790 | 3.2% | 1440.0 |tflow_tflow_int_.REGION@1i.2487
I 1.3% | 4.011499 | 0.150553 | 3.8% | 7560.0 |cmod_hydrodynamics_solvemasseq_.REGION@1i.564
Il 1.1% | 3.583502 | 0.526550 | 13.5% | 7560.0 |smagorinsky_deform_

I 1.0% | 3.262494 | 4.298877 | 59.8% | 1080.0 |dmi_mpi_dmpi_barrier_

I 1.0% | 3.173445 | 0.489119 | 14.1% | 7560.0 |masseqs_masseqs_solver_z_

I

| 1.8% | 5.876364 | - -- | 75818.4 |OMP

I 1.2% | 3.768481 | - | - | 2.0 |MPI

I

| 1.2% | 3.768479 | 0.217877 | 5.8% | 1.0 | mpi_finalize

I

| 0.0%4 | 0.000788 | 0.000136 | 15.5% | 11.0 |PTHREAD

|

Figure 35: openmp_mpi, 12 threads, 20 task profile of a 6H simulation for
Variant1l, PGI, tune flag

www.dmi.dk/dmi/tr12-16.pdf page 87 of 113

Technical Report 12-16

8 Variant2

Table 25 summarizes the setup and figure 29 shows how the four sub-domains
nest to each other. The I, number for this setup is 227.7 and the scaling
attained (as is) is shown in figure 36.

IDW BS WSNS rNS
resolution [n.m.] 0.25 1.0 1.0 1.0
mmx [N/S] 964 720 389 660
nmx [W/E] 792 567 208 381
kmx 7 122 110 46
gridpoints 58788576 49805280 8900320 11567160
iw2 323536 119334 32515 15593
iw3 6335114 6113599 1560598 409049
fiws 10.78 % 12.4% 17.8 31.8%
© [latitude] 57 35 52.5N | 65 53 30N | 59 41 30N 59 29 30N
A [longitude] 09 20 12.5E | 14 35 50E | 06 10 50E | 04 09 10W
Ay 0015 0100 0100 0100
AX 0025 0140 0140 0140
dt [sec] 5 10 10 10
maxdepth [m] 78.0 398.0 696.25 336.96
min Az 413.79 1261.65 1558.76 1568.05
CFL 0.632 0.728 0.957 0.662
I, 120.1 57.9 14.8 34.9

Table 25: The testcase termed variant2. The I, number for the setup is
227.7.

8.1 Performance profiles

Here we present a short summary of the profiles obtained with the PGI
compiler. Figure 39 shows a snapshot of a threaded profile (1 MPT task, 12
threads) and figure 40 shows a snapshot of a threaded MPI profile (20 tasks,
12 threads).

www.dmi.dk/dmi/tr12-16.pdf page 88 of 113

Technical Report 12-16

Scaling of variant2 on DMI cray XTS5 system - 24H simulation

20000

18000

16000 |

14000

12000

Time

10000

8000 -

6000 -

4000 -

2000

0 50 100 150 200 250 300 350 400 450 500

Mumber of AMD Istanbul cores (12 cores per XT5 node)

Figure 36: Scaling of the variant2 using automatically generated I-slices
performed on our local Cray XT5 with 12 openMP threads on each MPI

task and one MPI task on each node.

www.dmi.dk/dmi/tr12-16.pdf

page 89 of 113

Technical Report 12-16

Scaling of variant2 on CSCS cray XES& system - 24H simulation
4500

aay ——

4400 +
4200
4000 +
3800
3600 +

Time

3400 G
3200 t
3000
2800 t

2600

200 400 600 800 1000 1200 1400 1600
MNumber of AMD Interlagos cores (32 cores per XE6 node)

Figure 37: Scaling of variant2 without passive tracers using automatically
generated I-slices performed on the Cray XE6 system at CSCS with 32
openMP threads on each MPI task and one MPI task on each node. Note
that the 20 timings for each compiler above gave rise to identical md5sums
for the restart file. Even for the PGI compiler. The PGI compiler version
used on CSCS is the same as the one used locally, i.e. 11.10.0.

www.dmi.dk/dmi/tr12-16.pdf page 90 of 113

Technical Report 12-16

Time

The first 30 timesteps in a 6H simulation of variant2, serial tune

40 |

30 |

20

' ' FGI
Cray
GMNU

Intzl
pathscale

30

Figure 39: openmp_mpi, 12 threads, 1 task profile of a 6H simulation
Variant2, PGI, tune flag

Il Time% | Time | Calls |Group

Il 97.7% | 8274.659858 | -— 1 -- | 1332641.0 |USER

I

Il 16.6% | 1403.101359 | 0.000000 | 0.0% | 10800.0 |momegs_wrapping_momeqs_default_
Il 12.5% | 1061.241143 | 0.000000 | 0.0% | 4320.0 |tflow_tflow_int_.REGIONG@1i.2433
Il 11.9% | 1005.581515 | 0.000000 | 0.0% | 4320.0 |turbmodels_turbmodel_

Il 8.3% | 700.792855 | 0.000000 | 0.0% | 4320.0 |tflow_tflow_int_.REGIONG@1i.2473
Il 7.0% | 590.279449 | 0.000000 | 0.0% | 4320.0 |tflow_tflow_int_.REGIONG@1i.2487
Il 4.6% | 393.188301 | 0.000000 | 0.0% | 4320.0 |tflow_tflow_int_.REGION@1i.2500
Il 4.3% | 367.693264 | 0.000000 | 0.0% | 4320.0 |tflow_tflow_int_.REGIONG@1i.2604
I 4.2% | 357.226501 | 0.000000 | 0.0% | 10800.0 |cmod_hydrodynamics_solvemasseq_.REGION@li.564
Il 4.1% | 344.334889 | 0.000000 | 0.0% | 4320.0 |tflow_tflow_int_.REGION@1i.2518
Il 3.8% | 318.901888 | 0.000000 | 0.0% | 4320.0 |tflow_tflow_int_.REGIONG@1i.2456
I 3.0% | 253.305458 | 0.000000 | 0.0% | 12960.0 |dmi_mpi_dmpi_gather_copy_cmp_

I 2.4% | 204.671871 | 0.000000 | 0.0% | 10800.0 |smagorinsky_deform_

I 2.2% | 184.353608 | 0.000000 | 0.0% | 10800.0 |smagorinsky_smag_

Il 1.8% | 156.418365 | 0.000000 | 0.0% | 12960.0 |dmi_mpi_dmpi_gather_copy_

Il 1.8% | 150.560789 | 0.000000 | 0.0% | 10800.0 |masseqs_masseqs_solver_z_

Il 1.4% | 121.364414 | 0.000000 | 0.0% | 4324.0 |thermodynamic_thermodyn_1_

I 1.3% | 106.418313 | 0.000000 | 0.0% | 4324.0 |cmod_dens_dens_

I

| 2.3/ | 191.383935 | -1 -- | 126859.0 |OMP

| 0.0% | 0.000713 | 0.000000 | 0.0% | 11.0 |PTHREAD

| 0.0% | 0.000009 | -1 -1 2.0 |MPI

for

www.dmi.dk/dmi/tr12-16.pdf

page 91 of 113

Technical Report 12-16

Il Time% | Time | Calls | Group

Il Time% | Time | Imb. | Imb. | Calls |Group

I | | Time | Time} | | Function

Il 98.1% | 1258.164507 | - -- | 1342157.9 |USER

I

Il 17.8% | 228.595114 | 26.694349 | 11.0% | 77768.0 |dmi_mpi_dmpi_distribute_halo_nc_
|| 16.6% | 212.176394 | 34.815667 | 14.8% | 12960.0 |dmi_mpi_dmpi_gather_copy_cmp_

Il 13.8% | 176.531156 | 60.221869 | 26.8% | 125284.0 |dmi_mpi_dmpi_halo_nonblocking_
I 6.8% | 87.157340 | 31.008156 | 27.6% | 8930.0 |dmi_mpi_dmpi_gather_all_

I 6.6% | 84.192399 | 41.475968 | 34.7% | 12960.0 |dmi_mpi_dmpi_gather_copy_

Il 4.9% | 62.273548 | 4.495108 | 7.1% | 10800.0 |momegs_wrapping momegs_default_
I 4.0% | 51.696953 | 4.025908 | 7.6% | 4320.0 |turbmodels_turbmodel_

Il 3.7% | 46.811129 | 0.969382 | 2.1% | 4320.0 |tflow_tflow_int_.REGION@1i.2433
Il 2.2% | 28.368205 | 1.100154 | 3.9% | 4320.0 |tflow_tflow_int_.REGION@1i.2473
Il 2.0% | 25.078865 | 0.931486 | 3.8% | 4320.0 |tflow_tflow_int_.REGION@1i.2487
Il 1.58% | 19.858456 | 1.105492 | 5.6% | 6.0 |dmi_mpi_dmpi_broadcast_met_info_
I 1.3% | 16.370841 | 0.522228 | 3.3% | 4320.0 |tflow_tflow_int_.REGION@1i.2604
I 1.3% | 16.170459 | 0.895640 | 5.5% | 4320.0 |tflow_tflow_int_.REGION@1i.2500
I 1.2% | 15.752806 | 0.591450 | 3.8% | 4320.0 |tflow_tflow_int_.REGION@1i.2518
I 1.1% | 14.653804 | 0.669864 | 4.6% | 4320.0 |tflow_tflow_int_.REGION@1li.2456
I

| 1.3% | 16.444462 | -— 1 -- | 135362.4 |OMP

| 0.6% | 7.358511 | -— 1 -— 1 2.0 |MPI

| 0.0% | 0.000761 | 0.000083 | 10.4% | 11.0 |PTHREAD

Figure 40: openmp_mpi, 12 threads, 20 task profile of a 6H simulation for
Variant2, PGI, tune flag

www.dmi.dk/dmi/tr12-16.pdf page 92 of 113

Technical Report 12-16

9 Variant3

Table 26 summarizes the setup and figure 41 shows how the six sub-domains??

nest to each other. The I, number for this setup is 321.2. The as-is MPI
scaling on a Cray XE6 is show in figure 42. For comparison, a 6H simulation
on a X7550 xeon with 32 cores using pure openMP with the PGI compiler
takes 3825.7 seconds to complete.

IDW BS WSNS rNS NA MS
resolution [n.m.] 0.25 1.0 1.0 1.0 3.0 3.0
mmx [N/S] 964 720 389 660 826 341
nmx [W/E] 792 567 208 381 321 567
kmx 7 122 110 46 78 84
gridpoints 58788576 49805280 8900320 11567160 20681388 16241148
iw2 323536 119334 32515 15593 104527 73746
iw3 6335114 6113599 1560598 409049 5648540 4214785
fiws 10.78 % 12.4% 17.8 % 31.8% 27.3% 26.0%
© [latitude] 57 35 52.5N | 65 53 30N | 59 41 30N 59 29 30N 64 13 30N | 47 16 30N
A [longitude] 09 20 12.5E | 14 35 50E | 06 10 50E | 04 09 10W | 16 22 12W | 5 27 30W
Ay 0015 0100 0100 0100 030 030
AX 0025 0140 0140 0140 050 050
dt [sec] 5 10 10 10 10 10
maxdepth [m] 78.0 398.0 696.25 336.96 6087.69 5066.49
min Az 413.79 1261.65 1558.76 1568.05 4029.34 5559.78
CFL 0.632 0.728 0.957 0.662 0.798 0.708
I, 120.1 57.9 14.8 34.9 58.6 39.9

Table 26: The testcase termed Variant3. The I, number for the setup is
321.2.

22Thanks to Jens Murawsky, DMI, for preparing this setup.

www.dmi.dk/dmi/tr12-16.pdf page 93 of 113

Technical Report 12-16

50°N

45°N

40°N

35°N ke

30°N

v - s Y

15°W 10°W 5°W 0° 5°E 10°E 15°E 20°E 25°E 30°E 35°E 40°E

Figure 41: The Variant3 testcase

www.dmi.dk/dmi/tr12-16.pdf page 94 of 113

Technical Report 12-16

Scaling of variant3 on CSCS cray XE6 system - 24H simulation

6000 T -
cray ——
5500
5000
@
E
=
4500
4000 -
3500 1 1 1 1 1 1 |
0 500 1000 1500 2000 2500 3000 3500 4000

MNumber of AMD Interlagos cores (32 cores per XE6 node)

Figure 42: Scaling of the variant3 using automatically generated I-slices
performed on the Cray XE6 at CSCS with 32 openMP threads on each MPI
task and one MPI task on each node.

www.dmi.dk/dmi/tr12-16.pdf page 95 of 113

Technical Report 12-16

A Appendix: Vector sum using floating points

The aim of this appendix is to show how one can get very wrong results (in
the absolute sense) when trying to implement algorithms that are supposed
to work on floating point numbers in F,,, even for very simple problems that
have straight-forward solutions in R.

Please note that the vector lengths (200000 and 100000, respectively) used
in the the first two examples below are by no means exaggerated or large
compared to the sizes we operate with in our models, on the contrary, cf. ta-
ble 9 in section 5, table 21 in section 6, table 23 in section 7, table 25 in
section 8, and table 26 in section 9. In the third example we will estimate
the average value of a snapshot of the salinity in the IDW domain of the
MyOV2.1 case in table 9.

In the first example, the program in figure 43 has three implementations
of a vector sum. A simple loop over the vector summing up the element,
the Fortran90 implementation of sum and finally a more complicated but
more accurate implementation of the sum due to [16]. This compensated
implementation is based on the error-free transformation just like the former
similar algorithms due to Donald Knuth and William Kahan. You can see
the outcome of the three implementations in figure 44. The analytic result is
shown below and one note that while the absolute error is significant for the
two naive implementations the relative error is not significant. The point
here is merely that the actual implementation matters.

nsize/2 x 101 — nsize = 100000 * 10'2 — 100000 = 99999999999900000

In the second example we also stick to the simple task of doing a vector
sum, but this time we use values closer to those we see in an ocean circu-
lation model, e.g. surface salinity in Inner Danish waters, and the values
are much closer to each other. Again we demonstrate using Fortran90 and
its 8byte and 4byte real, but the point is that the underlying problem is
representation, finite precision and rounding and therefore implementation
matters; we could indeed have chosen any decent programming or scripting
language, e.g. Matlab and its double and single classes. The sample pro-
gram is shown in figure 45 and its outcome is shown in figure 46. It uses the
naive methods from the module shown in figure 47 and the smarter methods
shown in figure 48. The analytic result is 2009999.91 in R. The naive sum
is correct to 12 digits in Fgy, but in F35 only the two first digits are correct

www.dmi.dk/dmi/tr12-16.pdf page 96 of 113

Technical Report 12-16

module s
contains
subroutine fast2sum(a,b,s,t)
implicit none
real(8), intent(in) :: a,b
real(8), intent(out) :: s,t
real(8) :: z
if (b>a) then
s=a+b
z=s-b
t=a-z
else
s=a+b
z=s-a
t=b-z
endif
end subroutine fast2sum

subroutine compensated_sum(nsize,x,sumout)
implicit none

integer(4), intent(in) :: nsize
real(8), intent(in) :: x(0:)
real(8), intent(out) :: sumout
real(8) it c,u, ¥, t, s, v, 2
integer (4) i

s = x(1)

c =0.0_8

do i=2,nsize
call fast2sum(c,x(i),y,u)
call fast2sum(s,y,t,v)

z=u+v
call fast2sum(t,z,s,c)
enddo

sumout = s
end subroutine compensated_sum
end module s

program testsum

use s

implicit none

integer(4), parameter :: nsize=200000

real(8) ::asum(nsize),x

integer(4) :: i

do i=1,nsize,2
asum(i)=-1.0_8

enddo

do i=1,nsize-1,2
asum(i+1)=1000000000000_8

enddo

! naive sum

x=0

do i=1,nsize
x=x+asum(i)

enddo
write (*,*) ’Naive sum ’, x, ’ error is ’, x-99999999999900000_8
write (*,*) ’Fortran sum ’, sum(asum(l:nsize)), ’ error is ’, sum(asum(1l:nsize))-99999999999900000_8

! compensated sum

call compensated_sum(nsize,asum,x)

write (*,%) ’Compensated sum ’, x, ’ error is ’, 99999999999900000_8-x
end

Figure 43: Three implementations of a vector sum of floating point numbers

jwp@munin-2:"> ./a.out

Naive sum 9.9999999999990992E+016 error is 90992.00000000000
Fortran sum 9.9999999999990992E+016 error is 90992.00000000000
Compensated sum 9.9999999999900000E+016 error is 0.000000000000000
jwp@munin-2:7>

Figure 44: Testing the three implementations of the vector sum.

www.dmi.dk/dmi/tr12-16.pdf page 97 of 113

Technical Report 12-16

and the result is so bad that an average value estimated from this value of
the sum is quite a lot outside the interval from minimum to maximum value
of the vector element values. It helps if the summation operations of the
4byte vector elements are performed in the double precision and the result
is rounded back to F3o, then the result gets as good as it can be in F3o. If
the sums are found using the compensated sum algorithm we get the exact
result in Fg4 and the best possible rounded result in F3s.

program sum_examples

use sumsubs, only : naive_sum, smart_sum
implicit none

integer(4), parameter :: nsize = 100000

real(8), allocatable :: v64(:)

real(8) :: sumb4

real(8), parameter :: vi_64 = 20.01_8, v2_64 = 20.1_8
real(4), allocatable :: v32(:)

real(4) 11 sum32

real(4), parameter 11 v1i_32 = 20.01_4, v2_32 = 20.1_4

allocate(v64(nsize), v32(nsize))

! initialize:

v64(1) = vi_64
v64(2:nsize) = v2_64
v32(1) = v1_32
v32(2:nsize) = v2_32

print*, ’Analytic result in R: 100000%20.1 - 0.1 + 0.01 = 2009999.91°’

call naive_sum(nsize,v64,sum64)
write(*,%*) ’Naive sum in F_64: >, sumb4

call naive_sum(nsize,v32,sum32)
write(*,*) ’Naive sum native in F_32: , sum32

call naive_sum(nsize,v32,sum64)
write(*,%) ’Naive sum typecasted and rounded:’, real(sum64,4)

call smart_sum(nsize,v64,sum64)
write(*,*) ’Smart sum in F_64: ’, sum64

call smart_sum(nsize,v32,sum32)
write(*,*) ’Smart sum in F_32: ’, sum32

end program sum_examples

Figure 45: Sample code for testing different vector sums in Fgq and Fgo.

In the third example we use the salinity in the IDW domain from an arbi-
trary restart file and we will try to estimate the average value. The vector
length is 1583550. If we base the average value on naive sums from surface
to bottom we get:

15.0156884190895 in Fgy
14.9965305 in F3y

www.dmi.dk/dmi/tr12-16.pdf page 98 of 113

Technical Report 12-16

pirate:~/src/floatingpoints> gfortran -c -o smartsums.o smartsums.f90
pirate:~/src/floatingpoints> gfortran -c -o naivesums.o naivesums.f90
pirate:~/src/floatingpoints> gfortran -c -o sum_examples.o sum_examples.f90
pirate:~/src/floatingpoints> gfortran -o sum_examples sum_examples.o naivesums.o smartsums.o
pirate:~/src/floatingpoints> ./sum_examples

Analytic result in R: 100000%20.1 - 0.1 + 0.01 = 2009999.91

Naive sum in F_64: 2009999.91000360
Naive sum native in F_32: 2011733.
Naive sum typecasted and rounded: 2010000.
Smart sum in F_64: 2009999.91000000
Smart sum in F_32: 2010000.

Figure 46: Testing different implementations of the vector sum in Fgq and
Fso.

module naivesums
implicit none

interface naive_sum
module procedure naive_sum_64
module procedure naive_sum_32_native
module procedure naive_sum_32_typecasted
end interface

private :: naive_sum_64, naive_sum_32_native, naive_sum_32_typecasted
public :: naive_sum
contains

subroutine naive_sum_64(n, x, sumout)

integer(4), intent(in) :: n
real(8), intent(in) :: x(:)
real(8), intent(out) :: sumout
integer(4) :: i
sumout = 0.0_8
do i=1,n

sumout = sumout + x(i)
enddo

end subroutine naive_sum_64

subroutine naive_sum_32_native(n, x, sumout)

integer(4), intent(in) :: n
real(4), intent(in) :: x(:)
real(4), intent(out) :: sumout
integer(4) :: i
sumout = 0.0_4
do i=1,n

sumout = sumout + x(i)
enddo

end subroutine naive_sum_32_native

subroutine naive_sum_32_typecasted(n, x, sumout)

integer(4), intent(in) :: n
real(4), intent(in) :: x(:)
real(8), intent(out) :: sumout
integer(4) :: i
sumout = 0.0_8
do i=1,n

sumout = sumout + real(x(i),8)
enddo

end subroutine naive_sum_32_typecasted

end module naivesums

Figure 47: Naive vector sum implementations in Fgq and Fss.

www.dmi.dk/dmi/tr12-16.pdf page 99 of 113

Technical Report 12-16

module smartsums
implicit none
interface smart_sum
module procedure priest_sum_64
module procedure priest_sum_32
end interface

private :: priest_sum_64, priest_sum_32, fast2sum_64, fast2sum_32
public :: smart_sum
contains

subroutine priest_sum_64(n, x, sumout)
implicit none

integer(4), intent(in) :: n
real(8), intent(in) :: x(:)
real(8), intent(out) :: sumout
real(8) it c,u, y,t,s, v, z
integer (4) i

s = x(1)

c =0.0_8

do i=2,n

call fast2sum_64(c,x(i),y,u)
call fast2sum_64(s,y,t,v)

z=u+v
call fast2sum_64(t,z,s,c)
enddo

sumout = s
end subroutine priest_sum_64

subroutine fast2sum_64(a,b,s,t)
implicit none
real(8), intent(in) :: a,b
real(8), intent(out) :: s,t
real(8) :: z
if (b>a) then
s=a+b
z=s-b
t=a-z
else
s=a+b
z=s-a
t=b-z
endif
end subroutine fast2sum_64

subroutine priest_sum_32(n, x, sumout)
implicit none

integer(4), intent(in) :: n
real(4), intent(in) :: x(:)
real(4), intent(out) :: sumout
real(4) it c,u, y,t,s, v, z
integer(4) :: i

s = x(1)

c =0.0_4

do i=2,n

call fast2sum_32(c,x(i),y,u)
call fast2sum_32(s,y,t,v)

z=u+v
call fast2sum_32(t,z,s,c)
enddo

sumout = s
end subroutine priest_sum_32

subroutine fast2sum_32(a,b,s,t)
implicit none
real(4), intent(in) :: a,b
real(4), intent(out) :: s,t
real(4) :: z
if (b>a) then
s=a+b
z=s-b
t=a-z
else
s=a+b
z=s-a
t=b-z
endif
end subroutine fast2sum_32
end module smartsums

Figure 48: Compensated vector sum implementations in Fgq and Fso.

www.dmi.dk/dmi/tr12-16.pdf page 100 of 113

Technical Report 12-16

and if we do the naive sum from the bottom and up we get:
15.0156884190889 in Fgy
15.0420637 in F3y

For comparison, if we base the estimate on the compensated sum algorithm
we get:

15.0156884190895 in Fgy

That is, the naive sum is quite sensitive to permutation of the data and
in F35 we may obtain as little as 1 or 3 correct digits while we have 12-13
correct digits in Fgy.

The above are just examples that demonstrate that one should think twice
about the implementation; it is not always as straight-forward as one could
hope. The reader is encouraged to play with more examples of estimating
the sum or the average value of different data sets; try e.g. random numbers
and vector lengths of 100.000, 1.000.000 and 10.000.000 and collect findings
similar to those above. And it’s not always the vector length that counts;
try to add the following two numbers??

vl = 9876543210.20000
v2 = -9876543210.10000
n F64.

Z3This last example is attributed to Peter Sestoft, Professor, IT University of Copen-
hagen, Denmark, and he shows more nasty and interesting examples in:
http://wuw.itu.dk/courses/KF04/F2010/uge4/computernumbers. pdf

www.dmi.dk/dmi/tr12-16.pdf page 101 of 113

Technical Report 12-16

B Appendix: Sea-level maps

www.dmi.dk/dmi/tr12-16.pdf page 102 of 113

JpdOT-Z T4/ 1Wp /P Iwp - Mmm

"QJNUIN ()] AIOAD S[OAJ[-BOS SoonpoId [9POW 9} oI M

syuateoeld o1} pue SUOIYR)S YSTUR(] oY) Jo sowreu Surmoys dejy :6f oIS

€IT 40 €01 °8ed

58

Hirtshals

Frede;ikshavn

Hangtholm..

“Hals Barre

Fffrin‘g

Torstiinde

Hvide\ Sande
E-SEN

T

Rofine Sy

OXX+ W

WXt
"stationname. txt"

,Tejsx

ua
»

9T-¢T Moday |edtuyda)

ING

JpdOT-Z T4/ 1Wp /P Iwp - Mmm

"QJNUIN ()] AIOAD S[OAJ[-BOS SoonpoId [9POW 9} oI M

sjuateoeld a1} pue SUOTIR)S YSIUR(] oY) JO stoquunu Surmoys dejy :0g aInSr g

€11 jo %01 =8ed

58

21009

23126

23259, 23132+
28003+

23293

20252

2784

. "statignnumber.txt"

OXX+ W

ua
»

9T-¢T Moday |edtuyda)

ING

DM |

16

73,00
80,00

86,90

92.40

95.50

96.90 -

53160

54

545 =

57

56.5 |-
56
555 -
55

58
575 =

Figure 51: Map showing observation coverage for each of the Danish stations
in 2011 with the described screening procedure.

www.dmi.dk/dmi/tr12-16.pdf page 105 of 113

JpdOT-Z T4/ 1Wp /P Iwp - Mmm

€IT 40 90T °8ed

"TT0g Ul SUOTYe)S STUR(] oY)

JO oed I0J PIs/seiq JO SULI) UI $91008 UOTYedyLIon Sutmoys de[y :g¢ oIS

58

-17,90/9.70
-16.40/10.20-

-20;‘30/9.80

220740/13.20

-0.50/12:70-.

-2.50/21.30

-4.30/13,00

-2.70/164080/22‘30
0.20/14.40

8.00/%; 00

/56.40116.50
|
B
.
(U
oy
.
</ 7
—
K,/\/;ﬂ

o =°

" 14120/9.90

N _0.00/8.20
11.60i6 98
-=11.90/9.60

-26/10/5.10

-2530/5.40

ua
»

91-C1 JJOdBH |eauuyda] |

ING

DM |

180.00

100.00

100.00 100,00

100.00
100.00 ™

16

A
14

12

0

58
57

575 =

| |
) e
3 b
b

555 =

545 =

54

Figure 53: Map showing verification scores in terms of hit-rates. The model
hits the observation if the absolute difference between the two is less than

20 dmi.dk /dmi/tr12-16.pdf

page 107 of 113

JpdOT-Z T4/ 1Wp /P Iwp - Mmm

€IT 40 80T °3ed

"T10g IMoySnoIyy

SUOI}®}S YSIUR(] 91} J8 POINSLIU ourl [0Ad[-RaS o1} Surmoys defy :F¢ oInsiJ

58

[38[32&]?
/7[-77;294]

w’\kfc;

c:w

[-207:129]

T 1-8%142)

[-171:86]

wa
52
P

91-C1 JJOdBH |eauuyda] |

ING

JpdOT-Z T4/ 1Wp /P Iwp - Mmm

€IT 40 60T °3ed

"TT0¢ o

-ySno1y) [ppowr a3 Aq paure}qo aduerl [9A9[-8as a1} SUImoys defy :¢G oInsI

58

T 755128)

"

’ [-\7\3;155

- [-1123113]
WCof-58;108]

i3
-

{(/\f"

b
« N

%
g% o

Q

[-42:93]

[-58:98]

wa
52
P

91-C1 JJOdBH |eauuyda] |

ING

Technical Report 12-16

C

ce-NUMA
CFL

CPU
CSCS

DMI
EPS
F, T,

FDS
FMA

FTCS

GPU
HBM
IBVP
IEEE

10
MPI

MyO v2.1

Appendix: Abbrevations.

Cache-Coherent Non-Uniform Memory Access.

Courant, Friedrichs and Levy; the CFL-condition is named after Richard
Courant, Kurt Friedrichs, and Hans Lewy who described it in their
1928 paper.

Central Processing Unit.

Centro Svizzero di Calcolo Scientifico; the Swiss National Supercom-
puting Centre.

Danish Meteorological Institute.
Ensemble Prediction System.

The set of floating point numbers in arbitrary precision and in n-bit
precision.

Finite Difference Scheme.

Fused Multiply-Add; a floating-point multiply-and-add operation per-
formed in one step, with a single rounding.

Forward-in-Time, Central-in-Space; refers to the centering of a finite
difference scheme.

Graphics Processing Unit.
HIROMB-BOOS Model.
Initial Boundary Value Problem.

Institute of Electrical and Electronics Engineers; the world’s largest
professional association for the advancement of technology.

Input/Output.

Message Passing Interface; a standardized and portable message-passing
system designed to function on a wide variety of parallel computers.

The version 2.1 of the operational forecast model run under the My-
Ocean project.

. Nautical Miles,; 1 n.m. is approximately 1852 meters.

www.dmi.dk/dmi/tr12-16.pdf page 110 of 113

Technical Report 12-16

openACC

openMP

PDE

PP

R
SSE

TVD scheme

1D, 2D and 3D

A programming standard for parallel computing, designed to simplify
parallel programming of heterogeneous CPU/GPU systems.

Open MultiProcessing; an application programming interface that sup-
ports multi-platform shared memory multiprocessing programming in
languages such as Fortran and C.

Partial Differential Equation.
Physical Problem.
The set of real numbers in mathematics.

Streaming SIMD Extensions; one of the Intel SIMD (Single Instruc-
tion, Multiple Data) processor supplementary instruction sets.

Total Variation Diminishing scheme; is a property of certain discretiza-
tion schemes used to solve hyperbolic partial differential equations; A
TVD scheme is monotonicity preserving.

one-, two- and three-dimensional; refers to the number of spatial di-
mensions at hand.

www.dmi.dk/dmi/tr12-16.pdf page 111 of 113

Technical Report 12-16

References

1]

[2]

M. B. Abbott and D. R. Basco. Computational fluid dynamics: An
introduction for engineers. Longman, 1989.

Per Berg. Mixing in HBM. DMI Scientific Report No. 12-03. Technical
report, DMI, Copenhagen, 2012.

Per Berg and Jacob Weismann Poulsen. Implementation details for
HBM. DMI Technical Report No. 12-11. Technical report, DMI, Copen-
hagen, 2012.

George F. Carrier and Carl E. Pearson. Partial Differential Equations,
Theory and Techniques. Academic Press, 1976.

David Goldberg. What every computer scientist should know about
floating-point arithmetic. ACM Comput. Surv., 23(1):5-48, March
1991.

Nicholas J. Higham. Bounding the error in gaussian elimination for
tridiagonal systems. SIAM J. Matriz Anal. Appl, 11:521-530, 1990.

Ph. Langlois, N. Louvet Mai, Ph. Langlois, and N. Louvet. Solving
triangular systems more accurately and efficiently, 2005.

A.D. McCowan, E.B. Rasmussen, and P. Berg. Improving the perfor-
mance of a two-dimensional hydraulic model for floodplain applications.
The Institution of Engineers, Australia, Hobart, 2001.

David Monniaux. The pitfalls of verifying floating-point computations.
ACM Trans. Program. Lang. Syst., 30(3):12:1-12:41, May 2008.

Jean-Michel Muller, Nicolas Brisebarre, Florent de Dinechin, Claude-
Pierre Jeannerod, Vincent Lefevre, Guillaume Melquiond, Nathalie
Revol, Damien Stehlé, and Serge Torres. Handbook of Floating-Point
Arithmetic. Birkhduser Boston, 2010. ACM G.1.0; G.1.2; G.4; B.2.0;
B.2.4; F.2.1., ISBN 978-0-8176-4704-9.

Giunther Nausc, Rainer Feistel, and Volker Mohrhol. Water exchange
between the Baltic Sea and the North Sea, and conditions in the deep
basins. HELCOM Indicator Fact Sheets 2011. Online. Technical report,
HELCOM, 2011.

www.dmi.dk/dmi/tr12-16.pdf page 112 of 113

Technical Report 12-16

[12]

[17]

[18]

Dora B. Heras Pablo Quesada-Barriuso, Julin Lamas-Rodrguez. Se-
lecting the best tridiagonal system solver projected on multi-core CPU
and GPU platforms. volume II, pages 839-845, Las Vegas (USA),
18/07/2011 2011.

Velisar Pavlov and Plamen Y. Yalamov. Stability issues of the Wang’s
partitioning algorithm for banded and tridiagonal linear systems. In
FEuro-Par’99, pages 1149-1152, 1999.

G. P. Pedersen. Analysis Now, volume 118 of Graduate Texts in Math-
ematics. Springer, 1989.

William H. Press, Saul A. Teukolsky, William T. Vettering, and Brian P.
Flannery. Numerical Recipes, The Art of Scientific Computing, Second
Edition. Cambridge University Press, 1992.

Douglas M. Priest. On properties of floating point arithmetics: Numer-
ical stability and the cost of accurate computations. Technical report,
University of California at Berkeley, 1992.

H. H. Wang. A parallel method for tridiagonal equations. ACM Trans-
actions on Mathematical Software, pages 170-183, 1981.

Yao Zhang, Jonathan Cohen, and John D. Owens. Fast tridiagonal
solvers on the GPU. In PPOPP, pages 127-136, 2010.

Previous reports
Previous reports from the Danish Meteorological Institute can be found on:
http://www.dmi.dk/dmi/dmi-publikationer.htm

www.dmi.dk/dmi/tr12-16.pdf page 113 of 113

