
Danish Meteorological Institute
Ministry for Climate and Energy

Copenhagen 2012www.dmi.dk/dmi/tr12-11.pdf

Technical Report 12-11

Implementation details for HBM

Per Berg and Jacob Weismann Poulsen

Danish Meteorological Institute
Technical Report 12-11

Colophone
Serial title:
Technical Report 12-11

Title:
Implementation details for HBM

Subtitle:

Authors:
Per Berg and Jacob Weismann Poulsen

Other Contributers:

Responsible Institution:
Danish Meteorological Institute

Language:
English

Keywords:
operational ocean models, code quality, parallelisation, validation, verification, openMP, MPI,
openACC, vectorization, nesting, scaling, cache layout, NUMA, nightly tests, automatic testing,
geometric decomposition

Url:
www.dmi.dk/dmi/tr12-11.pdf

ISSN:
1399-1388

ISBN:

Version:
1.0

Website:
www.dmi.dk

Copyright:
Danish Meteorological Institute

www.dmi.dk/dmi/tr12-11.pdf

DMI
Technical Report 12-11

1 Introduction 5

2 Data structures 8
2.1 Grid structure . 8
2.2 Basic indexing . 9
2.3 Memory module . 10
2.4 Wet-point compression . 11
2.5 Global arrays . 12
2.6 Cache layout . 14

2.6.1 Theoretical musings 18
2.6.2 Cache profiling . 19

3 Nesting 21
3.1 Hydrodynamic nesting procedures 21

3.1.1 Fully dynamical two-way nesting 21
3.1.2 One-way nesting . 22
3.1.3 Vertical nesting . 22
3.1.4 Time step levels . 22

3.2 Computational flow of nested hydrodynamics 22
3.3 Nesting variables . 26
3.4 Nesting details . 28

3.4.1 Momentum . 28
3.4.2 Mass . 30
3.4.3 Tracers . 30

3.5 Setting up nested models . 32
3.5.1 Defining borders . 33
3.5.2 Other aspects . 34

4 Parallelization 38
4.1 Geometric decomposition . 39
4.2 Vectorization . 42
4.3 openMP . 43

4.3.1 NUMA tuning . 45
4.3.2 openMP profiling . 50

4.4 MPI . 52
4.4.1 MPI decomposition . 53
4.4.2 Automatic task decomposition 56
4.4.3 MPI data structures 60

www.dmi.dk/dmi/tr12-11.pdf page 1 of 147

DMI
Technical Report 12-11

4.4.4 MPI communication patterns 63
4.4.5 MPI performance . 63

4.5 Performance perspective . 68
4.6 openACC . 71

4.6.1 Introduction . 72
4.6.2 GPU port of default momeqs 73
4.6.3 Reducing memory transfers between CPU and GPU . 79

5 Validation and verification 82
5.1 Phrases commonly used in model development 85
5.2 Technical bugs - serial focus 88
5.3 Numerical issues - serial focus 92

5.3.1 Cross-compare statistics and related fingerprints . . . 92
5.3.2 Cross-compare pointwise results 98
5.3.3 Cross-compare timings 99

5.4 Bugs and numerical issues - parallel focus 102
5.4.1 Study scalability across compilers and platforms . . . 111
5.4.2 Comparative debugging of numerical problems 111

5.5 Analysing longer simulations 115

A Appendix: Survey of global variables 119

B Appendix: Code styling 124
B.1 Documentation and version management 126
B.2 General styling rules . 128
B.3 Dynamic memory . 133
B.4 Obsolete and banned Fortran features 135

C Appendix: Other ocean models 139
C.1 HBM at DMI (future experiments) 139
C.2 HIROMB at SMHI . 140
C.3 GETM at FCOO . 140
C.4 Nemo at ECMWF . 142
C.5 Nemo at Mercator . 143
C.6 HYCOM at DMI . 144
C.7 HYCOM at NRL . 144
C.8 Summary . 145

www.dmi.dk/dmi/tr12-11.pdf page 2 of 147

DMI
Technical Report 12-11

Implementation details for HBM

Per Berg Jacob Weismann Poulsen

April 20, 2012

The aim of this document is to convey relevant information to people that
intend to work with the source code of the ocean circulation model HBM, or
who want to learn how this model code distinguishes itself from other model
codes in (sometimes) unique ways. We assume that the reader is familiar
with basic concepts of modelling and scientific computing. We assume a
reasonably high level of familiarity with standard Fortran95 as well as with
the openMP standard and the MPI standard. Moreover, we assume that
the reader is familiar with basic notions within Earth system modelling, es-
pecially within oceanography.

That is, this document will focus on those topics that may be considered
special for HBM compared to other models, and it will not deal much with
”common knowledge”. The solutions that we deal with in this document
are all invented by the authors and reflect our deep interest in performance
both from the numerical point of view and the computational point of view.
We have tried to cover the aspects of the implementation that we find most
interesting but our ultimate recommendation is still to use the force and
read the source.

This document is the proper choice if you need a general reference to the
HBM implementation. By quoting this document and a suitable source code
tag, you can easily make reference to a specific release.

Acknowledgement: We are most grateful to Luiz DeRose from Cray for
sponsoring our access to a GPU based test system and to John Levesque
from Cray for helping with the GPU port. We also wish to express our
gratitude to Maria Grazia Giuffreda from CSCS for granting us access to
some of their systems and to Chris Gottbrath and Bill Burns, Rogue Wave
software, for adding the requested features to the totalviewTM debugger al-
lowing us to establish a debugging framework based on code commentary.

www.dmi.dk/dmi/tr12-11.pdf page 3 of 147

DMI
Technical Report 12-11

Finally, we would like to thank Rong Fu, DMI, for helping with some of the
plots and tables and Jacob Woge Nielsen, DMI, for constructive comments
on an early version of this document.

Front page: The figure on the front page shows the geographical extent
of the setup used for the MyOcean Baltic Sea Version 2 operational model
runs at DMI. This is also the test-case most extensively used throughout
this report.

www.dmi.dk/dmi/tr12-11.pdf page 4 of 147

DMI
Technical Report 12-11

1 Introduction

The origin of the HBM code dates back to the BSHcmod ocean circulation
model, the development of which was originally initiated in the 1990s at
Bundesamt für Seeschifffahrt und Hydrographie (BSH) in Germany where it
since then has been applied operationally for storm surge warning. The first
part of the name refers to this origin while the last part is an abbreviation of
what it is, namely a Circulation MODel. Application and development has
branched off from this origin into different institutions around the Baltic Sea.

One branch is the HIROMB1 which has been operated for ocean forecasts
at the Swedish Meteorological and Hydrological Institute (SMHI) since 1995.

Another branch of the model code has been maintained and further devel-
oped at the Danish Meteorological Institute (DMI), where it since 2001 has
served as the operational storm surge model as well as being heavily used in
a number of EU-funded projects. During different periods over the years it
became known first as DMI-BSHcmod and later as DMIcmod to reflect the
changing affiliation of the core developers.

Nowadays, attempt has been made to merge the model code development
into a common project, the intention being to join the forces of experienced
modellers from around the Baltic Sea. This model code project carries the
name HBM, the HIROMB-BOOS2 Model, not to promote a single institute
but rather to indicate the affiliations of its major user and developer com-
munity.

The HBM code started from a snap-shot of the DMIcmod repository in 2009.
The source code of the HBM project is currently maintained through a sub-
version server hosted at DMI. A previous release3 of the HBM code runs
primo 2012 operationally, using different setups, at DMI as the storm surge
model and at the four MyOcean4 Baltic Model Forecasting Centre produc-
tion units BSH, DMI, SMHI, and FMI (Finnish Meteorological Institute)
as the MyOcean Baltic Sea Version 2. The current code implementation is
as close as one gets to a total rewrite without it being so from the original

1High Resolution Operational Model for the Baltic sea, http://www.hiromb.org/
2Baltic Operational Oceanographic System, http://www.boos.org/
3subversion tag myov2 of November 3, 2011.
4MyOcean is the main European project dedicated to the implementation of the GMES

Marine Service for ocean monitoring and forecasting, http://www.myocean.eu/

www.dmi.dk/dmi/tr12-11.pdf page 5 of 147

DMI
Technical Report 12-11

BSHcmod, and it is very different from the HIROMB code implementation;
this has been necessary in order to meet our quality requirements for the
code implementations and thereby also for the model results. The code is
written in free format standard Fortran95 and has been parallelized using
openMP, MPI and more recently also openACC. Based on experience from
real applications, we have defined a set of code styling rules on top the
ANSI5 standard and some validation procedures that help the developers
during maintenance, aiming at assuring portability and correct behavior.
We have included a summary of the styling rules in appendix B. The de-
velopment team takes a continued effort in keeping the quality high and the
sloccount6 low. That is,

• we rate correctness higher than added functionality,

• we rate optimization with respect to correctness and functionality
higher than optimization with respect to speed,

• we rate optimization with respect to speed very high but never so high
that we sacrifice portability,

because we strongly believe that this is the right choice in the long run. It is
very important that model results are reproducible at any time, anywhere,
by anyone.

Our approach when introducing new and expanding existing functionality,
optimizing for speed, implementing support for e.g. accelerators, etc, is ba-
sically iterative and incremental7. We always start off from a well-defined
foundation and on that we grow the new idea, learning how it behaves in
real applications, attempting to map potential issues, improving the imple-
mentation as needed, and at the end of the day, we accept or reject it. We
accept no unjustified deviations from the reference. That is, no code revi-
sion can change the results unless it is a genuine bug fix, a new physical
feature or another solution algorithm for an existing feature, in which cases
appropriate justification must be presented and the entire batch of test-cases

5American National Standards Institute, a private non-profit organization that over-
sees the development of voluntary consensus standards for products, services, processes,
systems, and personnel, http://www.ansi.org/

6SLOCCOUNT is a set of tools for counting physical Source Lines of Code,
cf. http://www.dwheeler.com/sloccount/

7Iterative and incremental development is the basis of cyclic software de-
velopment, as opposed to the more linear waterfall model approach, see
e.g. http://en.wikipedia.org/wiki/Iterative and incremental development/

www.dmi.dk/dmi/tr12-11.pdf page 6 of 147

DMI
Technical Report 12-11

must be re-run and their references altered.

There are several issues that will affect code design. We have to be aware
of these because they will put limitations on what we can do but also make
something easier than with other models. The five most important model
features in HBM from this point of view are:

• regular lat/lon grid with fixed but user-specified angular grid spacings
at run-time, i.e. equidistant in latitude direction,

• choice at run-time of z-coordinates with fixed spacing varying with
depth and time-varying top-layer thickness, or so-called dynamical ver-
tical coordinates with grid spacing varying in time,

• designed for any number of two-way nested domains with any number
of nesting levels specified at run-time,

• low-order finite differencing keeping the operator lengths short at +/-1
grid point,

• time stepping is explicit in the horizontal direction, and implicit in the
vertical for momentum, diffusion and turbulence.

All of these will have to be addressed when we define proper data struc-
tures, memory access, domain decompositions for parallelisation, etc. In
this document we will make attempts to cover these issues and to explain
what we do to ensure implementation quality. We start off by describing
in chapter 2 the major data structures, the basic indexing, and how these
relate to the memory cache usage. In chapter 3, we describe how nesting is
implemented in HBM and how this affects the computational flow. The sub-
jects covered in chapters 2 and 3 are themselves useful independently, but
they also constitute the prerequisites for our approaches towards parallelisa-
tion, explained in chapter 4. Finally in chapter 5, devoted to validation and
verification, we attempt to describe what we do to ensure that the model
behaves as expected such that we with peace in our minds can release the
code for production runs.

The present report describes the HBM code as it is today8. In the future
we will have improved the code, fixed issues, implemented new features, etc,
and updates of (parts of) this report will likely be appropriate.

8subversion tag release 2 5 of March 22, 2012.

www.dmi.dk/dmi/tr12-11.pdf page 7 of 147

DMI
Technical Report 12-11

2 Data structures

This section describes the basic data structures used throughout the model.
We will explain the layout of 2D and 3D variables and describe how one
can access them within each nested area. Moreover, we provide technical
background on the data permutations that takes place during the initializa-
tion. The permutations have caused confusion in the past and they play an
important role once we get to deal with cache layout later in this chapter,
as well as with the NUMA9 layout and the task local MPI layout in the
chapter on the parallelization of the code.

2.1 Grid structure

The 3D grid is a staggered Arakawa C grid. The model uses a regular
latitude/longitude grid in the horizontal plane, thus limiting the range of
applications to regional models that do not cover the North Pole. In the
vertical direction one uses runtime options to choose between classical fixed
z-coordinates and so-called dynamical vertical coordinates. Being regular,
the horizontal grid has fixed angular grid spacings. The grid spacing in the
latitude direction need not be the same as in the longitude direction. The
vertical grid spacing varies with depth; when using dynamical vertical coor-
dinates, the vertical grid spacing varies with time too.

A number of nesting levels may be used, between which there is a fully, dy-
namical two-way nesting, cf. next chapter. The nesting levels are allowed to
have different but constant horizontal resolutions, possibly different vertical
resolutions, and different time stepping levels. The outermost domain may
have a number of open lateral boundaries; the inner, fine(r) domain(s) can-
not have any open lateral boundaries, only nesting borders to the enclosing
domain(s). All domains have a free surface which exchanges matter and
energy with the atmosphere.

The grid origin is the location of the North-West corner grid point. The
positive direction of the longitude axis is to the East, the positive direction
of the latitude axis is to the North, and the vertical axis is positive upwards.
Any constant z-level constitutes a geopotential surface, and z = 0 is often
chosen near mean sea level.

9NUMA stands for Non-Uniform Memory Access

www.dmi.dk/dmi/tr12-11.pdf page 8 of 147

DMI
Technical Report 12-11

2.2 Basic indexing

Internally in the code, the index set (i, j, k) refers to the three spatial di-
rections. The grid origin has index (1, 1, 1). Each index i, j, and k assume
positive values only. Note that in e.g. finite differencing we often run into
say i − 1 which must be mapped out-of-domain if i = 1, see description of
indexing in section 2.4 on wet-point compression. The first index, i, refers to
the latitude direction, and increases in the southward direction. The second
index, j, refers to the longitude direction and increases in the eastward di-
rection. The third index, k, indicates the model layers with k = 1 signifying
the surface layer and k increasing downwards.

With the above definitions, the index axes i− j − k constitute a left-handed
coordinate system as opposed to the physical lon − lat − z system being
right-handed, see figure 1. For an oceanographer this might not seem to be
the most intuitive choice of axis orientation, but a mathematician is used to
having row 1, column 1 at the upper left corner and to him/her the choice is
more obvious. Care should therefore be taken during development of e.g. fi-
nite difference code.

Figure 1: Staggered grid and projection onto coordinate planes in the lon−
lat− z and i− j − k systems.

The grid cell node, also known as the grid point, is placed at (i, j, k). Most
scalar quantities (like S and T) are located at the grid cell node and their

www.dmi.dk/dmi/tr12-11.pdf page 9 of 147

DMI
Technical Report 12-11

value represent the value of the respective quantity within the grid cell.

The velocity components are located half-way between adjacent grid cell
nodes on the face of the grid cell in the respective direction. That is, the
components of the velocity vector (u, v, w) have spatially staggered locations.
The positive directions of the velocity components follow the respective co-
ordinate axis: For grid cell (i, j, k) the zonal component, u at (i, j, k), is
located on the east cell face and is positive towards east; the meridional
component, v at (i, j, k), is located on the south face and is positive towards
north; and the vertical component, w at (i, j, k), is located on the upper face
and is positive upwards. The figure 1 attempts to sketch these relationships
by projection of the computational grid cell onto the three perpendicular,
coordinate planes.

2.3 Memory module

The application is a 64/32-bit application, i.e 64 bit reals and 32 bit inte-
gers. All variable declarations are explicit with respect to kinds for reals
and integers, i.e. we always explicitly declare reals as real(8) and integers
as integer(4).

We have developed a module for memory allocation, especially suited for
nested variables. This module, called cmod mem, is based on abstract data
types containing pointer arrays which allow for allocating arrays with rows
of different type and rank. This is required since nested areas do not in
general have the same size. Names of predefined type definitions follow the
notation: cmTD where T is a type identifier:

T = i for integer(4)

T = r for real(8)

T = l for logical

and D identifies the dimension (shape) of the array:

D = 1 for 1D arrays

D = 2 for 2D arrays

D = 3 for 3D arrays

Each of these 9 predefined abstract data types has one member called p,
which is a pointer array of type T and rank D, e.g. the cmr2 has the following
type definition

www.dmi.dk/dmi/tr12-11.pdf page 10 of 147

DMI
Technical Report 12-11

type cmr2

real(8), pointer :: p(:,:)

end type

Please note, that global arrays are allocated in the beginning of the program
cf. module procedures AllocPointers and AllocArrays in cmod arrays.

2.4 Wet-point compression

The grid contains both wet-points, points beneath the sea bed and true
land-points, i.e. the 2D and 3D matrices that should hold the state variables
would indeed be pretty sparse. This raises the obvious question of whether
to use direct or indirect storage and a back-of-the-envelope estimate seems
appropriate: Assume that we need to store say 50 real(8) matrices in a
500 × 500 × 150 grid. This alone requires ≈ 14GB if using direct storage
and only ≈ 2GB with 15% wet-points, typically of many real applications.
Thus, the model uses indirect addressing for all the major data-structures
implying that one saves a lot of runtime memory, the price being increased
internal book-keeping. There are several ways to do the indirect addressing
and we have chosen to use a variant of the compressed row storage format
also sometimes know as compression by gathering.

For area #ia, the number of 3D wet-points is denoted by iw3(ia). The
grid index extremes in the area #ia are mmx(ia), nmx(ia), and kmx(ia).
The number of 2D wet-points, i.e. the number of wet-points confined to the
surface layer is denoted by iw2(ia). These are declared and assigned during
model initialization in module cmod params.

Below you will find specifications for one of our main setups today. It is a
four-domain nested setup, consisting of a 3 n.m.10 North Sea, a 0.5 n.m.
Inner Danish Waters domain, a 1 n.m. German Bight / Wadden Sea domain,
and a 3 n.m. Baltic Sea domain. The North Sea and the Baltic Sea domains
are separated from each other: NS extends into Skagerrak to Skagen, BS
extends eastward from Bornholm. Note that the ratio of wet-points in the
largest sub-domains is only 11.1% so we are indeed saving a lot of memory
using indirect addressing:
The indirect addressing used is simply a look-up table relating physical
location, in terms of the index triplet (i, j, k), to memory location, in terms
of a single array index. There is one look-up table for each nested area,

10nautical miles, 1 n.m. = 1852 m.

www.dmi.dk/dmi/tr12-11.pdf page 11 of 147

DMI
Technical Report 12-11

Domain mmx nmx kmx grid points iw2 iw3 iw3/g.p.

NS 348 194 50 3375600 18908 479081 14.1%

IDW 482 396 75 14315400 80904 1583550 11.1%

WS 149 156 24 557856 11581 103441 18.5%

BS 248 189 109 5109048 13056 671985 13.1%

ia, which is declared and assigned during model initialization in module
cmod params:

m1(ia)%p(1:mmx(ia),1:nmx(ia),1:kmx(ia)).

These look-up tables return the value 0 for points on land or below the sea
bed, and a positive integer, indexed 1,. . .,iw3(ia), for a point in the water.
Thus, we have:

iw3(ia) = maxval(m1(ia)%p(:,:,:))

iw2(ia) = maxval(m1(ia)%p(:,:,1))

To simplify table look-up during e.g. finite differencing, additional tables are
defined which extend the m1 with a one point zero-padding at both ends of
the horizontal coordinate directions and thus return the value 0 for points
outside the domain. These index arrays are

mm1(ia)%p(0:mmx(ia)+1,0:nmx(ia)+1,1:kmx(ia))

with

mm1(ia)%p(1:mmx(ia), 1:nmx(ia), :) = m1(ia)%p(:,:,:)

mm1(ia)%p(0 , : , :) = 0

mm1(ia)%p(: , 0 , :) = 0

mm1(ia)%p(mmx(ia)+1, : , :) = 0

mm1(ia)%p(: , nmx(ia)+1, :) = 0

2.5 Global arrays

Most variables are allocatable real arrays of kind 8, being allocated during
the initialization process. Each 3D variable is stored as rank 1 arrays, one
for each nested area, with indices running from 0 (the dummy on-land value)
to the number of wet-points. Likewise, each 2D variable is stored as rank 1
arrays, one for each nested area, with indices running from 0 to the number
of surface wet-points. Note that for 3D variables we always have the surface

www.dmi.dk/dmi/tr12-11.pdf page 12 of 147

DMI
Technical Report 12-11

points stored as the first 1 . . .iw2(ia) points, cf. the figure below where
green denotes an inactive point (landpoint, point beneath the sea bed, point
outside the domain), light blue indicates an active surface point and dark
blue an active deep water point:

v(0) v(1) v(2) . . . v(iw2) v(iw2 + 1) . . . v(iw3)

Variables usually have descriptive short names. As an example, the zonal
current in area #ia is

u(ia)%p(0:iw3(ia))

and it may be accessed through indirect addressing like

u(ia)%p(m1(17,89,1))

for the value in the surface layer at horizontal position (i, j) =(17,89).

Exceptions are, for instance, temperature and salinity, which are referring
to separate columns of a real(8) component array, cmp, with ntracers

columns (ntracers≥ 2 is the total number of tracers), i.e. in grid area #ia

we have the water temperature in cmp(ia)%p(1,0:iw3(ia)) and the salin-
ity in cmp(ia)%p(2,0:iw3(ia)). In appendix A we list the most important
global variables, that is all the prognostic variables and the major diagnos-
tic variables, meteorological forcing variables, index variables, and variables
used for open boundary conditions and for nesting conditions.

The top layer, k = 1, deserves some special attention since a number of
processes (wind forcing, heat exchange, ice drift, etc.) are confined to the
near-surface region. For simplicity, surface index arrays are introduced as

me1(ia)%p(:,:) = mm1(ia)%p(:,:,1)

Furthermore, the internal alignment is such that me1(ia)%p(:,:) and
therefore also mm1(ia)%p(:,:,1) and m1(ia)%p(:,:,1), assumes values 0
through iw2(ia).

There are two more very useful index arrays; one relating the surface wet-
point number to horizontal grid indices; one that gives the number of wet-
points in the water column at a given surface location. The first of these is
a rank-2 integer array, ind(ia)%p(1:2,1:iw2(ia)). The second is a rank-1
integer array, kh(ia)%p(0:iw2(ia)).

www.dmi.dk/dmi/tr12-11.pdf page 13 of 147

DMI
Technical Report 12-11

2.6 Cache layout

Up to this point we have carefully tried not to be explicit about which of
the iw3 points is actually the first, which is the second and so forth. The
aim of this section is to describe the exact enumeration of the wet-points.
The mapping has been chosen to reflect the way memory works in current
processors. It should not come as a big surprise that the performance of
applications like this is tightly related to how well the data access patterns
match the inner workings of the memory hierarchy.

Before we look at the actual access patterns we summarize how a CPU ac-
cesses memory11 and we use our local Cray XT5 system as a concrete exam-
ple. The XT5 node at DMI is a 12-way cc-NUMA12 node with 16GB shared
memory. Each node has two sockets and each socket has an AMD opteron
six-core Istanbul 2.4 GHz processor installed. Note that AMD caches are
exclusive caches (as opposed to say Intel) so the cacheline size is fixed for
all cache levels. An exclusive cache implies that data is guaranteed to be in
at most one of the L1, L2 and L3 caches. When the L1 misses and the L2
hits on an access, the hitting cache line in the L2 is exchanged with a line
in the L1 and so forth. In this particular case the cacheline size is 64bytes
and there are 3 cache levels with L1 and L2 being private to the core and
L3 shared among the cores. Some details are shown below:

L1: 64Kb 2-way set associative data.

L1 latency is 3 core clocks ~ 3 clocks / 2.4 Gcycle/sec = 1.25 ns.

L1 bandwidth is NOT symmetric.

L1 LD bandwidth: 2x128bit LD/cycle ~ 32Bytes/cycle * 2.4GHz = 76.8 GB/s.

L1 ST bandwidth: 2x64bit ST/cycle ~ 16Bytes/cycle * 2.4GHz = 38.4 GB/s.

L2: 512Kb, 16-way set associative.

L2 latency is 3+9=12 core clocks ~ 12 clocks/2.4 Gcycle/sec = 5 ns.

L2 bandwidth is 38.4 GB/s.

L3: 2Mb (shared), 32-way set associative.

L3 latency is 3+9+33=45 core clocks~45 clocks/2.4 Gcycle/sec = 18.75 ns.

L3 bandwidth is 32 GB/s per core.

The quoted L3 bandwidth is per core, but each core is limited to its

own port, so the bandwidth seen by a core is the same whether one core

is active or six cores are active.

Main memory (ccNUMA):

Component DIMM FSB frequency Transmission rate DIMM bandwidth Bandwidth

11Details can be found in classical textbooks such as [8].
12cache coherent Non-Uniform Memory Access, cf. [8].

www.dmi.dk/dmi/tr12-11.pdf page 14 of 147

DMI
Technical Report 12-11

DDR2-667 PC2-5300 333 MHz 667 MT/s 5.3 GB/s 10.6 GB/s

Read latency local socket : 73 ns

Read latency remote socket : 115 ns

The actual numbers stated above are not so important. The interesting
part is their relationship. For instance, note that the latency is 1.25 ns for
L1 access and 73 ns/115 ns for main memory. The worst-case usage of the
cache system assuming real(8) elements (any of the 3 levels) is illustrated
below (blue is used and red is unused) where we use only 1/8 elements in the
cacheline. Note that the worst-case usage is losing a factor of 8 in memory
latency performance as well as memory bandwidth performance compared
to the best case usage shown just after the worst-case.

Now we are ready to investigate the way input data is actually stored:

mm_input(:,:,:) = 0

iw3 = 0

do k = 1,kmx

do j = 1,nmx

do i = 1,mmx

if (is_wet(i,j,k)) then

iw3 = iw3 + 1

mm_input(i,j,k) = iw3

endif

enddo

enddo

enddo

There are two obvious problems with this layout. First, the addressing of the
index array mm input itself will lead to the worst-case cache usage. Second,
all vectors addressed indirectly by this index will have the worst-case cache
usage. Let us try to illustrate this by showing the index numbers relating
to k = 2, i.e. relating to the set of wet-points just beneath the surface.
The model has iw2=13 wet-points in the surface, i.e. there are 13 water
columns. The green points are inactive points whereas the blue points are
active wet-points in this small example.

www.dmi.dk/dmi/tr12-11.pdf page 15 of 147

DMI
Technical Report 12-11

14 22

15 23

16 24

17 25

26

18

19

20

21

Note that the innermost k-loop will access element number 1,14,27,... in all
the indirectly addressed vectors. However, we are free to permute the index
in any way we like as long as we stick to the rule that the first iw2 points
constitutes the surface wet-points. This is the only constraint we have set
up. If we insist on having the k-loop as the innermost loop then we need to
permute the index arrays (mm, ind, kh) and all the input arrays u, v, T, S,
etc. And we will need to permute the data so that the k-loop will access
memory with stride-1 for k > 1, cf. below where we show all wet-points
for k > 1. The innermost k-loop will access (1,14,15,16,17), (2,18,19,20),
(3,21,22), ..., (13,55,56,57,58,59,60,61) in all the vectors. Splitting the in-
nermost k-loop into a surface (k = 1) and a below-surface subloop (k > 1)
allows for vectorization as we shall see later. The permutation of the index
arrays and the corresponding input arrays can be found in perm.f90.

The explicit loop structure reflected below is another way to express this

do j=1,n

do i=1,m

do k=1,km

... u_permuted(mmk_permuted(k,i,j)) ...

enddo

enddo

enddo

One should be aware that in the above, u permuted is accessed in all wet-
points, mmk permuted > 0, as well as in all land points, mmk permuted = 0.

In the code itself we recommend a loop structure like the one below where

www.dmi.dk/dmi/tr12-11.pdf page 16 of 147

DMI
Technical Report 12-11

14-17 36-40

18-20 41-45

21-22 46-47

23-24 48-54

55-61

25-26

27-29

30-33

34-35

the outermost loop runs over all surface wet-points and the innermost loop
runs down through each water column, cf.

surfacewetpointloop: do iw = 1,iwet2

i = ind(1,iw)

j = ind(2,iw)

do k = 1,kh(iw)

! all wet-points (k,i,j) are reached here

... u_permuted(mmk_permuted(k,i,j)) ...

enddo

enddo

This is re-structured for even better performance, by unrolling the surface
layer k = 1, which then can be out-factored in a separate surface loop:

surfacewetpoints: do iw = 1,iwet2

! all surface wet-points (1,i,j) are reached here

! access here is stride-1, allowing vectorization

... u_permuted(iw) ...

enddo

surfacewetpointloop: do iw = 1,iwet2

i = ind(1,iw)

j = ind(2,iw)

do k = 2,kh(iw)

! all deeper wet-points (k,i,j) are reached here

! access here is stride-1 allowing vectorization

... u_permuted(mmk_permuted(k,i,j)) ...

enddo

enddo

www.dmi.dk/dmi/tr12-11.pdf page 17 of 147

DMI
Technical Report 12-11

Please notice that the innermost loops now are stride-1 which will allow for
vectorization. This can be difficult to figure out in the last case, by the
human developer and especially by the compiler, so it is recommended to
give a little hint by re-writing the code to be more explicit on this fact:

surfacewetpointloop: do iw = 1,iwet2

if (kh(iw) <= 1) cycle surfacewetpointloop

i = ind(1,iw)

j = ind(2,iw)

do mi = mmk_permuted(2,i,j),mmk_permuted(kh(iw),i,j)

! all deeper wet-points (k,i,j) are reached here

! access here is CLEARLY stride-1

... u_permuted(mi) ...

enddo

enddo

2.6.1 Theoretical musings

Admitted, it is not all loops that only access the points in the water column
at hand. There are several loops that need to look at neighbouring water
columns too, i.e. when the loop access element 18 in the compressed vector
it also needs element number 41, and when it accesses element 19 it will
also need to access element 42 and so forth. This raises the question as
to whether or not it is worth considering another permutation than the
one presented in the last section, i.e. a mapping τ of the set of subsurface
wet-points, {iw2 + 1, iw3}, onto itself

τ : {iw2 + 1, iw3} 7→ {iw2 + 1, iw3}

in such a way that the cache access pattern is more efficient.

Before we try to answer this question we better recap a few simple facts
about the implementation:

• There are innermost k-loops that do not look at neighbouring points

• There are innermost k-loops that need to access neighbouring points

• There are NO innermost k-loops that need to access neighbouring
points whose lat/lon distance is more than 1 point away.

Thus, assume that we would like mm(i-1,j,k), mm(i+1,j,k), mm(i-1,j-1,k),
. . . , mm(i+1,j+1,k+1) to give rise to consecutive values in the arrays they
index so that we can access with stride-1. Can we find such a permutation?

www.dmi.dk/dmi/tr12-11.pdf page 18 of 147

DMI
Technical Report 12-11

Yes, since we can model these wishes using a sparse (wet-points x wet-points)
matrix A. That is, A(x, y) = 1 if and only if we wish to have wet-point index
X close to wet-point index Y and vice versa. If we assume that the matrix
is symmetric, i.e. if wet-points X is close to Y then Y must be close to X,
then the matrix maps directly into an undirected graph G = (V,E) with
vertices corresponding to the wet-points and the edges corresponding to the
desire of index closeness. This is a classical problem whose solution, i.e. the
optimal permutation, is given by a sparse-matrix-ordering algorithm. Now,
if the closeness criteria really represents the ordering in which the program
uses the index, then this approach will ensure an optimal cache usage but as
mentioned in the beginning of the section the real problem is that the usage
changes from one subroutine to another. Some will need that neighbouring
points are close, e.g. tflow.f90 that implements tracer advection and dif-
fusion, whereas others will not need neighbouring points close and thus will
suffer from such a permutation.

As the next section will show there is no current need for considering alter-
native permutations but we still find it relevant to keep these considerations
in mind as the implementation evolves.

2.6.2 Cache profiling

Below you will find cache profiling on one of our most important test-cases
running on the XT5 system today (the four-domain nested setup described
earlier).

TLB utilization 3628.74 refs/miss 7.087 avg uses

D1 cache hit,miss ratios 99.2% hits 0.8% misses

D1 cache utilization (misses) 120.18 refs/miss 15.022 avg hits

D1 cache utilization (refills) 48.18 refs/refill 6.023 avg uses

D2 cache hit,miss ratio 26.0% hits 74.0% misses

D1+D2 cache hit,miss ratio 99.4% hits 0.6% misses

D1+D2 cache utilization 162.31 refs/miss 20.288 avg hits

System to D1 refill 19.659M/sec 102268075776 lines

System to D1 bandwidth 1199.908MB/sec 6545156849664 bytes

D2 to D1 bandwidth 420.654MB/sec 2294548102784 bytes

It seems reasonable to consider cache hits rates a function of cache size and
the program’s memory reference pattern, so for this test-case we can con-
clude that the working set size is fitting nicely in D1, but the remaining
references are too big to fit into D2.

www.dmi.dk/dmi/tr12-11.pdf page 19 of 147

DMI
Technical Report 12-11

As for TLB13 performance, note that the profiling above is with 4KB pages
implying that we can have 512 real(8) elements per page. We see 3629
references (more than the 512) per miss, so we are almost certainly touching
every byte in the page. Moreover, note that ”avg uses” is greater than 1
and since the predominant memory access strides over all data in each page,
it is likely accessing every word of the page.

It is always worth to consider if we can improve the TLB performance by
changing the page size so let us do another back-of-the-envelope estimate
and compute how many pages a 3D variable will span. For the IDW sub-
domain each 3D variable will span 1583550/512 ≈ 3093 pages and so forth,
cf. table 1.

Domain iw3 4KB pages 2MB pages

NS 479081 936 3.7

IDW 1583550 3093 12.1

WS 103441 202 0.8

BS 671985 1313 5.1

Table 1: Number of pages required to store a 3D variable in each sub-
domain.

Looking at this table it should be pretty obvious that going for larger pages
is not the way to go for this test-case. If we do that then we will see a lot
of remote memory references when running on multiple sockets and we will
not be able to openMP scale the application, since a page is the smallest
unit that we can place on the sockets.

13A translation look-aside buffer (TLB) is a cache that memory management hardware
uses to store translations of virtual addresses.

www.dmi.dk/dmi/tr12-11.pdf page 20 of 147

DMI
Technical Report 12-11

3 Nesting

The word ”nesting” has many interpretations in the oceanographic commu-
nity and elsewhere. Sometimes, ”nesting” is just stated without any further
definition. In the following we will attempt to clarify what we mean by
”nesting” in the framework of HBM.

Often terms like ”coarse grid” and ”fine grid” are used to reflect the relative
resolution of two domains. But in the context of nesting in HBM, this can
be misleading because we have to deal with more nesting levels and because
two domains exchanging information need not have different horizontal res-
olutions. A more correct way is referring to the domains as ”enclosing” or
”inclosing”.

Nesting in HBM is used as a practical means of setting up models with dif-
ferent demands of high horizontal resolution, high vertical resolution, large
toplayer size and small time step size in different parts of the modelled re-
gion. With nesting it becomes feasible to run models operationally that
would otherwise be too computationally demanding if one e.g. had to set
up the model with the smallest grid spacing and the smallest time step size
throughout the entire domain. Alternatives to nesting could in some situa-
tions be curvi-linear grids or unstructured grids, or even regular structured
grids which are computationally decoupled from each other with transfer
boundaries between.

3.1 Hydrodynamic nesting procedures

3.1.1 Fully dynamical two-way nesting

The HBM code is designed for any number of fully dynamical two-way nested
areas exchanging mass and momentum between each other across their bor-
ders at the numerical time step level so as to obtain continuity of transports
and thereby also conservation of mass. For practical reasons, we have lim-
ited the maximum allowed number of nested areas to 99; we have to date
not worked with any setup having more than 12 nested areas and there is
no real operational application running today which has more than 4 so we
expect this number to be sufficient for a while, else it is a simple matter to
increase it.

The enclosing and inclosing domains are ”glued” together across their mu-
tual border:

www.dmi.dk/dmi/tr12-11.pdf page 21 of 147

DMI
Technical Report 12-11

• Nesting from the enclosing (or coarse) grid to the inclosing (or fine)
grid uses momentum equation and enclosing grid velocity components
to obtain inclosing grid velocity components at border.

• Nesting from inclosing (fine) grid to enclosing (coarse) grid uses inclos-
ing grid velocity components to obtain enclosing grid velocity compo-
nents just inside the border.

3.1.2 One-way nesting

Another, more simple way of nesting is by use of so-called fjord models.
Here the nesting is one-way, from a coarser grid to a finer grid only. The
fine grid domain (the fjord) is forced along its open lateral boundaries by
prescribed water levels boundary conditions obtained from the coarse grid.
There is no feed-back from fine grid to coarse grid.

The one-way nesting facility has, however, not been implemented yet; this
is left for a future release of HBM.

3.1.3 Vertical nesting

Nesting from a horizontally coarse grid to a finer grid may also involve
nesting to a vertically finer grid. If so, there must be an integer number of
vertical fine grid layers inside each coarse grid vertical layer.

3.1.4 Time step levels

When nesting to finer grids, it might be useful to do computations with
a smaller time step size. In HBM this is done by having different time
step levels. When you go from one time level to next, the time step size is
decreased by a factor of 2 if you have more than two nesting domains (this
restriction might very well be subject to change in near future). If you have
only two nested domains, the time step size may be decreased by any integer
factor.

3.2 Computational flow of nested hydrodynamics

The module cmod hydrodynamics wraps the solutions of the nested hydro-
dynamic equations. It uses recursion, since solution of nesting level #level
requires solution of the next higher level #level+1:
The main area (area #1, hard-coded as mainarea=1, see subsection Nesting

www.dmi.dk/dmi/tr12-11.pdf page 22 of 147

DMI
Technical Report 12-11

Variables) is on time level #1 (level=1), defines the master time step size
(which again defines the computational cycle) and should make one time
step evolution only once per computational cycle. There can be more do-
mains on time step level #1.

If there is more than two time step levels, the next subsequent time step
levels have the following structure:
On time step level #2, which has half the time step size, we run through
two time step evolutions per computational cycle (which is also twice pr
evolution on the previous level #1). Then, on time step level #3, which has
half the time step size compared to level #2, we run through two time step
evolutions per previous level (which is 4 times per computational cycle).
And so on.

If there is only two time step levels, the time step sizes can be chosen more
freely:
The time step size of the main area is an integer multiple of the time step
size of time step level #2.

In short, this amounts to the following pseudo-code flow chart which starts
from the main program by solving for the lowest time step level, which is
the time step level of the main area

call SolveHydrodynamics (timelevel(mainarea))

i.e. nesting outside-in. The subroutine SolveHydrodynamics goes like this:

subroutine SolveHydrodynamics (level)

! run through the partial time levels at the

! present time nesting level

do itl=1,max_iterations_on_this_level

! solve momentum equations on this level

do ia=1,narea

if (.not.onthislevel(ia,level)) cycle

call SolveMomEq (ia,itl)

enddo

! solve the next level hydrodynamics

call SolveNextLevel (level+1)

! solve the mass equations on this level

do ia=1,narea

if (.not.onthislevel(ia,level)) cycle

itn = timelevelsize(ia)

call SolveMassEq (ia,itl,itn)

enddo

www.dmi.dk/dmi/tr12-11.pdf page 23 of 147

DMI
Technical Report 12-11

enddo

end subroutine SolveHydrodynamics

and the solution of the next level is simply:

subroutine SolveNextLevel (level)

if (level <= maxtimelevels) then

call SolveHydrodynamics (level)

endif

end subroutine SolveNextLevel

In the above, the domains are enumerated by ia from 1 to narea. This
enumeration is used as indices to look-up the relevant data-structures for
the domain at hand. The spatial and temporal resolutions associated with
each of these domains are user-specified through configuration files read in
during model initialisation.

Spatial nesting levels and time step levels need not be the same. The con-
straint made here is that we select one domain, the main area, which is on
nesting level #1 and time step level #1. Only this main area can have open
lateral boundaries.

You can nest to area(s) on a higher spatial nesting level (with any positive
integer factor between spatial resolution grid spacings) and/or a higher time
step level.

Possibly, at a later stage we will make the model even more general by re-
laxing those restrictions. It can be done, but it requires some more careful
design. But at the moment a further generalisation is not justified.

We expand the above-shown pseudo-code a little to put more focus on where
the actual nesting of different prognostic hydrodynamic variables takes place.
First, in SolveMomEq, we solve the momentum equations of area #ia in the
interior of the domain i.e. updating u,v to un,vn, and then we can obtain
the velocity components near the outer borders of domain #ia by solving
the momentum equations for un,vn with latest velocity components from
enclosing domain(s) #iia prescribed at the borders:

subroutine SolveMomEq (ia, ...)

! solve momentum equations for interior points:

call momeqs(u(ia)%p, v(ia)%p, un(ia)%p, vn(ia)%p, ...)

! fix velocity by nesting:

www.dmi.dk/dmi/tr12-11.pdf page 24 of 147

DMI
Technical Report 12-11

do iao=1,nestingfrom(ia)%p(0)

! ia: inclosing domain, iia: enclosing domain

iia = nestingfrom(ia)%p(iao)

call mom_c_f(u(ia)%p, v(ia)%p, un(ia)%p, vn(ia)%p, ... &

un(iia)%p, vn(iia)%p)

enddo

end subroutine SolveMomEq

Then, in SolveMassEq, we use the newest un,vn of present area #ia to obtain
un,vn of any possible enclosing domain #iia at cell faces just inside the
region covered by the inclosing area #ia; this is done by simple conservation
of cell face fluxes. Since we at this stage of the computational cycle have all
velocity components of present domain #ia updated, we can solve the mass
equations in the interior of the present domain, updating z to zn and also
updating diagnostic variable w. With zn(ia) in place we can distribute the
solution to the enclosing domains in copy f g sfc. Finally, we can update
zn(ia) and w(ia) along the border points using mass equation with fine
grid velocities at interior cell faces and coarse grid velocities at exterior cell
faces.

subroutine SolveMassEq (ia, ...)

! fix velocity along border:

do ii=1,nestinglevels(ia)

! iia: enclosing domain, ia: inclosing domain

iia = nestingto(ia)%p(ii)

call mom_f_c (un(ia)%p, vn(ia)%p, un(iia)%p, vn(iia)%p, ...)

enddo

! solve mass equations for zn and w at interior points:

call masseqs(z(ia)%p, zn(ia)%p, w(ia)%p, un(ia)%p, vn(ia)%p, ...)

! distribute z to enclosing domains:

do ii=1,nestinglevels(ia)

! iia: enclosing domain, ia: inclosing domain

iia = nestingto(ia)%p(ii)

call copy_f_g_sfc (zn(ia)%p, zn(iia)%p, ...)

enddo

! update z and w in fine grid along border:

do iao=1,nestingfrom(ia)%p(0)

! ia: fine grid, iia: coarse grid

iia = nestingfrom(ia)%p(iao)

call rand_z(zn(ia)%p, z(ia)%p, un(ia)%p, vn(ia)%p, &

un(iia)%p, vn(iia)%p, ...)

call w_c_f(w(ia)%p, zn(ia)%p, z(ia)%p, un(ia)%p, vn(ia)%p, &

un(iia)%p, vn(iia)%p, ...)

www.dmi.dk/dmi/tr12-11.pdf page 25 of 147

DMI
Technical Report 12-11

enddo

end subroutine SolveMassEq

3.3 Nesting variables

Most of the nesting is defined though the basic parameters set up in module
cmod params. All of these are configurable from user input, except these
two which have predefined values:

integer(4), parameter, public :: maxareas = 99 ! Max No. of areas

integer(4), parameter, public :: mainarea = 1 ! No. of the main area/domain

Other simple nesting variables describe the number of two-way nested areas
and one-way nested domains (so-called fjord models), as well as the total
number of domains:

integer(4), save, public :: narea ! No. of dynamically two-way nested areas

integer(4), save, public :: nfjord ! No. of one-way nested fjord models

integer(4), save, public :: ntotal ! Total No. of nested domains

Obviously, the last is the sum of the other two. The one-way nesting facility
has, however, not been implemented yet; this is left for a future release of
HBM.

The cmod params module contains the following arrays storing the defini-
tions of the spatial and temporal nesting:

logical, allocatable, save, public :: onthislevel(:,:)

integer(4), allocatable, save, public :: timelevel(:), nestinglevels(:)

integer(4), allocatable, save, public :: enclosing(:,:), timelevelsize(:)

type (cmi1), pointer, save, public :: nestingto(:), nestingfrom(:)

type (cmi2), pointer, save, public :: kfg(:), iga(:), jga(:)

type (cmi2), pointer, save, public :: znesting(:), unesting(:), vnesting(:)

which we shall attempt to document in the following.

The four arrays timelevel(:), timelevelsize(:), nestinglevels(:) and
nestingto(:)%p(:) are initialised according to user-specifications. At-
tempt is made to have them ”sanity-checked” to avoid the most obvious
specification errors, but there is no guarantee that cases can occur that
make the bookkeeping of the nesting crash.

www.dmi.dk/dmi/tr12-11.pdf page 26 of 147

DMI
Technical Report 12-11

timelevel(ia) : identifies the time step nesting level for area #ia; it

should equal 1 for the coarse grid (mainarea) with the

largest time step and for those domains on the same

time-level. A higher value means higher time-nesting

level (i.e. smaller time step).

timelevelsize(ia) : the No. of subdivision of time step size for area #ia

compared to the time step size of the main area.

nestinglevels(ia) : gives the number of immediately inclosed nesting areas

to area #ia, i.e. how many domains does area #ia nest

to. It should be zero for domains on the highest

nesting level.

nestingto(ia)%p(nl) : for nl in {1:nestinglevels(ia)} this gives the number

of the area(s) that area #ia is nesting to.

It is useful to define other look-up tables to keep track of the nesting:

is area #ia on time level #itl: onthislevel(ia,itl)

order of area #iia enclosing area #ia: enclosing(ia,iia)

No. of areas nesting from area #ia: nestingfrom(ia)%p(0)

areas nesting from area #ia in given order: nestingfrom(ia)%p(1:)

i.e. if area #iia is nesting to area #ia, the value of the simple index variable:

iia

equals the value of the rather complex construction:

nestingfrom(ia)%p(enclosing(ia,iia))

The last six arrays are used for storing the grid indices of the nesting.

iga(iia)%p(ir,iao) : with fine grid area #iia inclosed into a coarse grid

area of order iao, this is in the north -> south

direction

for ir = 1 : the index of the fine grid origin in

coarse grid coordinates

for ir = 2 : the number of fine grid points in one

coarse grid point; usually this number is

even

for ir = 3 : displacement of fine grid relative to

coarse grid; usually

iga(iia)%p(3,iao) = iga(iia)%p(2,iao)/2

jga(iia)%p(ir,iao) : same as iga(:)%p(:,:) but for the west -> east index

www.dmi.dk/dmi/tr12-11.pdf page 27 of 147

DMI
Technical Report 12-11

kfg(ia)%p(k,ii) : for coarse grid #ia and fine grid at nesting level #ii,

this gives the number of fine grid vertical layers

inside coarse grid layer #k.

znesting(iia)%p(iao,1:2) : first and last index of the border of fine grid

#iia inclosed in coarse grid of order ioa.

unesting(ia)%p(ii,1:2) : first and last index of the u-border of coarse

grid #ia nesting to fine grid level #ii.

vnesting(ia)%p(ii,1:2) : first and last index of the v-border of coarse

grid #ia nesting to fine grid level #ii.

In the above, please note that

ii = 1:nestinglevels(ia)

and an easy way to obtain iao is through

iao = enclosing(ia,iia)

3.4 Nesting details

Here we attempt to describe in detail some implementation features of the
nesting in HBM. To follow the computational flow of nested hydrodynamics,
have a look at the pseudo-codes presented in section 3.2.

The following border types are defined in the variables krz, kru, and krv,
see table 27, for the respective border:

unknown border type: < 0, no action

not a border: 0, no action

W border: 1

N border: 2

E border: 3

S border: 4

That is, on a z-border the type (W/N/E/S) is seen from inclosed/fine grid,
while for u- and v-borders the type is as seen from the enclosing/coarse grid.

3.4.1 Momentum

The nesting from enclosing grid to the inclosed grid uses momentum equa-
tion and velocity components of the enclosing grid to obtain velocity compo-
nents of the inclosed grid at the border. The z -border points (as seen from
the inclosed/fine grid) along each border must be enumerated in a specific
order in increments of 1:

www.dmi.dk/dmi/tr12-11.pdf page 28 of 147

DMI
Technical Report 12-11

W: from S to N

N: from W to E

E: from N to S

S: from E to W

Each border must be fully connected in the specifications. There can be more
than one border of each type. Convex corners (as seen from inclosed grid)
need special treatment. The corner point (in inclosed grid) must be defined
on both of the joined borders, enumerated by an increment of 1 clockwise,
eg for a W/N corner, where the W border ends at (say) border-point No. 7,
the N border must start at border-point No. 8. Concave corners (as seen
from inclosed grid) need no special treatment with the present method.

The nesting from inclosed grid to enclosing grid uses velocity components
of the inclosed grid to obtain velocity components of the enclosing grid just
inside the border. The u and v cell faces (as seen from the enclosing/coarse
grid) along each border must be enumerated in a specific order in increments
of 1:

E: from S to N

S: from W to E

W: from N to S

N: from E to W

There can be more than one border of each type. Each border must be fully
connected in the specifications. The u- and v -borders must be specified such
that all momentum points of the enclosing grid one point inside the border
are covered with start and end either at a land point or continuing at/from
another u- or v -border of another border type (i.e. a corner). Corner points
must not be duplicated to model nesting corners, i.e. concave corners points
(as seen from enclosing grid) should NOT appear in the specification since
this would complicate this nesting procedure more than intended, and con-
vex corners (as seen from enclosing grid) should be specified in only one of
the joining borders.

The algorithm can be sketched as follows. With subscript f denoting the
inclosed (or fine) grid and subscript c denoting the enclosing (or coarse)
grid, we have at any point:

grid spacing factor: F = dxf/dxc
area of cell face: Ac = Af = A
transport across cell face: Tc = Tf = T

www.dmi.dk/dmi/tr12-11.pdf page 29 of 147

DMI
Technical Report 12-11

As seen from the inclosed grid, we have

area: A =
N
∑

i=1

hf,idxf

transport: T =
N
∑

i=1

hf,iuf,idxf

with a 1 : N nesting ratio in the considered direction (x as an example) and
h denoting the cell face height. As seen from the enclosing grid, we can then
assign

hc = A/dxc = F
N
∑

i=1

hf,i

uc = T/A = T/(hcdxc) =
N
∑

i=1

hf,iuf,idxf/
N
∑

i=1

hf,idxf

implying continuity of transports and thereby also conservation of mass.

3.4.2 Mass

Nesting of water level from enclosing grid to inclosed grid is performed by
solving the fine grid mass equations with enclosing grid velocity components
prescribed at the border faces of the grid cells.

When levels have of the inclosed grid have been obtained, we extract these
values where they (partially) cover a grid cell in the enclosing grid, make a
grid cell averaging and assign at the enclosing grid points

zc =
NM
∑

i=1

zf,idxf,idyf,i/
NM
∑

i=1

dxf,idyf,i

assuming a 1 : N by 1 : M nesting.

3.4.3 Tracers

Nesting of tracers, i.e. salinity and temperature, and passive tracers from
e.g. biogeochemical models, is best described by describing the major com-
putational flow including nesting procedures. The following pseudo-codes
are snipped from inside the time loop, after we have updated u,v,z in
SolveHydrodynamics. It starts by performing nesting of the tracers fol-
lowed by tracer advection:

www.dmi.dk/dmi/tr12-11.pdf page 30 of 147

DMI
Technical Report 12-11

! Tracer nesting:

do ia=1,narea

do ii=1,nestinglevels(ia)

! iia: fine grid ia: coarse grid

iia = nestingto(ia)%p(ii)

! Tracer boundary values coarse grid-->fine grid:

! step 1: find coarse grid values just outside border:

call bndstz(cmp(ia)%p, bndz(iia)%p, ...)

! step 2: advect boundary values at inflow points:

call bndzst(cmp(iia)%p, bndz(iia)%p, ui(iia)%p, vi(iia)%p, ...)

! Tracer boundary values fine grid-->coarse grid:

! step 1: coarse grid S/T by cell-averaging from fine grid

! (performed in copy_g_f during previous time step).

! step 2: advect boundary values at inflow points (f-->c):

call bnduvst(cmp(ia)%p, cmp(iia)%p, ui(ia)%p, vi(ia)%p, ...)

enddo

enddo

! Run through all areas and do advection

do ia=1,narea

call tflow(cmp(ia)%p, ui(ia)%p, vi(ia)%p, w(ia)%p, DoAdvec, ...)

enddo

Then, before we can perform diffusion, we need to nest the results of the
tracer advection step from the inclosed grid to the enclosing grid near the
borders, and after we have finished the calculation of diffusion we can extract
the inclosed grid values to the enclosing grid where the two grids overlap:

! do tracer nesting ’coz it was likely modified during advection:

do ia=1,narea

do ii=1,nestinglevels(ia)

! iia: fine grid, ia: coarse grid

iia = nestingto(ia)%p(ii)

! Tracer boundary values fine grid-->coarse grid:

call brdcopy(cmp(ia)%p, cmp(iia)%p, ...)

enddo

enddo

! do the diffusion:

do ia=1,narea

call tflow(cmp(ia)%p, dispv(ia)%p, eddyh(ia)%p, DODiff, ...)

enddo

do ia=1,narea

do iao=1,nestingfrom(ia)%p(0)

! ia: fine grid, iia: coarse grid

www.dmi.dk/dmi/tr12-11.pdf page 31 of 147

DMI
Technical Report 12-11

iia = nestingfrom(ia)%p(iao)

! do fine-->coarse grid copy

call copy_f_g (cmp(ia)%p, cmp(iia)%p, ...)

enddo

enddo

The extraction performed in brdcopy and in copy f g is similar to what
is done in copy f g sfc and described in the previous subsection for water
level, except that we need to take into account the vertical grid refinement,
too:

Tc =
NMK
∑

i=1

Tf,ihf,idxf,idyf,i/
NMK
∑

i=1

hf,idxf,idyf,i

where T signifies the grid point value of any tracer, and we assume a 1 : N
by 1 : M by 1 : K nesting at the considered coarse grid point.

If there are any processes involved other than advection/diffusion, we must
repeat the copy f g for the relevant tracers after such processes have fin-
ished. These processes are thermodynamics which affect the temperature
tracer, and the biogeochemical processes which affect the passive biogeo-
chemical tracers.

3.5 Setting up nested models

The general model setup is specified through the HBM configuration file
called cfg.nml which contains NAMELISTs. In the first, called cfglist, you
specify the number of two-way nested areas. In the second and subsequent,
one for each domain, all called cfgfn, you give the file names for the grid
specification file and for the bathymetry file as well as information on time
level and nesting. Thus, a case with two domains is specified with three
NAMELISTs as follows:

&cfglist

narea = 2

/

&cfgfn

cfgfile_in = "data_coarse"

bathyfile_in = "coarse_grid_depth"

timelevel_in = 1

nestinglevels_in = 1

nestingto_in = 2

/

&cfgfn

cfgfile_in = "data_fine"

www.dmi.dk/dmi/tr12-11.pdf page 32 of 147

DMI
Technical Report 12-11

bathyfile_in = "fine_grid_depth"

timelevel_in = 2

nestinglevels_in = 0

nestingto_in = 0

/

The origin of a specific inclosed sub-domain with respect to ALL the enclos-
ing domains nesting to that specific domain must be specified together with
the nesting ratios and grid displacements. This is done in the respective
cfgfile in file.

In case there are more than two domains, you need to specify which parts of
the z-, u- and v-borders that are nesting to/from which sub domain. This
is done at the bottom of the respective cfgfile in file. First, for each
finer, inclosed domain, you specify which z-border points are nesting from
which enclosing areas. Then, for each enclosing domain, you specify which
uv-border points are nesting to which inclosing areas.

In the following we give some examples to clarify various issues in setting
up nested models.

3.5.1 Defining borders

The figure above is an example that demonstrates nesting borders as seen
from enclosing domains and from inclosed domains. Thus focus here is on
the sub-domain that covers two inclosed domains and which itself is inclosed
into two other domains. That is, this particular sub-domain is nesting from
two enclosing domains and is nesting to two inclosed domains. Its origin is

www.dmi.dk/dmi/tr12-11.pdf page 33 of 147

DMI
Technical Report 12-11

(96,63) in the left enclosing grid and (108,19) in the enclosing grid to the
right. In both cases, we have a 1:6 nesting with a -3 displacement. The sub-
domain has 45 z-border points, where the first 22 are nesting from enclosing
area of order 1 and the rest (23-45) is nesting from the next enclosing area.
The nesting to inclosed area of order 1 is through the first 11 u-border points,
while nesting to inclosed area of order 2 is through the 17 u-border points
(numbers 12-28) and through 16 v-border points. This would be specified
like this:

==

Origin of fn grid in enclosing crs grid I J

z(1,1) is located in row(I), column(J): 96 63

No. of fn grid cells in crs grid cell : 6 6

Displacement of z(1,1) relative to crs: -3 -3

z(1,1) is located in row(I), column(J): 108 19

No. of fn grid cells in crs grid cell : 6 6

Displacement of z(1,1) relative to crs: -3 -3

==

Z-borders nz1 nz2

Nest from order 1 at these: 1 22

Nest from order 2 at these: 23 45

==

UV-borders nu1 nu2 nv1 nv2

Nest to order 1 at these: 1 11 0 0

Nest to order 2 at these: 12 28 1 16

3.5.2 Other aspects

In the previous subsection we saw how to define the border points for u−,
v− and z-borders. In this subsection, we focus on defining the nesting
hierarchy. We treat a nested configuration with seven domains and a layout
of the domains as sketched in the figure below.

www.dmi.dk/dmi/tr12-11.pdf page 34 of 147

DMI
Technical Report 12-11

The main area, #1, is on time level #1. The main area nests to areas #2
and #4 which are both on time level #2. Area #2 encloses area #3 which
is on time level #3. Area #5 is fully inclosed into are #3, while area #6 is
nesting the two areas #2 and #3. Both area #5 and #6 are on time level
#4. Finally, area #4 has one inclosed area, #7, which is on the same time
level, #3, as area #3.

This configuration can be specified in the cfg.nml as:

&cfglist

narea = 7

/

&cfgfn

cfgfile_in = "data_1"

bathyfile_in = "grid_1"

timelevel_in = 1

nestinglevels_in = 2

nestingto_in = 2, 4

/

&cfgfn

cfgfile_in = "data_2"

bathyfile_in = "grid_2"

timelevel_in = 2

nestinglevels_in = 2

nestingto_in = 3, 6

/

&cfgfn

cfgfile_in = "data_3"

bathyfile_in = "grid_3"

timelevel_in = 3

nestinglevels_in = 2

www.dmi.dk/dmi/tr12-11.pdf page 35 of 147

DMI
Technical Report 12-11

nestingto_in = 5, 6

/

&cfgfn

cfgfile_in = "data_4"

bathyfile_in = "grid_4"

timelevel_in = 2

nestinglevels_in = 1

nestingto_in = 7

/

&cfgfn

cfgfile_in = "data_5"

bathyfile_in = "grid_5"

timelevel_in = 4

nestinglevels_in = 0

/

&cfgfn

cfgfile_in = "data_6"

bathyfile_in = "grid_6"

timelevel_in = 4

nestinglevels_in = 0

/

&cfgfn

cfgfile_in = "data_7"

bathyfile_in = "grid_7"

timelevel_in = 3

nestinglevels_in = 0

/

There is some help to get. By switching on the namelist parameter ldebug
in the namelist called optionlist in the file option.nml, i.e.:

&optionlist

ldebug = .false.

/

you will get a lot of printouts when running HBM, some of which might
prove very useful when validating your model setup. In particular, you can
validate that your nested model setup is interpreted as intended. For the
seven area case shown above, you can get the explanation shown below from
which you may convince yourself that the domain hierarchy is as expected
(left as an exercise for the reader to enjoy :)).

Area

sub level, domain, on time level

1

1 2 2

www.dmi.dk/dmi/tr12-11.pdf page 36 of 147

DMI
Technical Report 12-11

1

2 4 2

2

1 3 3

2

2 6 4

3

1 5 4

3

2 6 4

4

1 7 3

Area: 1

nesting to: 2 4

not nesting from any enclosing domain.

Area: 2

nesting to: 3 6

nesting from: 1

Area: 3

nesting to: 5 6

nesting from: 2

Area: 4

nesting to: 7

nesting from: 1

Area: 5

not nesting to any sub domain.

nesting from: 3

Area: 6

not nesting to any sub domain.

nesting from: 2 3

Area: 7

not nesting to any sub domain.

nesting from: 4

Loop inside-->out

fine grid, coarse grid

6 2

6 3

5 3

7 4

3 2

4 1

2 1

www.dmi.dk/dmi/tr12-11.pdf page 37 of 147

DMI
Technical Report 12-11

4 Parallelization

Before we describe the different approaches we present our initial design
goals:

• The code will run in serial (and we must be able to build it on systems
that have no support of MPI, openMP or openACC).

• The code will run with openMP solely (and we must be able to build
it on systems that have no support of MPI and openACC). It must be
possible to run it with a single thread.

• The code will run with MPI solely (and we must be able to build it
on systems that have no support of openMP and openACC). It must
be possible to run with a single MPI task too.

• The code will run with MPI and openMP. This is the default way of
running HBM (and we must be able to build it on systems that have
no support of openACC). It must be possible to run with a single MPI
task and/or a single thread.

The actual decomposition into a number of openMP threads and/or MPI
tasks must be user-configurable at runtime. We do not want to re-compile
just because we choose to run with a different number of threads and/or
tasks: Each new compilation produces a new executable code which in prin-
ciple must be tested, so re-compilation means re-validation, and an endless
loop has begun.

Moreover, the application must be able to run in all configure incarnations
serial, openMP, MPI, and combinations hereof - and produce the exact same
results on any given test-case with any number of openMP threads and MPI
tasks. The experimental openACC port is a bit more involved when it comes
to cross comparisons as explained in details in the openACC subsection.

In the following subsections we describe how the different parallelization
paradigms have been introduced into the code. We start the survey by
describing our considerations on geometric decomposition for the irregularly
shaped domains that we are generally dealing with. Then we proceed with
a short note on vectorization, followed by in-depth description of our work
on openMP, MPI and openACC.

www.dmi.dk/dmi/tr12-11.pdf page 38 of 147

DMI
Technical Report 12-11

4.1 Geometric decomposition

We have used the geometric decomposition pattern to split the overall prob-
lem into smaller sub-problems. For openMP we split the overall problem
either into sets of horizontally irregular 1D chunks or irregular 2D sets of
water columns (depending on whether or not the subroutine at hand op-
erates in 2D or 3D). For MPI we split the overall problem into regular
latitude-longitude sub-rectangles.

For many computational problems the task of splitting the problem into a
balanced set of subproblems is trivial. For this particular problem this is far
from true. We illustrate this in figure 2 where we have plotted the IDW sub-
domain pertaining to the usual test-case combined with histograms: The
colour coding shows the number of wet-points below each surface points,
white is on land, and the colour scale runs from dark blue for 1 point to
dark red for 75 points. The histogram to the right shows the distribution
of number of wet-points along each zonal (i.e. constant latitude) grid line.
The upper histogram shows the distribution of number of wet-points along
each meridional (constant longitude) grid line. The problem at hand is how
to define a decomposition into sub-domains for real examples like this one,
to meet criteria like each sub-domain should have approximately the same
number of wet-points, the same number of neighbour water columns, the
same distribution of column lengths within each domain, etc. It is worth
mentioning that this problem is much more relavant for the regional models
with very fine resolution than it is to the global ocean models. The resolution
in the global models is so coarse that the domain looks more like a bath-
tub with around 50-60% of the grid-points being wet-points, cf. appendix C.

Before we describe the actual decomposition strategies we present the prob-
lem of geometric decomposition in a more general fashion. It can formally
be stated as an optimization problem with constrains:

The input is described by a 2D grid defined by the surface points (p1, ..., pM)
with corresponding weights (w1, ..., wM). The weights are simply defined as
the number of wet-points in the vertical direction below each surface point
pi (i.e. the k-dimension). This grid must be covered by N subsets r1, ..., rN
with weights vi such that the balance score C is minimized:

vi = v(ri) =
∑

pj∈ri

wj

www.dmi.dk/dmi/tr12-11.pdf page 39 of 147

DMI
Technical Report 12-11

Figure 2: Illustration of how irregular the IDW sub-domain is in terms of
3D wet-points. See text for explanation.

C = max
1≤i≤N

vi − min
1≤i≤N

vi

Note that this is a classical Knap-Sack problem, cf. [4] and consequently NP-
hard, cf. [2]. Below we present an alternative set-partitioning formulation
of (2) above :

min
1≤i,j≤N

|vi − vj | s.t. Ax = 1, x ∈ {0, 1}N

That is, each column in the matrix A corresponds to a possible subset and
each row corresponds to a point in the grid. The coefficients aij tell whether

www.dmi.dk/dmi/tr12-11.pdf page 40 of 147

DMI
Technical Report 12-11

or not point pi belongs to subset rj .

For practical purposes it is often more convenient to describe the balance
score in terms of a quotient instead of a difference:

C∗ =
max1≤i≤N vi
min1≤i≤N vi

Note that the general decomposition problem described above where we
basically consider all water columns as being totally independent is very
idealized. It does not deal with any of the practical issues that one has to
take into account when doing the implementation using one of the parallel
models, e.g.

• It does not take water column dependencies into account, i.e. neither
implicit nor explicit halo communication is taken into account.

• It does not take communication related to nesting, boundary condi-
tions or IO into account.

• It does not take irregular dynamics on top of the overall geometry into
account, e.g. the ice dynamics is typically not active in all wet-points
but present in geographically isolated sub-areas only.

• It does not take inactive points into account. That is, it assumes that
the work required to handle 150 water columns in shallow area (say
all with a single layer) should be equivalent to the work required to
do a single water column with 150 layers, which most likely will not
be the case.

Even if the problem was solvable in theory it would still be quite complicated
in practice, handling the book-keeping of the halo-regions stemming from
an irregular, but optimal decomposition. Let us look at the bright side: The
fact that we cannot solve it in theory relieves us from the burden of trying
to deal with these practical problems :). Instead we will focus our attention
on implementing various heuristics and then measure (using relevant test-
cases) whether or not they seem sufficient for our purpose. That is, we will
follow the same pragmatic approach as we did when we dealt with the cache
permutations earlier and simply lean back and observe (by profiling) how
far it will take us, and then judge how good or how bad that is.

www.dmi.dk/dmi/tr12-11.pdf page 41 of 147

DMI
Technical Report 12-11

4.2 Vectorization

As we have seen in chapter 2 on data structures it is possible to vectorize
most of the innermost k-loops but in the test-cases we have today k will
not exceed 150. This is still reasonable for SSE and VEX instructions with
a vector-length of 2 and 4 for real(8) elements, respectively, but for true
vector machines a maximal trip-count of 150 is not sufficient for good per-
formance. In the advection and diffusion code, cf. tflow.f90, there are
several innermost k-loops that have vector instructions of a size equal to the
number of tracers. In pure hydrodynamics there are just two tracers (S and
T) but when for example a bio-geo-chemical model is included we can have
many tracers, currently up to 32, and then for these loops one could consider
loop-fusion and thereby obtain a maximal vector-length of 32*150. For all
the other loops (and also for the cases without the many passive tracers)
one have to do something more involved than simple loop fusion. One thing
could be to interchange the loops like this:

do k = 1,kmax

surfacewet-pointloop: do iw = 1,iw2

if (k<kh(iw)) then

i = ind(1,iw)

j = ind(2,iw)

! all wet-points (k,i,j) are reached here

endue

enddo

enddo

Alternatively, one can construct yet another index indv and according bounds
indvl(1:kmax), indvu(1:kmax) and then sort the wet-points according to
kh. Then the innermost loop iterates over all wet-points with kh(iw) ≥ k.
That is:

do k = 1,kmax

do vi = indvl(k),indvu(k)

iw = indv(vi)

i = ind(1,iw)

j = ind(2,iw)

! all wet-points (k,i,j) are reached here

enddo

enddo

or one can permute all arrays according to this layout and re-structure the
entire code to have the k-loop as the outermost loop, cf. section 2.6, and
then do something like this:

www.dmi.dk/dmi/tr12-11.pdf page 42 of 147

DMI
Technical Report 12-11

do k = 1,kmax

do iw = vindl(k),vindu(k)

i = ind(1,iw)

j = ind(2,iw)

! all wet-points (k,i,j) are reached here

enddo

enddo

We must, however, remember the five important constraints set up in the
introduction section; here we may be struck by the last one: The above
strategies might turn out to be of limited use since the major, most compu-
tationally heavy routines (e.g. the momeqs) make use of implicit solvers in
the k-direction, so re-constructing the code to having outermost k-loops is
not a straight-forward thing to do.

4.3 openMP

The implementation of openMP in HBM has generally been accomplished
through code pushing, i.e. the parallel regions have been pushed into the
caller to ensure as large parallel chunks as possible. That is, the code looks
like this:

...

!$OMP PARALLEL DEFAULT(SHARED)

call foo(...)

call bar(...)

!$OMP BARRIER

call baz(...)

!$OMP END PARALLEL

...

and foo(), bar(), baz() are modified so that the outer loops confine to a
subset determined by the current thread number. Moreover, each subrou-
tine has been carefully reviewed for required memory barriers.

The user specifies the number of openMP threads at run time. The domain
decomposition is controlled by overloading the subroutine domp get domain

with various heuristics depending on the situation at hand, e.g. one routine
may need to split the work on active ice-points whereas another may need
to split work on wet-points and yet another will split in the west-east in-
dex j. Having said that, there is one splitting heuristics that is used most
intensively and which might serve as the example here. It goes like this:

www.dmi.dk/dmi/tr12-11.pdf page 43 of 147

DMI
Technical Report 12-11

call domp_get_domain(kh, 1, iw2, nl, nu, idx)

do nsurf=nl,nu

i = ind(1,nsurf)

j = ind(2,nsurf)

! all threadlocal wet-points (:,:,:) are reached here

...

enddo

Note that it is a good idea to use the same decomposition for the same set of
variables in all the openMP blocks where they appear. Otherwise one will
see NUMA effects when trying to scale the application (see e.g. the next
subsection).

The actual implementation of domp get domain used above will try to load-
balance the set 1:iw2 into subsets such that each thread ti gets approxi-
mately iw3/nt computational points with nt being the number of threads
used at runtime, cf. the figure below where nt=4, iw3=61 and where t1 gets
to handle 1:4,14:24, t2 handles 5:8,25:35, t3 handles 9:11,36:47 and finally t4
handles 12:13,48:61.

14-17 36-40

18-20 41-45

21-22 46-47

23-24 48-54

55-61

25-26

27-29

30-33

34-35

Note that this strategy may lead to a quite reasonable load-balancing in
practice but as revealed in the section on geometric decomposition this is
not an optimal solution and it is easy to imagine an input-set where this
will be a totally hopeless approach. However, as we will see in the profiling
section this approach works well for our relevant test-cases. Moreover, as the
following estimate shows this gives rise to a pretty well-balanced problem:

www.dmi.dk/dmi/tr12-11.pdf page 44 of 147

DMI
Technical Report 12-11

In table 2 we first show the balance score C∗ per area for our test-case
at different numbers of threads (1, 4, ..., 128) and then we weight each
area according to the number of wet-points. Thus, in the last row of the
table, we have weighted the fact that the number of wet-points differ from
one sub-domain to another and the fact that the IDW area has twice as
many momentum equation computations per computational cycle as the
other areas, and we show a weighted balance score for the entire setup. It
shows that our decomposition strategy has potential to scale this problem
far beyond our local compute capabilities where we only have 12 threads
available.

1 4 8 16 32 64 128

C
∗(NS) 1.0 1.0003 1.0029 1.0103 1.0360 1.1395 1.8633

C
∗(IDW) 1.0 1.0002 1.0004 1.0022 1.0069 1.0362 1.1627

C
∗(WS) 1.0 1.0012 1.0022 1.0162 1.0740 1.3454 25.0303

C
∗(BS) 1.0 1.0012 1.0030 1.0188 1.0628 1.2759 9.5645

C∗ 1.0 1.0004 1.0013 1.0071 1.0245 1.1094 3.7132

Table 2: Balance score per area and weighted.

4.3.1 NUMA tuning

If we insist on scaling our application with openMP then we have to con-
sider our NUMA layout of the variables too. A reasonably well-balanced
load distribution will not ensure good scaling by itself. The variables must
be placed properly on the CPU sockets too. This subsection aims to describe
what we have done in this area.

We have subroutines that consider individual water columns independently
whereas others need to communicate with neighbouring water columns, due
to e.g. horizontal finite differencing. Thus, if we take a prognostic variable
say T and track its usage throughout the program then we will find that it is
used in many subroutines and there is no universal access pattern (it is used
both in routines that need to communicate with neighbours and routines
that do not need it) so we have to make a choice. It is obviously not a good
idea if we do not try to place and use it consistently, i.e. each thread should
pick a subset that is fixed throughout the lifetime of the program. That is,
the actual overloading of domp get domain which basically constitutes our
choice must be used consistently throughout the program. We have inten-

www.dmi.dk/dmi/tr12-11.pdf page 45 of 147

DMI
Technical Report 12-11

tionally done the implementation in such a way that one can easily overload
the implementation of domp get domain if one wishes to experiment with
other distribution heuristics.

Before we describe the details, let us make a short recap of how memory
placement works on NUMA architectures. Regardless of the memory seg-
ment type (heap, stack, or bss-uninitialised data14), page faults occurs when
each new page is touched. When the fault is serviced by the operating sys-
tem (abbreviated OS in the following), a physical memory page (a so-called
memory frame) is allocated and assigned to the virtual page address. It is at
this step where the location of the physical memory is decided. All physical
memory allocation is always in units of pages, which are 4KB by default
on our XT5 system. There is a variety of practical reasons that physical
memory is always allocated in page-aligned page-size chunks. When a fault
occurs, the default memory placement policy is to allocate from memory
local to the faulting core, and use memory from other NUMA nodes only if
the local NUMA node is low on memory. In the case where all of the cores
of the compute node are in use by the application, this usually means all
memory is local. This rule can be violated if per-process memory require-
ments vary a lot, such as if MPI rank 0 uses a lot more memory than any
other process. The programming environments require an underlying set of
malloc routines, which are usually provided by GNU libc in our case. The
malloc library manages memory on a memory segment basis (as opposed to
page-level) so it manages the heap, expanding it or trimming it as necessary,
and mmaping additional segments as well. It is not NUMA-aware and it is
not aware of OS-level activity such as page faulting. Each process has its
own malloc environment, and thus manages its memory segments indepen-
dently. Bottom line is, if we see poor NUMA performance we cannot blame
the compiler nor the runtime environment. We must deal with this ourselves
in our application, so let us try to describe what we have done in this area:

Note that we can build the code with pure openMP support or with mixed
openMP+MPI support. The latter is our default configuration and thus the
one on which we have emphasized our efforts. For the pure openMP builds
(i.e. without MPI) we have chosen to confine ourselves to a proper layout for
the variables that we are already permuting for cache optimizations. There

14bss (Block Started by Symbol) is used by many compilers and linkers for a part of the
data segment containing statically-allocated variables represented solely by zero-valued
bits initially (i.e., when execution begins). It is often referred to as the ”bss section” or
”bss segment”.

www.dmi.dk/dmi/tr12-11.pdf page 46 of 147

DMI
Technical Report 12-11

is one obstacle that we have to overcome, namely that kh must be read
in - and consequently touched - before we can deduce how we should have
touched it. This bootstrapping issue has been resolved by reading it into a
shadow variable kh fake and then using this to do proper first-touch and
initialization of the real kh. That is:

!$OMP PARALLEL DEFAULT (shared) PRIVATE(ia)

! NUMA first touch layout of kh

do ia=1,narea

call kh_numa(iw2(ia), iw3(ia), kh(ia)%p, kh_fake(ia)%p)

enddo

!$OMP END PARALLEL

do ia=1,narea

deallocate(kh_fake(ia)%p)

enddo

deallocate(kh_fake)

...

do ia=1,narea

! allocates numa arrays: u_numa(ia),..

call numa_re_AllocArrays(ia)

enddo

!$OMP PARALLEL DEFAULT(shared) PRIVATE(ia)

! will do first_touch on numa arrays allocated above

do ia=1,narea

call permute_numa_ft(mm1(ia)%p,mm1_numa(ia)%p,

mm1k_numa(ia)%p,iw2(ia),ind(ia)%p,kh(ia)%p,

u_numa(ia)%p,...)

enddo

!$OMP END PARALLEL

do ia=1,narea

! define u_numa(ia),... based on u(ia),...

call permute(mmx(ia),nmx(ia),mm1(ia)%p,iw2(ia),

kh(ia)%p,u(ia)%p,...)

enddo

! will make u_l, v_l,... point to u_numa, v_numa,...

call numa_pl2g(narea) ! should also deallocate originals

Note that the tuning above confines itself to the arrays that are already
being cache permuted. Those that are not will not have a proper NUMA
layout when running solely with openMP.

It is actually much more obvious to NUMA tune the mixed openMP+MPI
version of the code since we are already defining new task local variables
(the details are found in section 4.4) for all the variables. Alas, even this is
not totally straightforward since again we cannot initialise task local array

www.dmi.dk/dmi/tr12-11.pdf page 47 of 147

DMI
Technical Report 12-11

v l in a NUMA-friendly way before we know the task local kh l, needed to
do the decomposition:

call domp_get_domain(kh_l, 1, iw2_l, nl, nu, idx)

Originally, both the local indices mmk l and the local kh l as well as many of
the variable local arrays v l were handled simultaneously in task local arrays()

which run only on the MASTER thread.

If we should do the initialization in a NUMA-optimal way, we must first have
mmk l and kh l initialized in a NUMA-friendly way and then it is straight-
forward (more or less) to initialize and to use all the v l arrays appropriately.
Here is how we do it. First, we construct a temporary but task local tmp kh l

and insert the correct values herein. Then, we use tmp kh l to prepare a
thread decomposition like this:

call domp_get_domain(tmp_kh_l, 1, iw2_l, nl, nu, idx)

on each local task. Now, we can make a NUMA-friendly initialization of
kh l using nl,nu from above:

do np=nl,nu

kh_l(np) = tmp_kh_l(np)

enddo

At this point of time we no longer need tmp kh l and can safely deallocate
it. We treat ind l in the same way, i.e. something like

tmp_ind(:,:) = 0

do i="on this task plus halo"

do j="on this task plus halo"

np = "according to task permutation"

tmp_ind(1,np) = i

tmp_ind(2,np) = j

enddo

enddo

call domp_get_domain(n3d_l, kh_l, 0, n2d_l, nl, nu)

do np=nl,nu

i = tmp_ind(1,np)

j = tmp_ind(2,np)

ind_l(1,np) = i

ind_l(2,np) = j

! we need zeroes also below kh_l(np):

www.dmi.dk/dmi/tr12-11.pdf page 48 of 147

DMI
Technical Report 12-11

mmk_l(1:,i,j) = 0

enddo

! Run through i==0 and imax, and j==0 and jmax on MASTER:

!$OMP MASTER

ind_l(1,0) = 0

ind_l(2,0) = 0

mmk_l(1:,0, 0:) = 0

mmk_l(1:,imax,0:) = 0

mmk_l(1:,0:, 0:) = 0

mmk_l(1:,0:, jmax) = 0

!$OMP END MASTER

! Run through halo:

halo-loop:

ind_l(1,np) = i

ind_l(2,np) = j

mmk_l(1:,i,j) = 0

end-halo-loop

deallocate(tmp_ind)

! assign correct values to mmk_l

loop:

mmk_l(k,i,j) = ...

end

Possibly, we can assign the correct values for mmk l at the first access instead
of the above-shown two-step procedure with first a zero and then the correct
value. And then, it is straight-forward:

! stride-1 loops as an example:

v_l(nl:nu) = zero ! or the correct value if it exists

do np=nl,nu

i = ind_l(1,np)

j = ind_l(2,np)

ml = mmk_l(2,i,j)

mu = mmk_l(kh_l(np),i,j)

v_l(ml:mu) = zero ! or the correct value if it exists

enddo

! Run through halo:

halo-loop:

v_l(:) = ...

end-halo-loop

We highly recommend that you study mpi task permute.f90 for further
details.

www.dmi.dk/dmi/tr12-11.pdf page 49 of 147

DMI
Technical Report 12-11

As revealed in the beginning of this section we have to make a placement
choice and there is no universally correct choice. When we choose the imple-
mentation by the domp get domain described above we are NUMA tuning
the subroutines that are not looking at neighbours. Thus, we expect to see
a penalty for this choice as we try to scale say the advection subroutines
where neighbours are needed.

4.3.2 openMP profiling

In section 2.6 on cache layout we revealed that although our permutation
heuristic was not perfect it gave pretty good results. Now, let us see if this
holds for the openMP strategy too. Beforehand though, we better recap
Amdahl’s law: Let α be the proportion of a program that can be made
parallel (i.e. benefit from parallelization) and (1 − α) the proportion that
cannot be parallelized (i.e. that remains serial), and assume the paralleliza-
tion overhead is described by γN . Then we can derive the computation time
TN required using N threads from the serial computation time T1 by:

TN = (1− α)T1 +
α

N
T1 + γN

And the theoretical (assuming there is no parallelization overhead, i.e. as-
suming γN = 0) maximum speedup that can be achieved by using N threads
is:

SN =
1

(1− α) + α
N

As an example, a code with a parallel portion of 50% has a scaling potential
of 2, i.e. the theoretical maximum speedup that can be achieved with that
code if we had unlimited access to processors is 2. Likewise, codes with a
parallel portion of 75% and 96% have scaling potentials of 4 and 25, respec-
tively.

In figure 3 we have plotted the sustained performance on two AMD 12-core
Magny-Cours, using from 1 to 24 cores. In the upper figure we have com-
pared the elapsed time for our model run versus number of cores to perfect
Amdahl scaling (perfect in the sense that we assume that γN = 0) of 96%,
98% and 100%, and in the lower figure we display the sustained speedup, i.e.
elapsed time using N cores divided by the elapsed time using 1 core. From
the red curve on the speedup figure, we see that at 24 cores we have obtained
a speedup very close to 12.5 which agrees with the theoretical speedup for

www.dmi.dk/dmi/tr12-11.pdf page 50 of 147

DMI
Technical Report 12-11

Figure 3: Scaling on two AMD 12-core Magny-Cours using openMP.

www.dmi.dk/dmi/tr12-11.pdf page 51 of 147

DMI
Technical Report 12-11

a parallel portion of 96%. It is important to keep in mind that all results in
this experiment meet our design criterion that the result must be identical
regardless of number of cores used; if the results were not identical across
number of cores the scalability study would be almost useless and only of
very little interest to the developer community. Moreover, the test-case used
here is not artificial in any sense; it is the setup that we use for our current
operational MyOcean V2 production at DMI. Given that we are aware of
serial portions (e.g. all IO) the sustained performance is not too bad.

As discussed above, we have at 24 cores reached approximately half of the
scaling potential for this setup. It is interesting to ask: What happens with a
huge number of cores? Can we really reach the theoretical scaling potential?
The answer is: No, not with this test-case. The test-case is - even though it
is the largest one known to run operationally in the entire Baltic Sea com-
munity - far too small. There will simply be too few computational points
to distribute among the threads such that each thread has a sufficiently
large and well-shaped data set to work on. But as indicated in table 2, we
still should be able to scale pretty well to say 64 cores. This will, however,
require that the amount of available memory per core is sufficient. But then
again, we have not yet seen such a memory-per-core problem with our cur-
rent setups on the larger systems we have had access to, but for sure, we
should keep the possibility in mind when we increase our model size in the
future.

Moreover, it is also interesting to cross-compare the scaling on different
hardware platforms. In figures 4 - 5 we have compared the scaling of this
application on a brand new dedicated AMD Interlagos and a somewhat older
not-dedicated Intel Xeon x7550 processor.

4.4 MPI

The MPI parallelization of HBM is characterized by the overall problem de-
composition, the data structures used for the task local variables and finally
the different types of explicit communication patterns needed to make the
implementation correct. The explicit communication patterns require some
extended book-keeping, e.g. each task must know which neighbour tasks it
needs to communicate with; the index ranges of each task must be known;
each task must (of course) know its own wet-points but also the wet-points
in the halo-zone which actually reside on the neighbour tasks. Further com-
plications arise with nesting since, with our general approach, we cannot

www.dmi.dk/dmi/tr12-11.pdf page 52 of 147

DMI
Technical Report 12-11

Figure 4: Scaling on AMD versus Intel using the same compiler and same
compiler flags on the two different architectures.

assume that points in the vicinity of a nesting border in the enclosing and
in the inclosing areas reside on the same MPI task even though they are
located in geographically overlapping regions.

We will try to describe each of these aspects in the following and summa-
rize it all by a study of the MPI-performance sustained with our current
implementation and the usual test-case.

4.4.1 MPI decomposition

As described in section 4.1, the MPI decomposition splits the overall prob-
lem into regular latitude-longitude sub-rectangles. In table 3 we show the
example that we used in section 2.6 to show the surface numbers with 4 MPI
tasks, consisting of a 2 by 2 decomposition of the domain (first task is i=1:6,
j=1; second task is i=7:12, j=1; third is i=1:6, j=2:3; and fourth i=7:12,
j=2:3). We have shown both the local numbering (specified in mm l) as well
as the global numbering (specified in mm). Moreover, table 4 shows the num-
bering of the neighbours. Each MPI task T will have up to 8 halo-neighbour
tasks with 1 being the west neighbour, 2 being the north neighbour, . . . and
8 being the south-west neighbour.

www.dmi.dk/dmi/tr12-11.pdf page 53 of 147

DMI
Technical Report 12-11

Figure 5: Speedup on AMD versus Intel using the same compiler and same
compiler flags on the two different architectures.

1 1=9

2 2=10

3 3=11

4 4=12

1=13

1=5

2=6

3=7

4=8

Table 3: MPI decomposition seen from the surface when using 4 MPI tasks.

www.dmi.dk/dmi/tr12-11.pdf page 54 of 147

DMI
Technical Report 12-11

5 2 6

1 T 3

8 4 7

Table 4: The 8 halo-neighbour to MPI task T .

The decomposition itself can be specified in a line oriented file. The first line
contains the total number of tasks and the rest of the lines come in triples
describing the setup for each (task, area), i.e.

<total_no_of_tasks>

<task_id_1> <area_id_1> <i_low> <i_up> <j_low> <j_up>

<west> <north> <east> <south>

<north-west> <north-east> <south-east> <south-west>

...

<task_id_1> <area_id_n> <i_low> <i_up> <j_low> <j_up>

<west> <north> <east> <south>

<north-west> <north-east> <south-east> <south-west>

<task_id_2> <area_id_1> <i_low> <i_up> <j_low> <j_up>

<west> <north> <east> <south>

<north-west> <north-east> <south-east> <south-west>

...

All numbers are assumed to be read in as format I5. Zero in <low>/<up>

numbers means no active points for the particular task. There can be empty
tasks in some but not in all nested areas (with the exception that the first
task can be set up as empty on all tasks and thus serve as a dedicated IO
task). Minus one in the direction specification means we do not need to do
MPI-communication to/from any other MPI-task in that direction (when
no other MPI task exists in that direction or that MPI-communication is
shielded by land points). Below you will find a sample specification with 5
MPI tasks for a setup with two nested areas. This decomposition is rather
arbitrary, used only for testing correctness not for performance. It has four
tasks (1, 2, 4 and 5) in area number 1, while in area 2 there is three tasks
(1, 2 and 3).

5

1 1 150 200 163 212

4 -1 -1 -1

4 -1 -1 -1

1 2 1 204 1 300

www.dmi.dk/dmi/tr12-11.pdf page 55 of 147

DMI
Technical Report 12-11

-1 -1 -1 3

-1 -1 -1 -1

2 1 189 250 213 414

-1 5 -1 -1

-1 -1 -1 -1

2 2 139 482 301 396

3 -1 -1 -1

-1 -1 -1 -1

3 1 0 0 0 0

-1 -1 -1 -1

-1 -1 -1 -1

3 2 205 482 1 300

-1 1 2 -1

-1 -1 -1 -1

4 1 1 348 1 162

-1 -1 1 -1

-1 -1 -1 -1

4 2 0 0 0 0

-1 -1 -1 -1

-1 -1 -1 -1

5 1 1 188 213 414

-1 -1 -1 2

-1 -1 -1 -1

5 2 0 0 0 0

-1 -1 -1 -1

-1 -1 -1 -1

A load-balanced (based on a nearly-even split in wet-points, cf. next section
on automatic decomposition) 1x5 decomposition of the usual test-case is
shown in figures 6 - 9. Each figure shows one of the nested domains, the
colour coding indicates the local depth (blue is the most shallow, red is the
deepest in each domain), white background is land or out-of-domain, red
lines indicate approximate land contours, and the green lines indicate the
boundaries of the task decomposition.

4.4.2 Automatic task decomposition

The MPI decomposition file may be hand-edited and fed to HBM at run-
time. We have, however, implemented a couple of different methods to
generate decompositions automatically. In both cases, some verification is
performed of the decomposition layout, but we can unfortunately not guar-
antee to catch all odd combinations of geometry, decomposition, nesting,
etc, so each new setup, including the decomposition, should, as always, be
thoroughly verified by the user.

www.dmi.dk/dmi/tr12-11.pdf page 56 of 147

DMI
Technical Report 12-11

NS

 0

 10

 20

 30

 40

 50

iw3_l =94671
iw2_l =3394

iw3_l = 95763
iw2_l = 3143

iw3_l = 97200
iw2_l = 3915

iw3_l = 94375
iw2_l = 3988

iw3_l = 97072
iw2_l = 4463

Figure 6: Automatically generated MPI decomposition (1x5) - North sea.

In a straight-forward automatic decomposition the user can specify to de-
compose into nproci tasks in the latitude direction and nprocj tasks in the
longitude direction. The numbers are specified in the namelist optionlist
in the options.nml file like this:

&optionlist

nproci = 37

nprocj = 42

/

The product of nproci and nprocj must match the requested number of
MPI tasks at run-time. Attempt will then be made to subdivide the latitude-
longitude grid into rectangles of approximately the same size. Due to the
very irregular domains we are dealing with, see e.g. figure 2, such a strategy
will unavoidably lead to poor balance scores and even to empty tasks. It is,
however, easy to locate empty tasks and prepare a pruned decomposition
file which is stripped from these singularities, but it is in general difficult
to treat poor balance scores automatically. We have limited this approach
to cases with only one area because it will obviously not work well on more
general nested model setups.

www.dmi.dk/dmi/tr12-11.pdf page 57 of 147

DMI
Technical Report 12-11

IDF

 0

 10

 20

 30

 40

 50

 60

 70

 80

iw3_l = 315454

iw2_l = 23207

iw3_l = 313635

iw2_l = 14905

iw3_l = 316007

iw2_l = 16624

iw3_l = 317446

iw2_l = 13166

iw3_l = 321008

iw2_l = 12997

Figure 7: Automatically generated MPI decomposition (1x5) - Inner Danish
water.

For nested models with more than one area we have chosen another ap-
proach which starts by subdividing each area into nprocj meridional sec-
tions that for a given nested area contain approximately the same number
of wet-points. We call these sections for semi-optimal J-slices; an example
of decomposing our 4 domain test-case into 5 semi-optimal J-slices is shown
in figures 6 - 9. Then, the largest of the J-slices (i.e. the one containing most
wet-points) is selected and is subdivided into nproci pieces in the latitude
direction, containing approximately the same number of wet-points. This
determines the zonal decomposition throughout each area. But also with
this approach it is difficult to obtain well-balanced decompositions for each
nested area. Empty tasks can easily be discarded, but tasks with a relatively
small number of wet-points may remain.

We have implemented this nproci by nprocj heuristic for a multi-domain
case such that when narea > 1, nproci = 1 and nprocj > 1, then all the
possible nprocj times nprocj pruned decompositions 1x2, 1x3, ..., nprocj
x nprocj are written to files and statistics of the balancing is calculated.

www.dmi.dk/dmi/tr12-11.pdf page 58 of 147

DMI
Technical Report 12-11

WS

 0

 5

 10

 15

 20

 25

iw
3_

l =
 2

03
87

iw
2_l = 1371

iw
3_

l =
 2

02
14

iw
2_l = 1477

iw
3_

l =
 2

03
16

iw
2_l = 1775

iw
3_

l =
 2

07
51

iw
2_l = 1969

iw
3_

l =
 2

17
73

iw
2_l = 4984

Figure 8: Automatically generated MPI decomposition (1x5) - Wadden sea.

Then we can simply select the best decomposition (based on the balance
statistics). That is, if we set nproci=1 and nprocj=100 and run it with our
usual 4 area test-case, we generate 10000 decompositions, and if we then
want to run on say 50 tasks we select from all possible decompositions that
resulted in 50 non-empty tasks the decomposition with the lowest balance
score. In practice, however, this strategy of selecting a M -tasks decompo-
sition turned out to be merely a fancy way of selecting M by 1 or 1 by M
decompositions.

The alternative decomposition strategy, where each nested area is subdi-
vided into nproci zonal sections that contain approximately the same num-
ber of wet-points is called semi-optimal I-slices. Theoretically, we will ex-
pect a J-sliced MPI application, when run with one thread on each task, to
be comparable in performance to our pure openMP implementation on the
same number of cores on a system such as our local Cray XT5, except for
a possible different overhead due to explicit MPI communication or due to
time required to fork and join the team of openMP threads; note, however,
that while the number of times we need to do explicit (MPI) or implicit
(openMP) communication may differ a lot so will the time required to com-

www.dmi.dk/dmi/tr12-11.pdf page 59 of 147

DMI
Technical Report 12-11

BS

 0

 20

 40

 60

 80

 100

 120

iw
3_

l =
 1

35
93

6

iw
2_l = 2784

iw
3_

l =
 1

29
03

2

iw
2_l = 1914

iw
3_

l =
 1

40
38

8

iw
2_l = 1770

iw
3_

l =
 1

33
63

4

iw
2_l = 2621

iw
3_

l =
 1

32
99

5

iw
2_l = 3962

Figure 9: Automatically generated MPI decomposition (1x5) - Baltic sea.

plete the communication and at the end of the day the overhead differences
between the two approaches may not be that far from each other. And we
will expect I-slices to be more beneficial when we use the maximum number
of openMP threads on each task. This performance behavior is indeed the
case, as we shall see later: I-slices do perform better than J-slices on our
local HPC system when run with the maximal 12 openMP threads on each
task. Both I- and J-slices do a very decent job, though, so we see no urgent
need for implementing more sophisticated decomposition heuristics with the
test-cases we have today and the HPC systems we currently run these on
operationally. But we must for sure keep in mind that the use of simple
sliced decompositions may turn out to be inefficient in future applications;
this is indeed a subject for improvement.

4.4.3 MPI data structures

All outer loops throughout the code essentially look like this:

do iw=iw_low,iw_high

...

enddo

www.dmi.dk/dmi/tr12-11.pdf page 60 of 147

DMI
Technical Report 12-11

and thus impose the assumption that surface wet-points are placed with
stride 1. If we do not permute the data structures according to the MPI
decomposition, then this is no longer true, i.e. the set of corner points i low,
i up, j low, j up that implicitly defines iw low l and iw high l do not
represent a stride 1 set of surface points for task l. It is really just a subset
of the surface wet-points that are related to task l. In order to ensure that
iw low l : iw high l really represent the set of surface wet-points related
to task l, we must generate a new index array mm l and all the task local
arrays a l that use this index array must be permuted accordingly such that
this is indeed the case afterwards. Please consult mpi task permute.f90

for the details. In summary, each task will have the following inner subsets
accessed as well as all the data-structures that uses these indices for indirect
addressing with stride 1. That is,

low_i : up_i ; stride 1

low_j : up_j ; stride 1

low_ws : up_ws ; surface numbers, stride 1

a_l(low_ws) : a_l(up_ws) ; surface data, stride 1

low_w3 : nwet3 ; subsurface numbers, stride 1

a_l(low_w3) : a_l(nwet3) ; subsurface data, stride 1

We need to figure out where to store the halo values. As indicated above,
surface and subsurface indices and data need not constitute contiguous sets.
This leaves us with some degree of freedom. We have decided to simply
append surface halo points after the inner surface points and the subsurface
halo points after the inner subsurface points in the following way:

Let halo2 be the number of wet surface points in the halo and halo3 the
total number of wet-points in the halo. Each data set then comes in four
chunks:

a_l(0 : iw2_l) ! stride 1

a_l(iw2_l + 1 : iw2_l + halo2) ! not necessarily stride 1

a_l(iw2_l + halo2 + 1 : halo2 + iw3_l) ! stride 1

a_l(halo2 + iw3_l + 1 : iw3_l + halo3) ! not necessarily stride 1

The advantage of this approach is that it is strictly consistent with the ap-
proach applied if we had no knowledge of MPI, i.e. surface wet-points first,
then the subsurface wet-points; the only practical difference being that we
have appended l to all task local variable names as compared to their global
counterparts.

www.dmi.dk/dmi/tr12-11.pdf page 61 of 147

DMI
Technical Report 12-11

As for strides, one should notice that the entire subset for each task is not
necessarily accessed with stride 1, only the inner sets are. It has even been
possible to keep the property of stride-1 subsurface k-loops for all surface
points nsurf in the inner set as well as in the halo:

do k=2,kh_l(nsurf)

! access a_l(mm_l(k,i,j)) in strides of 1 here

enddo

As should be evident by now, most global variables now come in a local
variant as well as a global variant, e.g.:

Global Local

mm mm_l

kh kh_l

iw2 iw2_l

iw3 iw3_l

un un_l

vn vn_l

... ...

This means that in principle all we need to do is from the caller to replace
the actual argument from a task global variable to its task local counterpart.

In the serial and pure openMP variants of the code, the local variants are set
to point to the global variants and explicit MPI communication operations
such as gathers/scatters between local and global structures are skipped in
this case.

In the MPI and MPI+openMP variants of the code, the local variants
are new data structures allocated in the Alloc Local Arrays() subrou-
tine which is found in cmod local arrays.f90, and they are assigned in
task local arrays() in mpi task permute.f90.

Note that some variables have global meaning only. For instance, we do not
change the grid spacing size with tasks, therefore dxx, dyy, dz are the same
on all tasks. Also, we do not touch the underlying grid, so mmx, nmx, kmx
are the same on all tasks; we might use only a fraction of the global grid,
the task-local portion picked by the local index like mm1 l.

Please consult cmod array.f90 and cmod local array.f90 for the details
on the global vs. local arrays.

www.dmi.dk/dmi/tr12-11.pdf page 62 of 147

DMI
Technical Report 12-11

4.4.4 MPI communication patterns

We need three types of explicit communication patterns, namely one for or-
dinary halo-communication, one for nesting-communication and finally one
for global communication. We highly recommend that you study the file
dmi mpi.F90 for the details.

The halo-communication deals with exchanging information between neigh-
bour tasks where it is needed for performing e.g. horizontal finite-differencing.
The actual communication is controlled by overloading the subroutine dmpi halo

with various methods depending on the situation at hand. Thus, one routine
is for non-blocking halo swap of real(8) variables, one treats the real(8)
tracer component array cmp, and one is for the logical sea ice mask casus.

The MPI communication needed for nesting requires that information is
gathered from different tasks in different areas. This is implemented by
overloading the subroutine dmpi gather with different functionality for dif-
ferent types of data as needed, e.g. for u, v and cmp. Sometimes information
needs to be scattered from a global data set to the local data sets. This is
done through overloading of the subroutine dmpi scatter.

Global MPI communication deals with exchange of information to/from all
local tasks from/to a global data set on a dedicated tasks, named mpi io rank.
Examples are: When meteorological forcing is read in from a binary file on
task mpi io rank, the global data is broadcast to all local tasks by calling
dmpi broadcast (appropriately overloaded). The same method is used for
open boundary data. The opposite way, i.e. gathering data from all local
data sets to one global data set on task mpi io rank, e.g. for output, is
performed through overloading of the dmpi gather subroutine.

4.4.5 MPI performance

As mentioned before, we know that our heuristic for MPI task decomposi-
tion is not optimal. Let us see how it performs regardless, just as we did
with the permutation for improved cache layout and with our openMP de-
composition, both of which are not optimal either but which still do a pretty
good job. To evaluate the performance and to estimate the scaling potential
of our MPI implementation, we again stick to Amdahl’s law which we this
time write as

TM = (1− a)T1 +
a

M
T1 + b

www.dmi.dk/dmi/tr12-11.pdf page 63 of 147

DMI
Technical Report 12-11

where TM is the elapsed time when using M MPI tasks and a is the portion
of the application that can be parallelized with MPI. The serial time T1

may either be a purely serial time (when running without openMP) or it
may be the time of running with openMP alone using N threads. The
penalty term b takes into account the extra time associated with the explicit
communication in the MPI implementation; it may be a constant or an
increasing function of M but it is (hopefully) small in magnitude. If we
assume that the implementation is such that the openMP and the MPI
decompositions are independent, we can write Amdahl’s law as

TM,N =

[

(1− a) +
a

M

] [

(1− α) +
α

N

]

T1,1 + b

where TM,N is the time for a run with M MPI tasks and N openMP threads,
and T1,1 is the pure serial time. Our openMP and MPI decompositions are,
however, not fully independent and we can therefore only expect to use the
last equation as an optimistic estimate of the scaling potential of the HBM
code when we have obtained the parallel portions a and α from independent
MPI and openMP experiments, respectively. But in that case we find the
theoretical maximum speedup to be:

SM,N =
1

[

(1− a) + a
M

] [

(1− α) + α
N

]

In figure 10 we show two examples of the performance of the HBM code on a
Cray XT5 populated with 12-way AMD Istanbul processors. We have used
the full openMP potential on this system, i.e. run with 12 openMP threads
on each node, and one MPI task per node. We have used the automatic
decomposition into semi-optimal J-slices, and the test-case is the usual My-
Ocean V2 setup with 4 nested domains (but only run for a 6 hours simulation
time in these examples). The result for 60 cores is shown in figure 10 is using
the decomposition into 1 by 5 MPI tasks as shown in figures 6 - 9.

First, we notice that it matters quite a lot which compiler we apply; the
Cray generated executable runs consistently faster than the one from Path-
Scale; thus, using the Cray compiler we can do a 24 hour simulation in
approximately 6 minutes but with PathScale it takes almost 8 minutes. We
have compared to Amdahl theory, assuming a penalty of both b =0 seconds
(green curves) and b =30 seconds (red curves). For Cray we have plotted
parallel portions of a =79% and 88%, respectively, while for PathScale the
fit is better with the somewhat smaller a =75% and 83%.

www.dmi.dk/dmi/tr12-11.pdf page 64 of 147

DMI
Technical Report 12-11

24 72 120 168 216
0

50

100

150

200

250

300

350

400

Number of cores

T
im

e
[s

ec
s]

MPI Scaling of 6hrs, 4 domain myo_v2_1m case, on Cray XT5, 12 openMP threads on each node,cce

Model
Model 2
Amdahl: a = 79%, b = 0secs
Amdahl: a = 88%, b = 30secs

24 72 120 168 216
0

50

100

150

200

250

300

350

400

Number of cores

T
im

e
[s

ec
s]

MPI Scaling of 6hrs, 4 domain myo_v2_1m case, on Cray XT5, 12 openMP threads on each node,psc

Model
Amdahl: a = 75%, b = 0secs
Amdahl: a = 83%, b = 30secs

Figure 10: MPI scaling, upper figure is with the Cray compiler and the lower
figure is with PathScale.

www.dmi.dk/dmi/tr12-11.pdf page 65 of 147

DMI
Technical Report 12-11

Then, on the upper figure with two identical model experiments (blue and
pink curves) we see that there is some noticeable deviations from run to run
which we do not see with the openMP scaling experiments; this is expected
because we communicate between tasks over a network that is shared with
other users of the system whereas openMP experiments are done on a single
dedicated node.

Finally, we note that we have reached the maximum scalability for this test-
case using the semi-optimal J-slice heuristic: The curves with Cray results
are almost flat at the right end, and the curve with PathScale results is actu-
ally bending upwards from 216 cores. This is due to the tasks becoming too
narrow such that our openMP decompositions become thin strips. In other
words, this case is too small to scale further with the applied decomposition
strategies.

In figure 11 we show results of scaling experiments using semi-optimal I-
slices, this time we use only the Cray compiler. The platform and the
test-case are both the same as before. The upper figure is for 12 openMP
threads per MPI task and is thus directly comparable to the upper part of
figure 10. We see that it matters a lot that we have changed the direction of
the decomposition slices; we can now do a 24 hours simulation in 4 minutes
45 seconds using exactly the same computer resources as before due to a
more beneficial thread decomposition on each task. For comparison, Am-
dahl parameters (a, b) =(86%,0 seconds) or (95%,30 seconds) fit well in this
case.

If we make a pure MPI scaling study, i.e. with 1 openMP thread, we obtain
the results like those shown in the lower part of figure 11. Again, same HPC
system and test-case as before. We have used the Cray compiler and I-slices
as in the upper part of the figure. We have compared to Amdahl scaling
with (a, b) =(96%,0 seconds) and (a, b) =(97%,30 seconds), and we observe
that it still scales beyond the 20 cores, just like with pure openMP.

Estimating the scaling potential from the independently observed parallel
portions for openMP (figure 10) and for MPI (figure 11, lower part) of 95% -
96%, we get a maximum speedup of 400 - 625. In order to reach this speedup
we probably need much larger test-cases if the threads/tasks should not run
out of wet-points. In figure 12 we extend the lower part of figure 11 to
90 cores. Taking into account that this case has tasks that are only one
single grid point wide in some domains from approximately 60 tasks and

www.dmi.dk/dmi/tr12-11.pdf page 66 of 147

DMI
Technical Report 12-11

24 72 120 168 216
0

50

100

150

200

250

300

350

400

Number of cores

T
im

e
[s

ec
s]

MPI Scaling of 6hrs, 4 domain myo_v2_1m case, on Cray XT5, 12 openMP threads on each node,cce

Model
Amdahl: a = 86%, b = 0secs
Amdahl: a = 95%, b = 30secs

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

500

1000

1500

2000

2500

Number of cores

T
im

e
[s

ec
s]

MPI Scaling of 6hrs, 4 domain myo_v2_1m case, on Cray XT5, 1 openMP thread on each task,cce

Model
Amdahl: a = 96%, b = 0secs
Amdahl: a = 97%, b = 30secs

Figure 11: MPI scaling with the Cray compiler. Upper figure: 12 openMP
threads per MPI task, 1 MPI task per node. Lower figure: 1 openMP thread
per MPI task, up to 12 MPI tasks per node.
www.dmi.dk/dmi/tr12-11.pdf page 67 of 147

DMI
Technical Report 12-11

up (i.e. that the inner sets become reduced to the same size as their halo),
and that there are empty tasks on the largest number of decompositions, it
scales reasonable well in the shown interval of cores.

10 20 30 40 50 60 70 80 90
0

50

100

150

200

250

300

350

400

Number of cores

T
im

e
[s

ec
s]

MPI Scaling of 6hrs, 4 domain myo_v2_1m case, on Cray XT5, 1 openMP thread on each task,cce

Model
Amdahl: a = 96%, b = 0secs
Amdahl: a = 97%, b = 30secs

Figure 12: MPI scaling with the Cray compiler from 10 to 90 tasks.

Finally, it should be emphasized, that we have made only one compilation
with each compiler, i.e. the same executable is used for all the Cray runs in
the upper part of figure 10, in both parts of figure 11 and in figure 12; the
only difference between each run is run-time specifications of the number of
threads, of the number of tasks and of the extent of each task. All other
input are identical and the produced model results are also binary identical.

4.5 Performance perspective

Frankly speaking, the MPI parallelization has mostly been developed to be
prepared for future demands. The largest case that we run operationally
today is the MyOcean V2 case described throughout this paper and we can

www.dmi.dk/dmi/tr12-11.pdf page 68 of 147

DMI
Technical Report 12-11

run this production sufficiently fast (approx. 24 minutes for a 24 hour sim-
ulation) on a single node, i.e. with a single MPI task. For this test-case,
MPI is only convenient if we are to do longer simulations fast, say 10 years
re-analysis studies. Actually, to the best of our knowledge there are no
operational setups in the Baltic region that are larger (measured using the
computational intensity defined below) than this case that DMI run for the
MyOcean Baltic Model Forecasting Centre production, cf. table 5 and ta-
ble 6.

We define the computational intensity I for a model setup as the sum over
all nested areas of the number of potentially active water points (some might
occasionally be dry) in that area divided by the time step size (in seconds)
used in that area, i.e.

I =
narea
∑

ia=1

iw3(ia)/dt(ia)

To ease comparison between the computation requirements of different mod-
els and different setups, it is useful to look at the relative computational in-
tensity, Ir, which is the intensity of the model setup in question normalized
by the intensity of a well-known model setup. Here, we choose to normalize
by the specific computational intensity of a certain test-case15 that has been
commonly used at DMI for quick tests as well as longer model simulations
(climate studies, re-analysis). This test-case has I = 10552.5.

In order to evaluate whether or not the proof-of-concept MPI implementa-
tion was sufficient to scale larger cases we made an artificial test-case with a
10-fold computational intensity which is simply the entire North Sea - Baltic
Sea region in 1 n.m. resolution, cf. DMI large in table 6. We ran this case
using up to 40 MPI tasks, cf. figure 13, and it seems to scale well up to 400
cores. Thus, it is certainly feasible to run this case in production, e.g. using
20 MPI tasks we can run a 24 hour simulation in less than 30 minutes. We
are planning to make more relevant setups which will probably become even
larger in terms of Ir. It is important to realize that the Ir numbers in table 6
should be related to the number of computational resources that is required
to complete the run. Please consult appendix C for more details on the se-
tups above as well as setups for other ocean models and the computational
resources required to run them.

15This test-case is formally known as the test03 test-case.

www.dmi.dk/dmi/tr12-11.pdf page 69 of 147

DMI
Technical Report 12-11

SETUP iw3 dt (sec)

DMI (Ir = 14.0)

NS 479081 30

IDW 1583550 15

WS 103441 30

BS 671985 30

FMI (Ir = 12.1)

NSBS 784176 30

IDW 1479208 15

WS 103441 30

BSH (Ir = 9.1)

Coarse 643922 30

Fine 1117390 15

SMHI (Ir = 1.6)

NSBS 506074 30

Table 5: Baltic Sea model setups and their related relative computational
intensity used in the MyOcean project. All setups are using the same version
of the HBM code.

Institute Model Extent iw3 dt (sec) Ir
NRL 1/25◦ HYCOM global 861600000 100 816.5

DMI large HBM regional 14524110 10 137.6

Mercator 1/12◦ Nemo global 342299000 360 90.1

NRL 1/12◦ HYCOM global 218400000 240 86.2

FCOO dk600 GETM regional 10668360 90 11.2

FCOO ns1c GETM regional 20149380 180 10.6

SMHI bs01 HIROMB regional 1918522 25 7.3

ECMWF orca25 nemo global 60731632 1200 4.8

DMI naa HYCOM-CICE regional 11099883 300 3.5

ECMWF orca1 nemo global 2959712 3600 0.07

Table 6: Various ocean models and related setups and their related relative
computational intensity. GETM run at FCOO and HIROMB run at SMHI
are also regional North Sea - Baltic Sea models. For further details, please
consult appendix C.

www.dmi.dk/dmi/tr12-11.pdf page 70 of 147

DMI
Technical Report 12-11

Figure 13: Scaling with different compiler on a cray XE6 with AMD inter-
lagos processors.

4.6 openACC

We have discussed what it would take to prepare the code for alternative
hardware too, say accelerators like GPUs. Alternative hardware may turn
out to be the only candidate choice for us in a not so far future when in-
creasing demands on low power consumption may dictate what the HPC
installation will be. The aim of this subsection is to share our current think-
ing in this area with respect to HBM.

The openACC standard is of a very recent date: It was announced in Novem-
ber 201116 and there are no compiler vendors that officially supports it today.
Thus, all findings presented here are results of running on a alpha system

16see e.g. http://www.openacc-standard.org/

www.dmi.dk/dmi/tr12-11.pdf page 71 of 147

DMI
Technical Report 12-11

with nightly builds of the alpha compiler. We are most grateful to Cray for
allowing us access to this system. It should be kept in mind that we nat-
urally consider the GPU port very experimental. But without experiments
we will never be able to make it, so we might just head-dive into it ...

4.6.1 Introduction

First, let us try to do something very simple allowing us to evaluate on the
overall design before we start to consider how we could re-factor the code
to make it run well on GPUs too.

We need multiple levels of parallelism in order to make good use of a GPU.
The subroutines contain two-level nested loops like this:

do iw = 1,iwet2

i = ind(1,iw)

j = ind(2,iw)

do k = 1,1

! wet-points (1,i,j) are reached here

enddo

do mi=mm(2,i,j),mm(kh(iw),i,j)

! wet-points (2,i,j) ... (kh(iw),i,j) are reached here

enddo

enddo

and we would need at least one other loop-nesting level to make good use
of GPUs. That is, we need to stripmine the outermost loop with a stride
being a multiple of 32. Current compilers cannot handle this automatically
so we will do it manually, e.g. something like:

do iwo=1,iwet2,stride

nsurfl = iwo

nsurfu = min(iwet2,nsurfl+stride-1)

do iw = nsurfl,nsurfu

i = ind(1,iw)

j = ind(2,iw)

do k = 1,1

! wet-points (1,i,j) are reached here

enddo

do mi=mm(2,i,j),mm(kh(iw),i,j)

! wet-points (2,i,j) ... (kh(iw),i,j) are reached here

enddo

enddo

enddo

www.dmi.dk/dmi/tr12-11.pdf page 72 of 147

DMI
Technical Report 12-11

In CUDA17 terminology, we expect that the compiler will use the threadidx.x
to index the threads within a nsurfl,nsurfu subloop and blockidx.x to
index the different subloops. Moreover, the CUDA blocksize will be one
dimensional with a size of 32*N threads. The variable threadIdx.x would
simultaneously be 0,1,2,3,..., 31 inside each block and the overall parallel
index would be something like:

int iw = blockDim.x*blockIdx.x + threadIdx.x

In order to make this work well, we must ensure that the blocks get balanced,
i.e. we need something like domp get domain to ensure that. Moreover, we
need to consider what we can do to prevent the strides from serializing.

4.6.2 GPU port of default momeqs

The first goal is really modest: We intend to port a single but computation-
ally expensive subroutine - the momentum equation solver, and then, after
evaluating such an experiment we will start considering how to design a so-
lution for the whole code. We hope that we will be able to produce correct
results on the GPU and of course, that the GPU solution will have reason-
able performance in comparison with the CPU solution, but correctness is
our main concern at this point of time. One can enable the experimental
code described above with the configure option --enable-gpu.

It was not possible to take the loop in momeqs as is (too large) so we used 3
simple code transforms: loop distribution, loop interchange and strip-mining
to allow the compilers a decent attempt - basically introducing another level
of loop-nesting into the big outermost loop and ensuring that the loops are of
sizes that the compiler is capable of handling. The single large loop eventu-
ally became 12 smaller loops. There are 6 sub-loops for u and v respectively.
Note that this distribution itself does not lead to more parallelism within
the sub-chunks for u and v, respectively, but that one could indeed handle
u and v at the same time if one did not use the same variables for setting
up the equations.

The fact that we have done quite some rewrites to allow it to generate GPU
code forces us to make a careful study of whether or not our rewrites harm
our results when used on the CPU and also study whether or not the rewrites

17Compute Unified Device Architecture (CUDA) is a parallel computing architecture
developed by Nvidia, cf. [5].

www.dmi.dk/dmi/tr12-11.pdf page 73 of 147

DMI
Technical Report 12-11

perform better on the CPU. It is important to realize that even though the
computations specified by the Fortran statements are exactly the same in
the two versions of the code the shuffling of the order of the operations
makes a big difference to the compilers, i.e. the analysis that they make
when generating assembler code can be quite different from one version of
the source code to the other; the re-write must be verified for correctness.
The methods we use to do this analysis is described in details in section 5.

We choose to compare restart files because they contain all prognostic vari-
ables in full precision and therefore any important discrepancy will show up
here. We use the md5sum as a simple tool to compare binary files; since we
are at this point only interested in knowing if binary files are identical or not.

Cross-comparing, see table 7, the restart file after a serial 6 hours simula-
tion running on the same CPU using the usual test-case we find that we
get binary identical results for all but the cray compiler when building with
IEEE18 safe flags (this flaw is being investigated). Moreover, note that
we even get binary identical results across a few compilers: gfortran, sun,
open64. Thus, we conclude that the manually constructed Fortran code
transformations are indeed correct.

Cross-comparing the restart file after a serial 6 hours simulation using the
usual test-case but with binaries built with optimization flags we find - not
surprisingly - that we no longer get any binary identical files across different
compilers, see table 8. Some compilers (gfortran and intel) even produce
different results across the two equivalent (in terms of Fortran source) pro-
grams. Finally, the results for lahey, sun and open64 did not change when
adding tuning flags, i.e. they are binary identical with the IEEE results.
Note that the cray compiler that failed to produce binary identical results
in the IEEE case actually produces binary identical results in the TUNE
case.

Now, let us try to cross-compare the results that emerge from the different
compilers for each nested domain. In table 9, we show the worst-case abso-
lute (ε) and relative difference (δ) between all the statistics that the model
produces for the 8*4=32 runs on the very same CPU, i.e. 8 compilers with

18IEEE: Institute of Electrical and Electronics Engineers. Here we refer to the IEEE
Standard for Floating-Point Arithmetic (IEEE 754) which is a technical standard for
floating-point computation.

www.dmi.dk/dmi/tr12-11.pdf page 74 of 147

DMI
Technical Report 12-11

md5sum 6 hours restart file

5bb3d02a1dc8488b97a2352c5343d525 pgi/ieee/restart

5bb3d02a1dc8488b97a2352c5343d525 pgi/openacc ieee/restart

55f52fa4fb22320dbe2877aac8f24a45 gfortran/ieee/restart

55f52fa4fb22320dbe2877aac8f24a45 gfortran/openacc ieee/restart

f106cd2b2001ceb6b510aac784dcdb8b pathscale/ieee/restart

f106cd2b2001ceb6b510aac784dcdb8b pathscale/openacc ieee/restart

55f52fa4fb22320dbe2877aac8f24a45 sun/ieee/restart

55f52fa4fb22320dbe2877aac8f24a45 sun/openacc ieee/restart

55f52fa4fb22320dbe2877aac8f24a45 open64/ieee/restart

55f52fa4fb22320dbe2877aac8f24a45 open64/openacc ieee/restart

8094b126a1f8b7ec1b6675c2ac8b9e1c lahey/ieee/restart

8094b126a1f8b7ec1b6675c2ac8b9e1c lahey/openacc ieee/restart

7c69c9c1e546e711ea3d0072c8e57cd9 intel/ieee/restart

7c69c9c1e546e711ea3d0072c8e57cd9 intel/openacc ieee/restart

0fc77f2f950e9530f273a10f90347128 cray/ieee/restart

d2a659286ba87150792857152e166f1b cray/openacc ieee/restart

Table 7: md5sums for the restart file produced by either the default imple-
mentation or the openACC implementation of momeqs when using IEEE
flags for different compilers.

www.dmi.dk/dmi/tr12-11.pdf page 75 of 147

DMI
Technical Report 12-11

md5sum 6 hours restart file

60adac8476115f8689d07dbf42141e05 pgi/tune/restart

60adac8476115f8689d07dbf42141e05 pgi/openacc tune/restart

78e4eb32e11a347c7c6e1f1df359e7a9 gfortran/tune/restart

aa8975e521f9accfe85ae0760a4de849 gfortran/openacc tune/restart

22e81c05adadcbab87de7f45b1c61746 pathscale/tune/restart

22e81c05adadcbab87de7f45b1c61746 pathscale/openacc tune/restart

55f52fa4fb22320dbe2877aac8f24a45 sun/tune/restart

55f52fa4fb22320dbe2877aac8f24a45 sun/openacc tune/restart

84f3a124fa1e8db98f090201ca8ba601 open64/tune/restart

84f3a124fa1e8db98f090201ca8ba601 open64/openacc tune/restart

8094b126a1f8b7ec1b6675c2ac8b9e1c lahey/tune/restart

8094b126a1f8b7ec1b6675c2ac8b9e1c lahey/openacc tune/restart

aef2e726544ce0eef7db332bef5a523c intel/tune/restart

acf89955dcd070182dc78f7a1b0d8c98 intel/openacc tune/restart

f24723478441685a630601e78e47e1c4 cray/tune/restart

f24723478441685a630601e78e47e1c4 cray/openacc tune/restart

Table 8: md5sums for the restart file produced by either the default imple-
mentation or the openACC implementation of momeqs when using TUNE
flags for different compilers.

www.dmi.dk/dmi/tr12-11.pdf page 76 of 147

DMI
Technical Report 12-11

4 cases each: ieee, tune, openacc ieee, openacc tune.

NS (ε/δ) IDW (ε/δ) WS (ε/δ) BS (ε/δ)

Mean salinity 2.19e-07 / 6.29e-09 7.29e-07 / 4.50e-08 3.16e-08 / 9.26e-10 1.92e-07 / 2.84e-08

RMS for salinity 2.05e-07 / 5.88e-09 6.90e-07 / 3.79e-08 3.12e-08 / 9.13e-10 1.12e-07 / 1.61e-08

STD for salinity 4.60e-07 / 4.24e-07 4.28e-07 / 5.19e-08 5.96e-09 / 3.05e-09 3.45e-07 / 2.09e-07

Min salinity 0.00e+00 / 0.00e+00 0.00e+00 / 0.00e+00 0.00e+00 / 0.00e+00 0.00e+00 / 0.00e+00

Max salinity 7.51e-10 / 2.12e-11 6.90e-08 / 1.98e-09 1.63e-09 / 4.65e-11 5.35e-11 / 3.40e-12

Mean temp [◦C] 4.63e-07 / 5.01e-08 7.45e-07 / 6.66e-08 7.83e-08 / 6.41e-09 9.78e-07 / 1.69e-07

RMS for temp [◦C] 4.34e-07 / 4.56e-08 9.39e-07 / 8.11e-08 6.86e-08 / 5.58e-09 2.65e-06 / 4.16e-07

STD for temp [◦C] 4.82e-07 / 2.14e-07 1.19e-06 / 3.98e-07 8.06e-08 / 5.74e-08 6.27e-06 / 2.38e-06

Min temp [◦C] 7.37e-09 / 1.28e-09 1.31e-09 / 3.27e-10 1.41e-08 / 1.77e-09 3.31e-03 / 1.91e-02

Max temp [◦C] 6.00e-13 / 3.23e-14 6.60e-12 / 3.30e-13 9.95e-14 / 5.35e-15 5.92e-10 / 3.19e-11

Mean z [m] 1.32e-06 / 7.12e-05 5.12e-07 / 1.33e-06 1.10e-06 / 2.73e-05 6.10e-08 / 1.37e-07

RMS for z [m] 1.32e-05 / 4.16e-05 4.18e-07 / 1.07e-06 9.04e-07 / 2.41e-06 1.72e-07 / 3.85e-07

STD for z [m] 1.32e-05 / 4.19e-05 1.89e-06 / 2.58e-05 9.98e-07 / 2.67e-06 1.03e-06 / 2.07e-05

Min z [m] 2.87e-10 / 2.71e-10 1.10e-05 / 1.13e-04 1.00e-13 / 6.98e-14 7.78e-07 / 2.23e-06

Max z [m] 3.38e-05 / 2.18e-05 1.10e-06 / 1.97e-06 0.00e+00 / 0.00e+00 1.15e-05 / 1.74e-05

Min u [m/s] 9.99e-14 / 9.04e-14 5.16e-06 / 5.37e-06 0.00e+00 / 0.00e+00 5.53e-08 / 1.49e-07

Max u [m/s] 2.27e-04 / 1.30e-04 2.37e-06 / 4.45e-06 1.24e-08 / 1.04e-08 3.24e-07 / 1.42e-06

Min v [m/s] 3.72e-10 / 2.67e-10 1.11e-06 / 1.33e-06 1.03e-08 / 6.42e-09 4.05e-07 / 9.27e-07

Max v [m/s] 1.31e-04 / 6.21e-05 2.22e-06 / 2.37e-06 9.99e-14 / 9.65e-14 3.75e-05 / 9.55e-05

Table 9: Worst case differences on statistics between the 32 runs.

Next, in table 10, we add two runs on the GPU to the population. That
is, we have the 32 runs from before (again 8 compilers, 4 cases: ieee, tune,
openacc ieee, openacc tune) on the CPU plus two runs (openacc ieee, ope-
nacc tune) with 1 compiler19 on the CPU/GPU. Note that the differences
between the 34 runs are significantly larger than between the 32 runs above.
This finding requires a careful analysis. For instance, the worst case differ-
ence on min z for the 32 runs on the CPU was 2.87 10−10 m whereas it is
4.45 10−01 m when we look at the GPU results too and for min u, the num-
bers are 9.99 10−14 m/s and 4.45 10−1 m/s, respectively. This is obviously
not a good sign but looking at the pointwise results in table 11 indicates
that it could be a compiler outlier.

19At the time of writing it was only possible to perform the GPU experiments with one
compiler, namely the alpha version of the compiler from Cray.

www.dmi.dk/dmi/tr12-11.pdf page 77 of 147

DMI
Technical Report 12-11

NS (ε/δ) IDW (ε/δ) WS (ε/δ) BS (ε/δ)

Mean salinity 3.05e-06 / 8.76e-08 2.76e-04 / 1.70e-05 6.44e-05 / 1.89e-06 3.76e-06 / 5.56e-07

RMS for salinity 7.88e-06 / 2.26e-07 3.57e-04 / 1.97e-05 7.28e-05 / 2.13e-06 4.58e-07 / 6.57e-08

STD for salinity 1.56e-04 / 1.44e-04 2.46e-04 / 2.98e-05 1.47e-04 / 7.52e-05 1.35e-05 / 8.18e-06

Min salinity 1.04e-03 / 1.78e-01 0.00e+00 / 0.00e+00 0.00e+00 / 0.00e+00 0.00e+00 / 0.00e+00

Max salinity 3.16e-07 / 8.92e-09 3.12e-05 / 8.97e-07 1.15e-05 / 3.28e-07 1.89e-06 / 1.20e-07

Mean temp [◦C] 1.26e-04 / 1.36e-05 8.97e-05 / 8.02e-06 2.02e-04 / 1.65e-05 3.43e-06 / 5.92e-07

RMS for temp [◦C] 1.65e-04 / 1.73e-05 7.64e-05 / 6.60e-06 2.29e-04 / 1.86e-05 7.44e-06 / 1.17e-06

STD for temp [◦C] 1.79e-04 / 7.94e-05 4.06e-05 / 1.36e-05 2.51e-04 / 1.79e-04 1.08e-05 / 4.10e-06

Min temp [◦C] 2.08e-05 / 3.61e-06 1.94e-04 / 4.85e-05 4.72e-04 / 5.93e-05 4.54e-03 / 2.64e-02

Max temp [◦C] 9.81e-03 / 5.27e-04 1.28e-05 / 6.42e-07 9.83e-03 / 5.28e-04 1.53e-04 / 8.26e-06

Mean z [m] 9.41e-04 / 5.33e-02 5.19e-04 / 1.35e-03 9.47e-03 / 1.91e-01 1.16e-05 / 2.61e-05

RMS for z [m] 8.38e-03 / 2.58e-02 4.95e-04 / 1.27e-03 3.20e-03 / 8.46e-03 2.29e-05 / 5.13e-05

STD for z [m] 8.45e-03 / 2.60e-02 7.95e-05 / 1.08e-03 2.09e-03 / 5.57e-03 1.03e-04 / 2.07e-03

Min z [m] 4.45e-01 / 4.20e-01 3.49e-03 / 3.60e-02 1.65e-02 / 1.15e-02 1.75e-03 / 5.01e-03

Max z [m] 8.42e-02 / 5.15e-02 1.10e-03 / 1.96e-03 0.00e+00 / 0.00e+00 2.70e-02 / 4.09e-02

Min u [m/s] 4.14e-01 / 3.74e-01 1.86e-03 / 1.94e-03 1.33e-01 / 1.67e-01 1.09e-04 / 2.93e-04

Max u [m/s] 1.16e-02 / 6.66e-03 3.98e-02 / 6.96e-02 1.23e-01 / 9.35e-02 1.08e-03 / 4.71e-03

Min v [m/s] 5.42e-03 / 3.89e-03 5.52e-02 / 6.63e-02 1.82e-02 / 1.15e-02 4.08e-04 / 9.32e-04

Max v [m/s] 5.49e-02 / 2.54e-02 1.67e-02 / 1.78e-02 4.29e-02 / 3.97e-02 5.05e-02 / 1.29e-01

Table 10: Worst case differences on statistics between the 34 runs.

www.dmi.dk/dmi/tr12-11.pdf page 78 of 147

DMI
Technical Report 12-11

In table 11 we see pointwise difference between a run on the CPU solely and
a combined CPU/GPU run. The two binaries are both generated by the
cray compiler. The reader is encouraged to cross compare these numbers
with those found in table 17 in the next section.

NS (ε/δ) IDW (ε/δ) WS (ε/δ) BS (ε/δ)

cray TUNE

εp(zlev, 1) 5.22e-04/3.36e-04 2.29e-04 /4.11e-04 1.35e-05 /6.98e-06 4.16e-05/6.32e-05

εp(salt, 0) 8.99e-03/9.08e-05 1.15e-01 /1.16e-03 1.17e-05 /1.18e-07 7.27e-03/7.35e-05

εp(salt, 1) 4.16e-03/4.20e-05 2.82e-02 /2.84e-04 1.17e-05 /1.18e-07 3.03e-03/3.06e-05

εp(temp, 0) 2.11e-02/2.13e-04 1.57e-01 /1.58e-03 5.70e-06 /5.76e-08 5.42e-02/5.48e-04

εp(temp, 1) 9.59e-03/9.69e-05 3.64e-02 /3.68e-04 5.70e-06 /5.76e-08 3.44e-02/3.48e-04

Table 11: Worst case pointwise differences when comparing CPU ver-
sus GPU results attained with the cray compiler with configure options
--enable-gpu and with compiler flags being TUNE on both the CPU and
the combined CPU/GPU.

Finally, we have looked at the timings emerging from the 32 serial runs
and the 2 partly parallel GPU runs. Note that the openACC rewrite of
momeqs perform worse than our original code for all compilers when we run
it on the CPU. Moreover, note that the GPU performance is disappointing.
We cannot even beat the serial CPU performance and if we were to beat a
thread parallel CPU version there is a very long way to go but again the
performance is not our main concern at this stage. We trust that there is
room for improvement, cf. next subsection.

4.6.3 Reducing memory transfers between CPU and GPU

The subroutine momeqs has two intent(out) variables, un and vn, that we
must transfer back from the GPU after each call but not all the intent(in)
variables need to be communicated from the CPU onto the GPU prior to
each execution of momeqs. If we consider the intent(in) variables relative
to the sub-domain at hand20 then we can split them into:

• static parameters (should be transferred only once)

• semi-static parameters (should be transferred only when required)

20Note that we will need to add extra logic on top of the control provided by the
openACC directives in order to implement this.

www.dmi.dk/dmi/tr12-11.pdf page 79 of 147

DMI
Technical Report 12-11

Figure 14: Cross-comparing timings

• dynamic (must be transferred prior to each call)

The semi-static parameters do change every main time step but do not
change within the sub timesteps, e.g. the IDW domain is calling momeqs

twice as many times as the NS domain but the meteorological forcing and
the ice variables only change in the main time step, so for IDW these vari-
ables will only change prior to call number 0, 2, 4, . . . of momeqs.

The static variables are:
m, iwet2, nud, nvd, nweir, dt, rt, ty, gty,

lud, lvd, widx, mm, dx, ft, gtx, tx, khu, khv, ind, kh.

The semi-static variables are:
taux, tauy, pl, casus, ice, ueis, veis, rho, avv, z0srf.

Finally, the dynamic variables are:
z, u, v, hz, hx, hy, press, eddyh, shear, stretch, div, eddyd.

After this classification, we can make a rough estimate of the number of
bytes that we need to communicate from the CPU onto the GPU, cf. ta-

www.dmi.dk/dmi/tr12-11.pdf page 80 of 147

DMI
Technical Report 12-11

ble 12.

Domain Static Semi-static Dynamic

NS 13.3 Mb 8.3 Mb 40.4 Mb

IDW 56.2 Mb 27.7 Mb 133.5 Mb

WS 2.3 Mb 2.2 Mb 8.7 Mb

BS 19.8 Mb 11.0 Mb 56.4 Mb

Table 12: Estimating the data required to communicate the different classes
of variables passed onto the subroutine momeqs.

Glancing the profile below we find that we can make improvement to a
significant portion of total time, i.e. the portion that uses 34.6% of the time,
by reducing the cost of the communication from the CPU onto the GPU but
the profile also reveals that we need better GPU code generation in order to
be able to compete with the CPU. The time spent on computations on the
GPU is, however, very small, almost negligible. In conclusion, we need to
investigate this technology further before we are ready to deal with a real
design for the entire application.

Table 2: Time and Bytes Transferred for Accelerator Regions

Host | Host | Acc | Acc Copy | Acc Copy | Calls |Function

Time% | Time | Time | In | Out | |

| | | (MBytes) | (MBytes) | |

100.0% | 2371.446 | 2370.175 | 1932474.397 | 194309.121 | 72000 |Total

|---

| 56.8% | 1347.973 | -- | -- | -- | 14400 |momeqs_.ACC_SYNC_WAIT@li.606

| 34.6% | 820.709 | 820.709 | 1932474.397 | -- | 14400 |momeqs_.ACC_COPY@li.145

| 8.5% | 201.994 | 201.994 | -- | 194309.121 | 14400 |momeqs_.ACC_COPY@li.606

| 0.0% | 0.510 | 1347.472 | -- | -- | 14400 |momeqs_.ACC_KERNEL@li.145

| 0.0% | 0.259 | -- | -- | -- | 14400 |momeqs_.ACC_REGION@li.145

|===

www.dmi.dk/dmi/tr12-11.pdf page 81 of 147

DMI
Technical Report 12-11

5 Validation and verification

The presence of bugs in programs can be regarded as a fundamental phe-
nomenon; the bug-free program is an abstract theoretical concept like the
absolute zero of thermodynamics, which can be envisaged but never attained.

Jacob T. Schwartz, professor in math and computer science

The aim of this chapter is to describe our focus on implementation quality.
It is our experience that many scientific codes put more focus on adding new
features than to ensure correctness. We have focused more on the correct-
ness than on the features implying that we test the software using techniques
that are common in the field of computer science but less used in the fields
of scientific computing that we are aware of. For instance, in the weather
and ocean modelling community it is quite common to measure the qual-
ity of a given model by cross-comparing model results with observations.
But, unfortunately, we have seen far too many examples where a model gets
impressive verification scores yet it is amazingly easy to prove that the im-
plementation is totally off in points where we do not have observations. We
have even seen quite a few examples of apparently nice verifications against
observations but where it turned out that the model results were solely dic-
tated by the - in this respect - rather arbitrary error handling by the chosen
compiler on the system where the buggy model implementation was run;
fixing the implementation bugs one by one eventually made the card house
crash, resulting in unacceptable verification scores.

Having said that, we really do believe that cross-comparing model results
with observations is a reasonable thing to do. At the end of the day it is also
this kind of quality assurance that the end-user is interested in - but if it
stands alone then it might be quite risky. Both in the sense that results may
be totally off in some points/sub-regions that could be interesting to users,
and in the sense that the results are not the outcome of solving complicated
systems of equations but rather the outcome of a failed attempt to do so
mixed with the artifacts of the system’s response to this failed attempt. If
the sole purpose was to get impressive verification scores in the observation
points then we would probably be much better off using a simple statistical
model that we could run on a laptop. We feel obliged to justify the com-

www.dmi.dk/dmi/tr12-11.pdf page 82 of 147

DMI
Technical Report 12-11

putational resources that we use to run the complicated models by putting
much more focus on verifying the outcome of the computations performed.

Think about it - would you trust a model where the sole fact about its
quality was that results in general appear within the expected range, e.g. all
parameters has a physical meaningful value in all the grid points, i.e. appear
within the expected range, and that it has reasonable results in say 0.02%21

of the grid points where we have observations for a few (relative to the to-
tal number of prognostic variables per grid point) parameters. It becomes
even more questionable if the model uses assimilation and thus at frequent
intervals tries to approach or even nudge the values of the observed data in
the grid points. Consistent buggy observations will lead to consistent buggy
results in the neighbourhood and at remote points but the verification scores
might still be very impressive and better than if we ran without assimila-
tion, so what does a good verification score give us here? The most positive
answer to this question we can think of is: ”Very little”.

When developers are doing code revisions, i.e. modifying existing code or
introducing new features into the code, it happens that only the intended
outcome of the developer’s own code segments is verified. It would be better
if one could assure that

• the bug fix or the improvement was successfully done based on the
found flaw,

• the new feature was successfully implemented based on expected out-
come,

while providing a general assurance that no new errors were introduced be-
cause ...

... as a consequence of the introduction of new bugs, program maintenance
requires far more system testing per statement written than any other pro-
gramming. Theoretically, after each fix one must run the entire batch of
test cases previously run against the system, to ensure that it has not been
damaged in an obscure way. In practice, such regression testing must indeed
approximate this theoretical idea, and it is very costly.

Fred Brooks, The Mythical Man Month

21The usual test-case has a total of 479081+1583550+103441+671985=2838057 3D wet-
points and has observations of some parameters in 106 points. The number of observation
levels are certainly less than 5 on average and the total number of observations is thus
certainly less than 5*106 and 530/2838057 < 0.0002.

www.dmi.dk/dmi/tr12-11.pdf page 83 of 147

DMI
Technical Report 12-11

In other words, we find it important to verify after each code revision that
what worked before still works and that the code revisions work as intended.
A suite of test-cases is a useful help for this, serving as reference cases, but
also for guidance in daily work, general documentation of and confidence in
the model capabilities, training of and inspiration for modellers, etc. Differ-
ent, updated test-cases explore different corners of the applicability range
(realistic cases, actual operational and project model setups, smaller toy
examples, different features are addressed, ...).

In the following subsections we summarize the things we do to ensure cor-
rectness and to prevent bugs from sneaking in as we move on with the
development. It should be stressed that most of these techniques are not
used just when we are up for releases of the source code or when we put a
new version of the model into operational mode. Many are actually used
during our daily work with the model code as we try to improve things,
and selected items are implemented into a test system that is executed as a
crontab job every weekday’s night.

These nightly tests

• should help us catch errors, inconsistencies, improper designs, non-
conforming implementations, etc, early in the development phase,

• should do it at a minimal cost without too much human involvement,

• are intended for smaller, not too much time-consuming regression test-
ing that are performed often at regular intervals,

• should cover a sufficiently broad range of builds and runs such that
important aspects are treated,

but we must, however, emphasize that they

• are not a substitute for developers’ own more thorough testing and
users’ model calibration and validation,

• will not cover every corner needed to be tested,

• are not intended for blame-storming but should be considered as a
valuable help for the developer community as a whole.

www.dmi.dk/dmi/tr12-11.pdf page 84 of 147

DMI
Technical Report 12-11

Actually, none of the verification methods that we describe here will relieve
us from the original burden (or joy) of doing a careful numerical analysis
prior to implementing a new feature. We expect that one has done a care-
ful forward-backward analysis and thus that one ensures that the problem
solved runtime is indeed well-conditioned. However, we realize that there
are many aspects that one cannot analyse on a piece of paper. For instance,
the latest IEEE standard for floating points (IEEE 754-2008) does not spec-
ify mandatory requirements for any elementary function such as ex, sin(x),
xn, ln(x) and so forth. The standard only requires that the 5 operations:
addition, subtraction, multiplication, division and square root are correctly
rounded (using any of the four rounding modes that the standard defines).
Also different architectures will have different floating point capabilities,
e.g. the SPARC64, IBM POWER and the latest GPUs from NVIDIA have
FMA22 operations that allows for more accurate results than the split opera-
tion consisting of a multiply operation followed by an add operation, cf. [10].
Note that the most recent AMD Interlagos have FMA operations too but
FMAs are brand-new on the x86-64 platforms so how will our code react
to all these implementation-dependent system aspects? Different compilers
will allow one to use different capabilities of the processor, e.g. some may
not have flags for enabling handling of denormalized numbers whereas others
have23 and different compilers may analyze the code differently and eventu-
ally generate quite different machine code operations which eventually may
lead to slightly different results. Classical compiler books such as e.g. the
so-called dragon book [1] even has doubtful rewrites from a numerical point
of view so one has to study the numerical side-effects resulting from the
different compilers to ensure that these side-effects are inferior to the final
results. In addition, we do not believe that numerical analysis on the entire
code base is feasible, i.e. the numerical analysis is most often confined to
smaller programming units. Thus, what do we do to evaluate the numerical
quality of the entire code eventually? This is what this chapter is all about.

5.1 Phrases commonly used in model development

Before we head off describing the various tests, we give a brief definitions of
the various phrases that are often used in this context.

22fuzed-multiply-add.
23This is the case even on systems where the hardware does support denormalized

numbers.

www.dmi.dk/dmi/tr12-11.pdf page 85 of 147

DMI
Technical Report 12-11

In scientific model development generally and also in this chapter, the fol-
lowing words are often used: calibration, validation, authentication, com-
parison, evaluation, verification. These words seem to be subject to diverse
interpretation in the modelling community, especially with respect to val-
idation and verification which for one person are synonyms but for others
mean something different. This may lead to some confusion. Let us try to
elaborate a little on the above words and the expected action behind them.

Traditionally, a modelling project - given that you work with a released
model source code, i.e. a code that has passed the series of technical tests
sufficiently well - has three phases, namely a calibration phase and a valida-
tion phase and finally a production phase.

Model calibration:
Model calibration is to tune the model until it reproduces the simulated
physical (or chemical, biological, etc) phenomena sufficiently well. Model
calibration is the process where you ”turn the buttons”, adjust the free
coefficients, modify the bathymetry, the boundary data, etc. Preferably,
you have beforehand chosen a (some) suitable calibration period(s), often
of relatively long duration so that ”all” important situations are covered,
and you have agreed-upon measures for how well the model must reproduce
the physics of the true nature for this and that parameter - otherwise the
calibration task will never end; one can always claim that something should
be better.

Model validation:
Model validation is the phase that follows the calibration. The objective
of the validation phase is to demonstrate universality in the sense that one
must be able to reproduce the calibration results, i.e. that the model for a
given region which has been calibrated to simulate the physics sufficiently
well for one (or more) time period(s) also performs sufficiently well during
other periods, keeping all coefficients etc untouched. In other words, hold
the model up against data sets which are independent of those used for the
calibration.

The traditional cal/val project phases are often followed by a model authen-
tication which takes place during the production phase.

Model authentication:
Model authentication is to demonstrate that the calibrated and validated

www.dmi.dk/dmi/tr12-11.pdf page 86 of 147

DMI
Technical Report 12-11

model performs sufficiently well during production runs by verification against
independent (i.e. not used during cal/val phases) data sets. Authentica-
tion can be an integrated part of the production system (e.g. online valida-
tion/verification) monitoring the ”correctness” more or less on the fly.

Comparison:
A comparison is simply the process of comparing (at least) two data sets,
e.g. measured and calculated salinity at a station, raw or statistically pro-
cessed. There is no interpretation behind, just plain collation of the data
material in e.g. tables or in a graphical form. The data material can be
processed (statistically, graphically color coded, averaged, or whatever ...),
and there can have been different targeted analyses performed.

Evaluation:
Evaluation includes some sort of interpretation; one should relate the com-
parisons to the objectives: Is this sufficiently well, or what should be better
and how do we make it better? Evaluation can be performed more or less
automatically, among other things dependent on the measures you (hope-
fully) agreed upon. Examples: If you have a goal that the STD of the
error of modelled sea surface elevation at a given station must not exceed
10 cm, then it is easy to evaluate this from the statistical comparison. But,
if you find from a graphical comparison that the pycnocline in the Inner
Danish Waters eventually erodes too much, then it requires some human
interpretation and analysis to guide the road to follow in attempt to make
it better.

Verification:
Verification is the process where you compare and evaluate something. It
can be that during the model calibration you test ”Is the effect of turning
this button as expected, or what should be improved?”. It can also be that
during production you will like to know if the water level is being forecasted
with sufficient precision according to the pre-defined measures. It could be
that during code development you do a technical verification ”is this ANSI
code?”, ”are the results identical across different configure incarnations as
they should be?”, ...
Verification with respect to modelling can have two objectives:

• either you would like to show how good the model is, how much con-
fidence the end-user can have in the results,

• or you try to find priorities for further development activities, where

www.dmi.dk/dmi/tr12-11.pdf page 87 of 147

DMI
Technical Report 12-11

should we focus?

There is a tendency that the first item takes place during production, while
the second is during development, but they should ideally accompany each
other.

5.2 Technical bugs - serial focus

Debugging is an extremely time-consuming process and we have conse-
quently tried to invent procedures that allow us to catch issues with as
little effort as possible. There is a number of technical bugs that we often
see and that we can catch by proper usage of the capabilities provided by
our compilers. It is a well-known fact that different compilers have differ-
ent diagnostic capabilities and we therefore recommend to use as many as
possible to help catching technical bugs as early as possible. If there was
one single compiler superior to the rest we would for sure use that one but,
unfortunately, there is not - each have their own pros and cons.

Each paragraph in this section describes a test category and in each para-
graph we will mention the scripts we use to conduct the tests. However,
we must emphasize that the mechanics inside the scripts is not important.
It is the procedure behind, i.e. the concept, that we wish to focus on. By
showing the scripts we just prove how easy it is to conduct these tests once
the framework is established.

The scripts mentioned in this section are handling flags for the following com-
pilers: pgi, ifort, pathf90, gfortran, crayftn, sun, nagwaref95, lahey, open64,
xlf90, sxf90, mipspro and absoft. We perform tests with the first 7 compilers
on a nightly basis and the others mentioned in the list occasionally, i.e. when
time and access permits it. The scripts will build the code with relevant flags
using all the compilers present on the system that one launches it on and then
run all the tests in the list of test-cases with the binaries generated. That is,
instead of building one binary and test it with one test-case we will typically
build 100+ binaries24 and launch each of these binaries using a couple of
test-cases, each run with several different openMP and MPI decompositions.

Nice side-effects of this study:

• we may find that certain compilers produce wrong results

24typically 8 compilers, 5 groups of compiler flags (ieee, tune, bound, stack, tune), 4
configure incarnations (serial, openMP, MPI, openMP+MPI)

www.dmi.dk/dmi/tr12-11.pdf page 88 of 147

DMI
Technical Report 12-11

• we may find that certain compiler options produce wrong results

• we know which compiler is producing the most reliable results

• we know which compiler is producing the fastest executable

• we know which compiler to use if the build time is important

ANSI compliance
If the code does not comply with the language standard, then the behaviour
is unpredictable and consequently useless for a further study. As an example,
there is a tendency in the modelling community to blend different language
dialects, i.e. older Fortran 77 with newer Fortran 90; we must here emphasize
that such a coding practise is not always compliant with the ANSI standard
and consequently the outcome may be very different from the developer’s
intentions. The script

./build_ansi.sh

will add relevant compiler options to warn about ANSI violations in the code.

Many compilers are capable of producing nice warnings about ANSI viola-
tions, some are better than others, and often different compilers warn about
different issues, and there is no compiler that is capable of catching all vi-
olations. Therefore, it is recommended to test for ANSI compliance using
as many compilers as possible. Needless to say, the developer will have to
study the messages emerging from these builds to figure out if and how is-
sues need to be addressed.

It is our experience that not all ANSI violations can be caught automati-
cally by the compilers, not even using many compilers, unfortunately. The
developers need to review the code manually. A good coding style is very
helpful in this respect. We recommend that a certain code style is followed
routinely through all phases, right from writing the first source code line
through source code maintenance, see appendix B for our styling rules.

Violating array boundaries
Most compilers have the capability for out-of-bounds testings for arrays and
character strings. Many annoying bugs can be caught at an early stage of
the development phase using boundary checking. The scripts

./build_bound.sh && ./run_bound.sh

www.dmi.dk/dmi/tr12-11.pdf page 89 of 147

DMI
Technical Report 12-11

will add relevant compiler options to force the compiler to generate code
with boundary checking for all the compilers present on the system at hand
and then run all tests in the list of test-cases.

If your compiler does not support boundary checking you may use your de-
bugger to find some of these issues. However, it is important to realize that
debuggers cannot compete with compilers in these areas. Firstly, they can
only catch these issues for variables stored on the heap. Secondly, instead
of keeping track of individual variables as compilers do they keep track of
allocated chunks and consequently they can only catch violations that goes
beyond the allocated chunk. Global variables are sometimes allocated to-
gether and boundary issues within such chunks will in general not be caught
by debuggers.

For the sake of completeness, we provide a totalviewTM script for automatic
tracking of boundary issues based on guard blocks as well as on red-zones25.

Uninitialized local variables
Not all compilers have the capability of initializing real variables with SNAN26

but some have and in that case build stack.sh will add the relevant com-
piler options. Some even have the possibility of pre-initializing integers on
the stack too to say the largest possible value which is likely to lead to a
crash if used. If this option is present it will be added by this script too.

./build_stack.sh && ./run_stack.sh

We encourage you to read your compiler manual carefully with respect to
these options. For instance, some compilers may place large local variables
in the heap segment or local variables with the SAVE attribute may be placed
on the BSS segment and it is not all compilers that allow you to initialize
variables in the heap segment or BSS segment with SNAN.

Uninitialized variables in the heap segment
A few compilers have the capability of initializing real variables with SNAN
and in that case build heap.sh will add the relevant compiler options.
Some are capable of catching uninitialized reals on the heap too and there

25Please consult [9] for the details.
26IEEE 754 comprises two kinds of NaN (Not a Number) formats, a quiet NaN (qNaN)

and a signaling NaN (sNaN) and the latter will generate a floating point exception (if
one has asked the compiler to generate code that enables FPEs) when it is used in a
computation.

www.dmi.dk/dmi/tr12-11.pdf page 90 of 147

DMI
Technical Report 12-11

are some that have the possibility of pre-initializing integers to say largest
possible value, hopefully leading to a crash when running a test-case.

./build_heap.sh && ./run_heap.sh

Again, we encourage you to read the compiler manual carefully with respect
to these options (not all are capable of initializing e.g. COMMON block and
module variables - not that COMMON blocks are used in this project, though,
cf. appendix B).

You can also use the debugger to catch uninitialized variables on the heap
by painting allocated memory with say 64bit SNAN (it is not possible to
distinguish between data-types when painting via debuggers so you have to
choose your patterns based on your source code). We provide a totalview
script that you can use to paint memory but you have to rely on the com-
piler to catch the FPEs27. The script ./build heap.sh will set the relevant
compiler options and ./tv run heap.sh will run it via the debugger and
ensure that memory is painted properly.

It is important to understand that the fact that we rely on FPEs to catch
these kind of bugs imposes a constraint. If an array has an uninitialized vari-
able at a certain index but this index is not used in any computations with
the test-case at hand then we will not be able to find it using this method.
Actually, we once experienced problems when cross-comparing MPI runs
with serial runs and eventually it turned out that the only difference be-
tween the two results was the landpoint value (this value is not used in any
statistics nor used when we plot differences between two fields).

Other potential technical issues
Many compilers have other good diagnostic capabilities that are less common
and we have consequently chosen to collect such more exotic capabilities and
gather them into the diag group, i.e. you can use the scripts:

./build_diag.sh && ./run_diag.sh

to add various extra runtime diagnostics. Below are some examples of what
these flags could help to detect:

• detect unintended de-referencing of NULL pointers,

27FPE: floating point exception

www.dmi.dk/dmi/tr12-11.pdf page 91 of 147

DMI
Technical Report 12-11

• detect dangling pointers,

• detect floating-point overflow in formatted input,

• detect stack overflow at runtime,

• check the stack for available space upon entry to and before the start
of a parallel region,

Memory leaks, IO issues, race issues, ...
This is the kind of bugs that the compiler cannot help us detect. We have to
rely on debuggers or other external tools to detect these bugs automatically.

Occasionally, we check for memory leaks and IO behaviour. We use valgrind,
totalview and truss/strace for these investigations. These investigations are
typically done interactively.

In our experience the most difficult problems to debug are race problems
with threads and especially for a code like this where thread blocks may
span several subroutines. Because of the nature of race issues in openMP
implementations where the problem tends to show up randomly, i.e. not in
every run but ’only’ from time to time and not always with all number of
threads, one of the more ’reliable’ ways to spot such problems is to run
many cases very often and check for binary identical results. The nightly
tests serve as a very good servant in this respect.

5.3 Numerical issues - serial focus

The overall aim of this study is to obtain a solid understanding of the results
emerging from a simple serial build and a relatively short run, say a 24 hours
simulation, before it makes sense to move on with the longer simulations.
If we cannot get a 24 hours simulation to produce results across compiler
flags, across compilers and across different platforms that are in reasonable
agreement then it is very unlikely that we are able to deal with bugs/issues
that first become apparent after running year-long simulations. We highly
recommend papers like [3], [6] or a textbook like [7] as relevant background
information.

5.3.1 Cross-compare statistics and related fingerprints

First, we collect statistics from the runs and try to understand how sensible
the current test-case is to the compilers, the compiler flags and the platforms

www.dmi.dk/dmi/tr12-11.pdf page 92 of 147

DMI
Technical Report 12-11

used. A baseline is obtained by gathering logfiles from serial IEEE compliant
runs on various platforms with as many compilers as possible using as many
relevant test-cases as possible, i.e.

./build_ieee.sh && ./run_ieee.sh (on different platforms)

The logfiles contain per domain statistics such as mean, minimum, maxi-
mum, rms, std for relevant prognostic variables such as salinity, tempera-
ture, sea level and velocities. On top of the statistics, we also cross-compare
other run fingerprints such as the number of partially ice-covered grid points
and, if a bio-geochemical model is included, the corresponding variables.

As an example, table 13 list the compilers that we usually use on our local
cray XT5 installation and the compiler flags we have used to generate IEEE
compliant binaries.

Compiler IEEE flags

cray / 7.4.2.106 -O1 -Ofp0 -K trap=fp

intel / 12.0.4.191 -O0 -traceback -fp-model precise -fp-stack-check -fpe0

lahey / 8.10b -O0 -Knofsimple -Knofp relaxed

sun / 12.2 -O0 -ftrap=%all,no%inexact -fsimple=0 -fns=no

gfortran / 4.6.0 -fsignaling-nans -ftrapping-math -fno-unsafe-math-optimizations

open64 / 4.2.4-1 -fno-unsafe-math-optimizations -TENV:simd imask=OFF

pathscale / 3.2.99 -fno-unsafe-math-optimizations

-OPT:IEEE arithmetic,IEEE arith=1 -TENV:simd imask=OFF

pgi / 11.10.0 -O0 -Kieee -Ktrap=fp -Mchkstk -Mchkfpstk -Mnoflushz

-Mnofpapprox -Mnofprelaxed

Table 13: List of compilers present on the cray XT5 system at DMI and the
corresponding compiler flags used for IEEE builds.

Once we have all the logfiles we can cross-compare them and we are usu-
ally interested in bounding the differences, i.e. to determine the worst-case
differences εs(f) we see across all the runs for each statistical fingerprint
s (mean, minimum, maximum, rms, std) and each prognostic variable f
(salinity, temperature, sea level, . . .):

εs(f) = max
c1,c2

|sc1(f)− sc2(f)|

www.dmi.dk/dmi/tr12-11.pdf page 93 of 147

DMI
Technical Report 12-11

δs(f) =
maxc1,c2 |sc1(f)− sc2(f)|

max(|sc1(f)|, |sc2(f)|)

with sc1(p) and sc1(p) being the statistic s for parameter f obtained by
compiler c1 and c2 respectively. Sometimes we confine ourselves and fix one
compiler c∗ as being our reference compiler - typically this is the compiler
we used for production builds - and then cross-compare all the other results
with that of c∗. We have several scripts that can be used to find εs(f)
and δs(f) when cross-comparing a (sub)set of collected results. Needless
to mention these fingerprints depend on the test-case at hand and must be
established for all the relevant test-cases. If cross-comparing results gives
rise to differences higher than expected then we must find the reason and
fix it before we move on.

In table 14 we show the worst-case differences for a 6 hour simulation of the
usual test-case, i.e. the table is a result of cross-comparing logfiles stemming
from runs produced by the 8 compilers listed in table 13. One should look
carefully through this table, explain apparent odd values and fix unaccept-
able issues; the table should not rest in itself, it might require action. We
may find it necessary to exclude certain compilers whose values may be con-
sidered as outliers.

One example of a deviation that is apparant from the table is that the min-
imum temperature in the Baltic Sea domain seems to fluctuate quite a lot
across the 8 compilers compared to all the other statistical values. Look-
ing more carefully at the actual values of minimum temperature produced
by each compiler for this domain, we find that gfortran, open64 and sun
produces identical results, intel produces a slightly lower value, pathscale
and pgi produce slightly higher values, and there are two outliers, cray and
lahey. Removing the latter two we find εmin(T) = 2.83 10−5 ◦C, i.e. a fac-
tor of 100 is gained on the εmin(T). A plausible explanation for this very
different behavior of the compilers is that the model operates with a cut-off
in temperature when it reaches the freezing point at the location which is
determined by the local salinity as Tfreeze = −0.055S, and when T drops
below Tfreeze the sea water is treated thermodynamically as sea ice with the
excees heat used for ice formation, not for continuous further cooling. The
Baltic Sea domain distinguish itself from the other domains by having large
pools of relatively fresh water (i.e. low S). Other epsilons are not off for the
Baltic Sea. If this difference is unacceptable to the users, then we will have
to deal with it numerically.

www.dmi.dk/dmi/tr12-11.pdf page 94 of 147

DMI
Technical Report 12-11

NS (ε/δ) IDW (ε/δ) WS (ε/δ) BS (ε/δ)

Mean salinity 1.01e-07 / 2.91e-09 6.71e-07 / 4.14e-08 1.88e-08 / 5.52e-10 1.12e-07 / 1.65e-08

RMS for salinity 9.67e-08 / 2.78e-09 6.60e-07 / 3.63e-08 1.87e-08 / 5.47e-10 7.39e-08 / 1.06e-08

STD for salinity 1.40e-07 / 1.29e-07 4.28e-07 / 5.19e-08 4.40e-09 / 2.25e-09 2.05e-07 / 1.24e-07

Min salinity 0.00e+00 / 0.00e+00 0.00e+00 / 0.00e+00 0.00e+00 / 0.00e+00 0.00e+00 / 0.00e+00

Max salinity 5.57e-10 / 1.57e-11 3.97e-08 / 1.14e-09 9.76e-10 / 2.78e-11 4.35e-11 / 2.76e-12

Mean temp [◦C] 2.58e-07 / 2.79e-08 3.06e-07 / 2.74e-08 6.64e-08 / 5.43e-09 9.78e-07 / 1.69e-07

RMS for temp [◦C] 2.89e-07 / 3.03e-08 5.24e-07 / 4.53e-08 5.74e-08 / 4.66e-09 2.16e-06 / 3.39e-07

STD for temp [◦C] 2.50e-07 / 1.11e-07 1.17e-06 / 3.90e-07 7.51e-08 / 5.34e-08 4.52e-06 / 1.72e-06

Min temp [◦C] 7.37e-09 / 1.28e-09 6.53e-10 / 1.63e-10 1.41e-08 / 1.77e-09 2.93e-03 / 1.69e-02

Max temp [◦C] 4.01e-13 / 2.16e-14 6.00e-12 / 3.00e-13 9.95e-14 / 5.35e-15 3.69e-10 / 1.99e-11

Mean z [m] 1.19e-06 / 6.39e-05 3.71e-07 / 9.67e-07 6.21e-07 / 1.54e-05 5.82e-08 / 1.31e-07

RMS for z [m] 1.05e-05 / 3.32e-05 3.19e-07 / 8.16e-07 7.63e-07 / 2.03e-06 1.38e-07 / 3.08e-07

STD for z [m] 1.06e-05 / 3.34e-05 5.95e-07 / 8.12e-06 8.35e-07 / 2.24e-06 7.18e-07 / 1.45e-05

Min z [m] 2.21e-10 / 2.09e-10 7.56e-06 / 7.78e-05 1.00e-13 / 6.98e-14 4.23e-07 / 1.21e-06

Max z [m] 2.77e-05 / 1.79e-05 1.08e-06 / 1.93e-06 0.00e+00 / 0.00e+00 7.56e-06 / 1.15e-05

Min u [m/s] 9.99e-14 / 9.04e-14 3.89e-06 / 4.04e-06 0.00e+00 / 0.00e+00 5.50e-08 / 1.48e-07

Max u [m/s] 2.02e-04 / 1.15e-04 8.54e-07 / 1.61e-06 9.15e-09 / 7.65e-09 2.60e-07 / 1.14e-06

Min v [m/s] 2.31e-10 / 1.66e-10 5.82e-07 / 6.99e-07 7.57e-09 / 4.72e-09 2.62e-07 / 5.99e-07

Max v [m/s] 1.04e-04 / 4.95e-05 8.74e-07 / 9.31e-07 9.99e-14 / 9.65e-14 3.75e-05 / 9.55e-05

Table 14: Worst case differences on statistics between the 8 serial IEEE
runs.

www.dmi.dk/dmi/tr12-11.pdf page 95 of 147

DMI
Technical Report 12-11

Second, we need to analyze and understand how sensible the code and the
current test-case is to brain-dead tuning flags, c.f. table 15.

Compiler TUNE flags

cray / 7.4.2.106 -O2 -eo -Oipa5

intel / 12.0.4.191 -O3 -fno-alias -ipo -static

lahey / 8.10b –O3 –sse2

sun / 12.2 -O3

gfortran / 4.6.0 -O3 -funroll-loops -ffast-math -finline-functions -finline-limit=5000

open64 / 4.2.4-1 -O3

pathscale / 3.2.99 -O3

pgi / 11.10.0 -fastsse -Mipa=fast,inline

Table 15: List of compilers present the cray XT5 system at DMI and the
corresponding compiler flags used for TUNE builds.

That is, we gather logfiles from serial tune runs on various platforms with
as many compilers as possible, i.e.

./build_tune.sh && ./run_tune.sh (on different platforms)

In this context TUNE does not mean adding music to the work but letting
the compiler attempt to do optimization with respect to speed, possibly
sacrificing IEEE compliance and possibly allowing unsafe math instructions.
We expect to see larger deviations than above with the IEEE runs but the
differences must not explode. In table 16 we show the worst-case differ-
ences for a 6 hour simulation of the usual test-case, i.e. the table is a result
of cross-comparing 16 logfiles stemming from runs produced by 8 different
compilers, 2 different classes of compiler flags (ieee and tune) on the same
hardware.

Once we have the numbers we can add the test-case to the nightly build and
run tests and get an early warning if any of the epsilons are exceeded.

Note that we only see a very small increase in the worst-case differences
when moving from IEEE and TUNE implying that we can safely use the
TUNE flags listed to build this code. Finally, it should also be mentioned
that in all shown cases we have no deviations in the number of partially ice
covered grid points.

www.dmi.dk/dmi/tr12-11.pdf page 96 of 147

DMI
Technical Report 12-11

NS (ε/δ) IDW (ε/δ) WS (ε/δ) BS (ε/δ)

Mean salinity 1.68e-07 / 4.82e-09 6.71e-07 / 4.14e-08 3.16e-08 / 9.26e-10 1.82e-07 / 2.69e-08

RMS for salinity 1.55e-07 / 4.45e-09 6.60e-07 / 3.63e-08 3.12e-08 / 9.13e-10 1.12e-07 / 1.61e-08

STD for salinity 4.15e-07 / 3.83e-07 4.28e-07 / 5.19e-08 5.80e-09 / 2.96e-09 2.72e-07 / 1.64e-07

Min salinity 0.00e+00 / 0.00e+00 0.00e+00 / 0.00e+00 0.00e+00 / 0.00e+00 0.00e+00 / 0.00e+00

Max salinity 7.51e-10 / 2.12e-11 6.90e-08 / 1.98e-09 1.63e-09 / 4.65e-11 5.35e-11 / 3.40e-12

Mean temp [◦C] 4.63e-07 / 5.01e-08 7.45e-07 / 6.66e-08 6.64e-08 / 5.43e-09 9.78e-07 / 1.69e-07

RMS for temp [◦C] 4.30e-07 / 4.52e-08 9.39e-07 / 8.11e-08 5.74e-08 / 4.66e-09 2.65e-06 / 4.16e-07

STD for temp [◦C] 4.46e-07 / 1.97e-07 1.19e-06 / 3.98e-07 7.51e-08 / 5.34e-08 6.27e-06 / 2.38e-06

Min temp [◦C] 7.37e-09 / 1.28e-09 1.31e-09 / 3.27e-10 1.41e-08 / 1.77e-09 3.31e-03 / 1.91e-02

Max temp [◦C] 6.00e-13 / 3.23e-14 6.60e-12 / 3.30e-13 9.95e-14 / 5.35e-15 5.92e-10 / 3.19e-11

Mean z [m] 1.20e-06 / 6.47e-05 5.12e-07 / 1.33e-06 8.96e-07 / 2.23e-05 5.82e-08 / 1.31e-07

RMS for z [m] 1.32e-05 / 4.16e-05 4.18e-07 / 1.07e-06 7.63e-07 / 2.03e-06 1.72e-07 / 3.85e-07

STD for z [m] 1.32e-05 / 4.19e-05 1.89e-06 / 2.58e-05 8.35e-07 / 2.24e-06 1.03e-06 / 2.07e-05

Min z [m] 2.67e-10 / 2.52e-10 9.24e-06 / 9.52e-05 1.00e-13 / 6.98e-14 7.78e-07 / 2.23e-06

Max z [m] 3.38e-05 / 2.18e-05 1.10e-06 / 1.97e-06 0.00e+00 / 0.00e+00 8.64e-06 / 1.31e-05

Min u [m/s] 9.99e-14 / 9.04e-14 5.16e-06 / 5.37e-06 0.00e+00 / 0.00e+00 5.50e-08 / 1.48e-07

Max u [m/s] 2.23e-04 / 1.27e-04 2.37e-06 / 4.45e-06 1.13e-08 / 9.43e-09 3.24e-07 / 1.42e-06

Min v [m/s] 2.95e-10 / 2.12e-10 1.11e-06 / 1.33e-06 9.55e-09 / 5.95e-09 4.05e-07 / 9.27e-07

Max v [m/s] 1.31e-04 / 6.21e-05 2.22e-06 / 2.37e-06 9.99e-14 / 9.65e-14 3.75e-05 / 9.55e-05

Table 16: Worst case differences on statistics between the 16 serial
IEEE+TUNE runs.

www.dmi.dk/dmi/tr12-11.pdf page 97 of 147

DMI
Technical Report 12-11

5.3.2 Cross-compare pointwise results

Once we have obtained confidence in the expected statistical deviations we
need to take a more careful look at the pointwise behaviour. Even if εs(f)
and δs(f) seem reasonable for all kinds of statistical fingerprints s and all
prognostic variables f we may still experience severe problems in say 0.1% of
the grid points and who knows if these points are important to one of the end
users. That is, for all f we need to analyze the differences in all the 1: iw3
wet-points and see if there is at least one point where the pointwise difference
exceeds a given threshold epsilon. That is, we are generally interested in
finding the numbers:

εp(f) = max
iw,c1,c2

|fc1(iw) − fc2(iw)|

Actually, we find it more convenient to restrict ourselves to look at certain
more interesting vertical layers, say for salinity and temperature we may
look specifically at the surface (L = 1) and at the bottom (the bottom layer
is attained at different levels L ∈ 1, . . . Lmax depending on the point at hand
and by definition we let L = 0 be the bottom layer). That is,

εp(f, L) = max
iw∈L,c1,c2

|fc1(iw) − fc2(iw)|

with L being either the surface layer or the bottom layer. Hopefully, by
studying the differences we will get a solid understanding of how stable or
fragile the code is in its computations of each field in the current setup. Note
that larger deviations may be due to the fact that the field (e.g. a front) has
shifted a grid point or two and it may be necessary to look at more artificial
numbers derived from the current value and neighboring values.

For nested setups (and for parallel runs, cf. below) it is important to pay
special attention to the geographic locations of the differences. The differ-
ence may be due to issues with the nesting code or with the parallelization.
Also, the open boundaries may be of special interest. Again, it is important
to look very carefully at these results and ensure that there is a valid ex-
planation of all differences found before proceeding. Especially, one should
be alert if any kind of systematic differences occur, e.g. confined near the
nesting borders or near halo-zones of MPI-tasks. Some examples are shown
in figure 15 - 16: If we compare results from two different compilers we
typically see a scattered pattern, while implementation bugs in the MPI-
communication for short-term simulations show up around the halos, here

www.dmi.dk/dmi/tr12-11.pdf page 98 of 147

DMI
Technical Report 12-11

near 13.5◦ E and 55.9◦ N.

Figure 15: Typical discrepancies in model results between two runs with
different compilers.

Once this study is completed we should have a good feeling of how sensible
a given field is to the choice of platform, compiler and finally compiler flags.

In table 17 we show the worst-case differences that we find when using
different compiler flags. We compare the results per compiler and conclude
that the results highly dependents on the choice of the compiler. Note
that these differences were completely invisible when we only looked at the
statistics.

5.3.3 Cross-compare timings

Now that we have done all the serial builds and runs we might as well com-
pare the time it took to complete these.

Nice side-effects of this study:

www.dmi.dk/dmi/tr12-11.pdf page 99 of 147

DMI
Technical Report 12-11

NS (ε/δ) IDW (ε/δ) WS (ε/δ) BS (ε/δ)

sun, lahey

εp(∗, ∗) 0.00e+00/0.00e+00 0.00e+00 /0.00e+00 0.00e+00 /0.00e+00 0.00e+00/0.00e+00

intel

εp(zlev, 1) 5.87e-04/3.78e-04 3.62e-04 /6.48e-04 9.93e-06 /5.12e-06 1.99e-04/3.02e-04

εp(salt, 0) 3.03e-02/8.55e-04 4.77e-02 /1.36e-03 3.20e-06 /9.13e-08 9.04e-03/2.58e-04

εp(salt, 1) 3.92e-03/1.11e-04 4.22e-02 /1.20e-03 3.20e-06 /9.13e-08 1.53e-02/4.38e-04

εp(temp, 0) 1.08e-01/5.80e-03 1.16e-01 /5.80e-03 2.40e-06 /1.29e-07 2.44e-01/1.31e-02

εp(temp, 1) 1.47e-02/7.91e-04 4.16e-02 /2.08e-03 2.40e-06 /1.29e-07 6.91e-02/3.72e-03

pathscale

εp(zlev, 1) 2.59e-04/1.67e-04 2.05e-04 /3.67e-04 8.16e-06 /4.21e-06 5.57e-05/8.46e-05

εp(salt, 0) 1.37e-02/3.88e-04 9.84e-02 /2.81e-03 3.10e-06 /8.85e-08 1.08e-02/3.08e-04

εp(salt, 1) 5.49e-03/1.55e-04 4.44e-02 /1.27e-03 3.30e-06 /9.42e-08 3.56e-03/1.02e-04

εp(temp, 0) 4.64e-02/2.49e-03 9.79e-02 /4.90e-03 2.00e-06 /1.07e-07 2.22e-01/1.20e-02

εp(temp, 1) 1.07e-02/5.76e-04 3.40e-02 /1.70e-03 2.00e-06 /1.07e-07 4.99e-02/2.69e-03

gfortran

εp(zlev, 1) 3.49e-04/2.25e-04 1.04e-03 /1.86e-03 7.62e-06 /3.93e-06 6.52e-05/9.90e-05

εp(salt, 0) 9.75e-03/2.75e-04 9.09e-02 /2.60e-03 1.05e-05 /3.00e-07 7.35e-03/2.10e-04

εp(salt, 1) 2.93e-03/8.29e-05 4.22e-02 /1.20e-03 1.05e-05 /3.00e-07 1.01e-02/2.90e-04

εp(temp, 0) 1.69e-02/9.07e-04 7.79e-02 /3.89e-03 4.10e-06 /2.20e-07 1.76e-01/9.50e-03

εp(temp, 1) 1.25e-02/6.71e-04 2.54e-02 /1.27e-03 4.10e-06 /2.20e-07 4.40e-02/2.37e-03

cray

εp(zlev, 1) 4.16e-04/2.68e-04 2.86e-04 /5.11e-04 5.03e-06 /2.59e-06 7.43e-05/1.13e-04

εp(salt, 0) 6.06e-03/1.71e-04 6.21e-02 /1.77e-03 6.30e-06 /1.80e-07 5.37e-03/1.54e-04

εp(salt, 1) 4.25e-03/1.20e-04 4.30e-02 /1.23e-03 6.30e-06 /1.80e-07 1.52e-02/4.35e-04

εp(temp, 0) 1.45e-02/7.79e-04 1.15e-01 /5.76e-03 3.50e-06 /1.88e-07 6.02e-02/3.24e-03

εp(temp, 1) 7.05e-03/3.79e-04 3.81e-02 /1.91e-03 3.50e-06 /1.88e-07 5.89e-02/3.17e-03

open64

εp(zlev, 1) 3.63e-04/2.34e-04 2.67e-04 /4.78e-04 1.23e-05 /6.36e-06 6.52e-05/9.90e-05

εp(salt, 0) 9.57e-03/2.70e-04 6.19e-02 /1.77e-03 1.37e-05 /3.91e-07 1.45e-02/4.13e-04

εp(salt, 1) 3.93e-03/1.11e-04 3.71e-02 /1.06e-03 1.37e-05 /3.91e-07 1.55e-02/4.42e-04

εp(temp, 0) 2.10e-02/1.13e-03 1.68e-01 /8.39e-03 6.90e-06 /3.71e-07 2.42e-01/1.31e-02

εp(temp, 1) 1.50e-02/8.07e-04 4.26e-02 /2.13e-03 6.90e-06 /3.71e-07 3.93e-02/2.12e-03

pgi

εp(zlev, 1) 5.10e-04/3.29e-04 4.53e-04 /8.11e-04 1.70e-05 /8.75e-06 8.30e-05/1.26e-04

εp(salt, 0) 7.45e-03/2.10e-04 1.09e-01 /3.10e-03 7.40e-06 /2.11e-07 8.27e-03/2.36e-04

εp(salt, 1) 2.10e-03/5.94e-05 3.57e-02 /1.02e-03 7.40e-06 /2.11e-07 4.55e-03/1.30e-04

εp(temp, 0) 2.31e-02/1.24e-03 9.21e-02 /4.61e-03 6.60e-06 /3.55e-07 2.03e-01/1.10e-02

εp(temp, 1) 7.28e-03/3.91e-04 3.48e-02 /1.74e-03 6.60e-06 /3.55e-07 3.86e-02/2.08e-03

Table 17: Worst case pointwise differences when comparing IEEE results
with TUNE results.

www.dmi.dk/dmi/tr12-11.pdf page 100 of 147

DMI
Technical Report 12-11

Figure 16: Typical discrepancies in model results between two runs with the
same compiler (same build) but run with different numbers of MPI tasks
and a flaw in the implemetation of MPI communication.

• We may find if certain compilers have difficulties in keeping up with
the rest. If this is indeed the case and it cannot be fixed by modifying
compiler options, then it is time to conduct a more detailed profiling
study and eventually get in touch with the compiler vendor.

• One compiler might be super-fast (run-time) but by cross-comparing
with the worst-case differences above it might also be very wrong.

• Some compilers might be very slow when building the software.

Some examples: Serial timings (run time) on the XT5 system at DMI for
the usual test-case using different compilers with tune flags are shown in
figure 17. In figure 18 we have gathered information on the time it takes
to build HBM with different configure options for a number of different

www.dmi.dk/dmi/tr12-11.pdf page 101 of 147

DMI
Technical Report 12-11

compilers using different groups of compiler flags: One thing is that a tune
variant takes a certain amount of time to build; we can accept that since
it will likely pay off when we get to do our production runs. But for our
daily-day development and testing, some compilers might seem hopeless as
a working tool.

Figure 17: Serial run time using different compilers with tune flags.

5.4 Bugs and numerical issues - parallel focus

Due to the use of #if defined (MPI) in the code, compiling with or without
MPI actually creates two semantically different codes. MPI-variants of the
above ansi, stack and bound tools must also be executed:

• Redo the initial steps with MPI enabled

./build_mpi_ansi.sh

./build_mpi_stack.sh && ./run_mpi_stack.sh

./build_mpi_bound.sh && ./run_mpi_bound.sh

• Ensure that MPI works correct

foreach compiler C

foreach relevant decomposition D

md5sum archive tempdat.* restart sponge*

must lead to identical md5sums for all D when C is fixed.

www.dmi.dk/dmi/tr12-11.pdf page 102 of 147

DMI
Technical Report 12-11

Figure 18: Build timings for different configure options and different com-
pilers with different groups of compiler flags.

• Ensure that openMP works correct

foreach compiler C

foreach number_of_threads N

md5sum archive tempdat.* restart sponge*

must lead to identical md5sums for all N when C is fixed.

• Ensure that MPI+openMP works correct

foreach compiler C

foreach number_of_tasks M

foreach number_of_threads N

md5sum archive tempdat.* restart sponge*

must lead to identical md5sums for all pairs (M,N) when C is fixed.

The observant reader may wonder why we have ansi, stack and bound for
MPI but apparently not for openMP. The reason is that in our experience
most compilers cannot generate the latter two tests while having openMP

www.dmi.dk/dmi/tr12-11.pdf page 103 of 147

DMI
Technical Report 12-11

enabled and we have consequently chosen to disregard these tests for the
time being.

If the md5sums in the experiments above are not identical, then one can try
to select a couple of fields, say temperature and salinity, and plot the differ-
ences. It is likely that one will see differences around the MPI-tasks’ halos
or around the nesting borders due to implementation bugs introduced in the
corresponding code segments.

Note that the md5sum test is a necessary but not a sufficient condition for cor-
rect behavior. Not all output files store the fields in full precision, e.g. vari-
ables are truncated for formatted output to ascii files or compressed by
scaling and conversion to integers for output to disk-space saving binary
files. Actually, we could choose to compare restart files only because they
contain a snapshot of all prognostic variables in full precision and therefore
any important discrepancy will show up here; taking other files into account
just demonstrates that the output has not been cluttered. If you do not get
binary identical restart files but you do get binary identical tempdat files
then you know that the differences between the two results are so small that
they vanish completely when we scale and store the results as integers.

Table 18 shows 7 runs of 4 different configure options (default, --enable-openmp,
--enable-mpi, --enable openmp --enable-mpi). The 4 binaries are all
generated by the pathscale compiler using the TUNE compiler flag. Please
note, that we get binary identical results across these configure options and
across different decompositions when we use this particular compiler; this is
indeed a sign of a healthy implementation.

If the md5sums for the serial runs are identical with those from the parallel
runs, then we can skip doing yet another series of epsilon tests and simply
conclude that our former tables hold not just for the 16 runs but for all the
parallel runs as well. On the other hand, if some of the md5sums differ then
one needs to establish and analyse the new epsilons for both statistics and
for the pointwise results.

Table 19 shows that openMP, MPI and serial builds produces binary identi-
cal results for different compilers so that the IEEE epsilons computed earlier
can be used for openMP and for MPI builds too. That is, our MPI imple-
mentation is safe as compared to the pure serial implementation.

www.dmi.dk/dmi/tr12-11.pdf page 104 of 147

DMI
Technical Report 12-11

md5sum 6 hours restart file

1221f8ed007f97ac68cbab32901a2343 pathscale/0 0 tune/restart

1221f8ed007f97ac68cbab32901a2343 pathscale/0 12 openmp tune/restart

1221f8ed007f97ac68cbab32901a2343 pathscale/1 0 mpi tune/restart

1221f8ed007f97ac68cbab32901a2343 pathscale/2 0 mpi tune/restart

1221f8ed007f97ac68cbab32901a2343 pathscale/12 0 mpi tune/restart

1221f8ed007f97ac68cbab32901a2343 pathscale/1 12 openmp mpi tune/restart

1221f8ed007f97ac68cbab32901a2343 pathscale/2 12 openmp mpi tune/restart

Table 18: Comparison of serial TUNE with openMP TUNE using 12 threads
with MPI TUNE using 1 or 2 MPI tasks with openMP MPI TUNE with 12
threads and 1 or 2 MPI tasks. All the results are generated by the PathScale
compiler and note that the results are binary identical.

Alas, it is not all the compilers that produce binary identical results across
all configure incarnations as pathscale does when we turn on optimizations,
so we must do another epsilon test to confirm that the parallel versions do
not harm the results in any significant way. In table 20 we see md5sums for
27 runs28, produced across configure options, compilers, compiler flags, de-
compositions. The table shows that not all configure options produce binary
identical results when the TUNE flag is used; care should be taken if one
decides to proceed with one of those compilers for production runs.

We encourage the reader to cross-compare results in table 21 with the re-
sults presented in table 14 and table 16. Based on these results we can
conclude that in terms of statistics it is safe to build the code with opti-
mization flags and it is also safe to run the code in parallel (openMP, MPI
or even openMP+MPI). The statistics looks fine for all the variables.

Cross-comparing the results in table 22 with the results in table 21 we see
that the pointwise differences are significantly larger than the differences
on the per-area statistics. Moreover, one notes that the magnitude of the
differences is closely related to the sub-domain, e.g. the differences in WS
are significantly smaller than the differences for the other sub-domains. In
WS the results in table 22 are (almost) identical for the bottom layer and

284 compilers, 7 runs each, except for Cray which at the time of writing unfortunately
segfaults in openmp tune runs on our local HPC installation, not on other HPC systems
we had access to.

www.dmi.dk/dmi/tr12-11.pdf page 105 of 147

DMI
Technical Report 12-11

md5sum 6 hours tempdat file

0d74fec06448dac8a962bc7d183c5f39 pathscale/0 0 ieee/tempdat.00

0d74fec06448dac8a962bc7d183c5f39 pathscale/0 12 openmp ieee/tempdat.00

0d74fec06448dac8a962bc7d183c5f39 pathscale/1 0 mpi ieee/tempdat.00

0d74fec06448dac8a962bc7d183c5f39 pathscale/2 0 mpi ieee/tempdat.00

0d74fec06448dac8a962bc7d183c5f39 pathscale/2 12 openmp mpi ieee/tempdat.00

374bdc91a00e2d746baefa3de940f6d8 pgi/0 0 ieee/tempdat.00

374bdc91a00e2d746baefa3de940f6d8 pgi/0 12 openmp ieee/tempdat.00

374bdc91a00e2d746baefa3de940f6d8 pgi/1 0 mpi ieee/tempdat.00

374bdc91a00e2d746baefa3de940f6d8 pgi/2 0 mpi ieee/tempdat.00

374bdc91a00e2d746baefa3de940f6d8 pgi/2 12 openmp mpi ieee/tempdat.00

7ec21b30b046d163f3ec3fa993f7ce65 intel/0 0 ieee/tempdat.00

7ec21b30b046d163f3ec3fa993f7ce65 intel/0 12 openmp ieee/tempdat.00

7ec21b30b046d163f3ec3fa993f7ce65 intel/1 0 mpi ieee/tempdat.00

7ec21b30b046d163f3ec3fa993f7ce65 intel/2 0 mpi ieee/tempdat.00

7ec21b30b046d163f3ec3fa993f7ce65 intel/2 12 openmp mpi ieee/tempdat.00

e5571093e928cdab23e556b02bb53c86 cray/0 0 ieee/tempdat.00

e5571093e928cdab23e556b02bb53c86 cray/0 12 openmp ieee/tempdat.00

e5571093e928cdab23e556b02bb53c86 cray/1 0 mpi ieee/tempdat.00

e5571093e928cdab23e556b02bb53c86 cray/2 0 mpi ieee/tempdat.00

e5571093e928cdab23e556b02bb53c86 cray/2 12 openmp mpi ieee/tempdat.00

ba64f4822ed208ae22ba24bc2de6e2bc gfortran/0 0 ieee/tempdat.00

ba64f4822ed208ae22ba24bc2de6e2bc gfortran/0 12 openmp ieee/tempdat.00

ba64f4822ed208ae22ba24bc2de6e2bc gfortran/1 0 mpi ieee/tempdat.00

ba64f4822ed208ae22ba24bc2de6e2bc gfortran/2 0 mpi ieee/tempdat.00

ba64f4822ed208ae22ba24bc2de6e2bc gfortran/2 12 openmp mpi ieee/tempdat.00

Table 19: Comparison of 4 configure options (default, --enable-openmp,
--enable-mpi, --enable-openmp --enable-mpi) all using the
IEEE compiler flag. That is, IEEE-serial (0 0 ieee), IEEE-openMP
(0 12 openmp ieee), IEEE-MPI (2 0 mpi ieee) and IEEE-openMP-MPI
(2 12 openmp mpi ieee) for different compilers. Note that we get binary
identical results across the 4 configure options for all compilers when using
the IEEE flag category.

www.dmi.dk/dmi/tr12-11.pdf page 106 of 147

DMI
Technical Report 12-11

md5sum 6 hours restart file

6edde7634af789768134d03eaaf6a309 pgi/0 0 tune/restart

6edde7634af789768134d03eaaf6a309 pgi/1 0 mpi tune/restart

4f22d22d6ec99ab08832aa3a3abaf801 pgi/2 0 mpi tune/restart

c176784b3944f81d1b95ea3d7c8a5009 pgi/12 0 mpi tune/restart

6edde7634af789768134d03eaaf6a309 pgi/0 12 openmp tune/restart

6edde7634af789768134d03eaaf6a309 pgi/1 12 openmp mpi tune/restart

4f22d22d6ec99ab08832aa3a3abaf801 pgi/2 12 openmp mpi tune/restart

c13e7c6e2abdc5b9699691067b830190 intel/0 0 tune/restart

bbbff8636db57bc7b6af11b5c4710218 intel/1 0 mpi tune/restart

bbbff8636db57bc7b6af11b5c4710218 intel/2 0 mpi tune/restart

bbbff8636db57bc7b6af11b5c4710218 intel/12 0 mpi tune/restart

626d01aa0f808d13ad5f150e44986bd8 intel/0 12 openmp tune/restart

c376d67c2ef33f9b7e6a9af8907da4a2 intel/1 12 openmp mpi tune/restart

c376d67c2ef33f9b7e6a9af8907da4a2 intel/2 12 openmp mpi tune/restart

788935ff7f0c10fb9a5f067aead9f95d cray/0 0 tune/restart

ffbe5526e7334ab54aa76655de92b476 cray/1 0 mpi tune/restart

ffbe5526e7334ab54aa76655de92b476 cray/2 0 mpi tune/restart

ffbe5526e7334ab54aa76655de92b476 cray/12 0 mpi tune/restart

N/A cray/0 12 openmp tune/restart

5c386d6de33c0ef5733de069a9b9626b cray/1 12 openmp mpi tune/restart

5c386d6de33c0ef5733de069a9b9626b cray/2 12 openmp mpi tune/restart

7bae056a42dab838e24f2766b68f401d gfortran/0 0 tune/restart

7bae056a42dab838e24f2766b68f401d gfortran/1 0 mpi tune/restart

7bae056a42dab838e24f2766b68f401d gfortran/2 0 mpi tune/restart

7bae056a42dab838e24f2766b68f401d gfortran/12 0 mpi tune/restart

66795bd67c36f7f9e1b580845b886a94 gfortran/0 12 openmp tune/restart

66795bd67c36f7f9e1b580845b886a94 gfortran/1 12 openmp mpi tune/restart

66795bd67c36f7f9e1b580845b886a94 gfortran/2 12 openmp mpi tune/restart

Table 20: md5sum of the restart file using different compilers and different
configure options with tune flags.

www.dmi.dk/dmi/tr12-11.pdf page 107 of 147

DMI
Technical Report 12-11

NS (ε/δ) IDW (ε/δ) WS (ε/δ) BS (ε/δ)

Mean salinity 1.88e-07 / 5.41e-09 6.71e-07 / 4.14e-08 3.18e-08 / 9.31e-10 2.21e-07 / 3.26e-08

RMS for salinity 1.77e-07 / 5.09e-09 6.60e-07 / 3.63e-08 3.14e-08 / 9.18e-10 1.23e-07 / 1.77e-08

STD for salinity 4.17e-07 / 3.85e-07 4.79e-07 / 5.80e-08 6.01e-09 / 3.07e-09 3.84e-07 / 2.32e-07

Min salinity 0.00e+00 / 0.00e+00 0.00e+00 / 0.00e+00 0.00e+00 / 0.00e+00 0.00e+00 / 0.00e+00

Max salinity 7.51e-10 / 2.12e-11 8.14e-08 / 2.34e-09 1.74e-09 / 4.96e-11 5.35e-11 / 3.40e-12

Mean temp [◦C] 7.36e-07 / 7.97e-08 8.48e-07 / 7.58e-08 6.64e-08 / 5.43e-09 9.98e-07 / 1.72e-07

RMS for temp [◦C] 5.13e-07 / 5.40e-08 9.93e-07 / 8.57e-08 5.74e-08 / 4.66e-09 2.61e-06 / 4.11e-07

STD for temp [◦C] 8.96e-07 / 3.97e-07 1.19e-06 / 3.98e-07 7.51e-08 / 5.34e-08 6.14e-06 / 2.33e-06

Min temp [◦C] 7.37e-09 / 1.28e-09 1.31e-09 / 3.27e-10 1.41e-08 / 1.77e-09 3.31e-03 / 1.91e-02

Max temp [◦C] 6.00e-13 / 3.23e-14 6.60e-12 / 3.30e-13 9.95e-14 / 5.35e-15 5.98e-10 / 3.22e-11

Mean z [m] 1.33e-06 / 7.17e-05 5.12e-07 / 1.33e-06 9.27e-07 / 2.30e-05 6.31e-08 / 1.42e-07

RMS for z [m] 1.32e-05 / 4.16e-05 4.18e-07 / 1.07e-06 7.63e-07 / 2.03e-06 1.72e-07 / 3.86e-07

STD for z [m] 1.32e-05 / 4.19e-05 2.48e-06 / 3.38e-05 8.35e-07 / 2.24e-06 1.03e-06 / 2.08e-05

Min z [m] 2.86e-10 / 2.70e-10 1.00e-05 / 1.03e-04 1.00e-13 / 6.98e-14 7.85e-07 / 2.25e-06

Max z [m] 5.46e-05 / 3.52e-05 1.30e-06 / 2.33e-06 0.00e+00 / 0.00e+00 9.17e-06 / 1.39e-05

Min u [m/s] 9.99e-14 / 9.04e-14 5.70e-06 / 5.93e-06 0.00e+00 / 0.00e+00 7.30e-08 / 1.97e-07

Max u [m/s] 2.23e-04 / 1.27e-04 2.43e-06 / 4.56e-06 1.20e-08 / 1.01e-08 3.97e-07 / 1.74e-06

Min v [m/s] 2.95e-10 / 2.12e-10 1.42e-06 / 1.70e-06 1.00e-08 / 6.24e-09 3.99e-07 / 9.13e-07

Max v [m/s] 1.42e-04 / 6.72e-05 2.22e-06 / 2.37e-06 9.99e-14 / 9.65e-14 3.75e-05 / 9.55e-05

Table 21: Worst case differences on statistics between 45 runs on XT5 (differ-
ent configure options, different decompositions, different compilers, different
compiler flags).

www.dmi.dk/dmi/tr12-11.pdf page 108 of 147

DMI
Technical Report 12-11

the surface; this is because the largest differences occur at a position where
there is only one layer which is subject to flooding and drying as shown in
figure 19, using the pgi compiler as an example, where the ε of 7.40 10−6

for salinity is at an isolated point.

As to the magnitudes of the differences in table 22 compared to the corre-
sponding magnitudes of the differences from pure serial runs, cf. table 17,
we see that the discrepancies range from none with the PathScale compiler,
i.e. no extra uncertainty is added by this compiler when including library
support for openMP and MPI (which we already knew from table 18), to
approximately a factor of two with the Cray compiler, i.e. the uncertainty
is roughly doubled.

0

1

2

3

4

5

6

7

x 10
−6

−2

−1

0

1

2

3

4

5

6

7

x 10
−6

Figure 19: Pointwise differences for salinity in a subregion of the WS domain
between IEEE and TUNE runs for the pgi compiler. Upper figure is the
surface, lower figure is the bottom.

www.dmi.dk/dmi/tr12-11.pdf page 109 of 147

DMI
Technical Report 12-11

NS (ε/δ) IDW (ε/δ) WS (ε/δ) BS (ε/δ)

intel

εp(zlev, 1) 6.80e-04/4.38e-04 4.70e-04 /8.41e-04 9.93e-06 /5.12e-06 2.06e-04/3.13e-04

εp(salt, 0) 3.03e-02/8.55e-04 6.25e-02 /1.79e-03 3.60e-06 /1.03e-07 1.45e-02/4.13e-04

εp(salt, 1) 3.98e-03/1.12e-04 4.22e-02 /1.20e-03 3.60e-06 /1.03e-07 1.53e-02/4.38e-04

εp(temp, 0) 1.08e-01/5.80e-03 1.27e-01 /6.36e-03 2.40e-06 /1.29e-07 2.44e-01/1.31e-02

εp(temp, 1) 1.48e-02/7.95e-04 4.33e-02 /2.17e-03 2.40e-06 /1.29e-07 7.24e-02/3.90e-03

pathscale

εp(zlev, 1) 2.59e-04/1.67e-04 2.05e-04 /3.67e-04 8.16e-06 /4.21e-06 5.57e-05/8.46e-05

εp(salt, 0) 1.37e-02/3.88e-04 9.84e-02 /2.81e-03 3.10e-06 /8.85e-08 1.08e-02/3.08e-04

εp(salt, 1) 5.49e-03/1.55e-04 4.44e-02 /1.27e-03 3.30e-06 /9.42e-08 3.56e-03/1.02e-04

εp(temp, 0) 4.64e-02/2.49e-03 9.79e-02 /4.90e-03 2.00e-06 /1.07e-07 2.22e-01/1.20e-02

εp(temp, 1) 1.07e-02/5.76e-04 3.40e-02 /1.70e-03 2.00e-06 /1.07e-07 4.99e-02/2.69e-03

gfortran

εp(zlev, 1) 3.49e-04/2.25e-04 1.04e-03 /1.86e-03 1.42e-05 /7.33e-06 6.64e-05/1.01e-04

εp(salt, 0) 9.75e-03/2.75e-04 9.09e-02 /2.60e-03 1.11e-05 /3.17e-07 7.35e-03/2.10e-04

εp(salt, 1) 2.93e-03/8.29e-05 4.22e-02 /1.20e-03 1.11e-05 /3.17e-07 1.01e-02/2.90e-04

εp(temp, 0) 2.01e-02/1.08e-03 7.79e-02 /3.89e-03 4.30e-06 /2.31e-07 2.15e-01/1.16e-02

εp(temp, 1) 1.25e-02/6.71e-04 5.16e-02 /2.59e-03 4.30e-06 /2.31e-07 4.40e-02/2.37e-03

cray

εp(zlev, 1) 4.16e-04/2.68e-04 2.86e-04 /5.11e-04 9.05e-06 /4.66e-06 1.82e-04/2.77e-04

εp(salt, 0) 4.38e-02/1.24e-03 1.15e-01 /3.29e-03 1.16e-05 /3.31e-07 1.15e-02/3.28e-04

εp(salt, 1) 4.25e-03/1.20e-04 4.33e-02 /1.24e-03 1.16e-05 /3.31e-07 1.53e-02/4.36e-04

εp(temp, 0) 3.19e-01/1.71e-02 1.69e-01 /8.43e-03 5.60e-06 /3.01e-07 2.17e-01/1.17e-02

εp(temp, 1) 7.05e-03/3.79e-04 4.73e-02 /2.37e-03 5.60e-06 /3.01e-07 8.98e-02/4.83e-03

pgi

εp(zlev, 1) 5.10e-04/3.29e-04 4.53e-04 /8.11e-04 1.70e-05 /8.75e-06 8.30e-05/1.26e-04

εp(salt, 0) 9.02e-03/2.55e-04 1.09e-01 /3.10e-03 7.40e-06 /2.11e-07 9.68e-03/2.77e-04

εp(salt, 1) 2.10e-03/5.94e-05 3.57e-02 /1.02e-03 7.40e-06 /2.11e-07 6.19e-03/1.77e-04

εp(temp, 0) 2.31e-02/1.24e-03 9.21e-02 /4.61e-03 6.60e-06 /3.55e-07 2.26e-01/1.22e-02

εp(temp, 1) 7.28e-03/3.91e-04 3.48e-02 /1.74e-03 6.60e-06 /3.55e-07 4.84e-02/2.60e-03

Table 22: Worst case pointwise differences per compiler when comparing
four files; two serial (IEEE and TUNE) and two parallel (OPENMP TUNE,
OPENMP MPI TUNE) for all compilers that supports MPI on our cray
XT5 system.

www.dmi.dk/dmi/tr12-11.pdf page 110 of 147

DMI
Technical Report 12-11

Finally, in table 23 we show the worst-case differences across all compilers.
These numbers in combination with the numbers in table 21 are the ones
that we should keep in mind when we proceed with the calibration/validation
phase. The steps we have taken to reach these numbers provides the required
confidence that we need to trust them.

NS (ε/δ) IDW (ε/δ) WS (ε/δ) BS (ε/δ)

εp(zlev, 1) 7.57e-04/4.88e-04 7.45e-04 /1.33e-03 1.57e-05 /8.10e-06 2.36e-04/3.58e-04

εp(salt, 0) 4.38e-02/1.24e-03 1.18e-01 /3.37e-03 7.90e-06 /2.25e-07 1.45e-02/4.13e-04

εp(salt, 1) 7.47e-03/2.11e-04 4.28e-02 /1.22e-03 7.90e-06 /2.25e-07 1.55e-02/4.44e-04

εp(temp, 0) 3.19e-01/1.72e-02 1.76e-01 /8.82e-03 5.10e-06 /2.74e-07 2.42e-01/1.30e-02

εp(temp, 1) 1.52e-02/8.16e-04 5.74e-02 /2.87e-03 5.10e-06 /2.74e-07 8.98e-02/4.83e-03

Table 23: Worst case pointwise differences when comparing four files;
two serial (IEEE and TUNE) and two parallel (OPENMP TUNE,
OPENMP MPI TUNE) across all compilers that supports MPI on our cray
XT5 system.

5.4.1 Study scalability across compilers and platforms

As another neat side effect of all these runs, we can easily construct scaling
plots and cross-compare compilers, platforms etc. If certain compilers or
platforms stick out, then we may try to analyze where the issues pertain to
and if possible fix it. If we cannot fix it in the code, then we should get in
touch with the compiler vendor and have the issue resolved.

An example with openMP scaling for a number of compilers is shown in
figure 20 where the intel compiler performs worse than the rest: It scales
pretty well but it has an off-set at 2 cores which it carries throughout.

Note that scale plots only make sense if the results for each point along
the curve are identical; if they are not, what you are showing is only that
different models run with different computational speed, which is just a
trivial and not very interesting statement.

5.4.2 Comparative debugging of numerical problems

Assuming that some of the tests above or some of the nightly tests have
revealed some kind of numerical deviation that we can not explain imme-
diately. What do we do to deal with it? In this section we give a very

www.dmi.dk/dmi/tr12-11.pdf page 111 of 147

DMI
Technical Report 12-11

Figure 20: Sustained scaling with openMP for different compilers and com-
pared to linear scaling.

brief overview of some of the techniques we use for more involved debugging
purposes.

Beforehand though, it is important to realize that the techniques presented
here are not restricted to the HBM code but are suited for debugging any
time stepping simulation code. That is, codes that try to simulate the be-
havior of a complex system over time. We assume that the code keeps track
of a set of prognostic variables, say x1, . . . , xn and that we have found that
one of our runs produces results that are unexpected. To find the first place
where one of these variables is facing an unexpected discrepancy might be
a tedious and very time-consuming task. Now, recall why robbers rush to
the bank - that is where the money is. Thus, in attempt to work more
effectively with the code we have also searched for places that tend to be
very time-consuming for us and debugging numerical problems tends to be
such a place.

There are several ways to tackle numerical problems that may appear ap-
parent after the analysis above and we here describe some of them:

• Add debug code to the existing code, then rebuild, rerun and cross-
compare findings.

www.dmi.dk/dmi/tr12-11.pdf page 112 of 147

DMI
Technical Report 12-11

• Step through the two codes interactively from within two debug ses-
sions and cross-compare findings as you go along.

• Use our debug framework where one basically instructs the debugger
via code comments that one can add incrementally to the code.

We always approach these problems incrementally and let us assume that
we have two incarnation of the program say A and B. It could be that A
was build with configure option say ’--enable-openmp’ and B was build
with configure option ’--enable-openmp --enable-mpi’ or it could be the
same options but with different compiler flags, or the same options with
different compilers or it could be two runs on two different platforms say A
was running on an Intel CPU whereas B ran partly on an AMD CPU and
partly on an nvidia GPU.

Assume that we are facing a problem with εs(x). Using the first method
above, we would typically add test-code to the application that would print
the statistics after each piece of code (say subroutine) that would modify
x. Running the new code we would then obtain two series of statistics
A(s(x))i∈1,...,t and B(s(x))i∈1,...,t that we could cross-compare to pinpoint
which point of time and which subroutine was causing the first discrepancy.
However, the fact that the extra code will be added incrementally implies
that we will need many rebuilds of the code and the manual process of
adding code and rebuilding (and rerunning) is rather time-consuming.

The discrepancy is not always obvious to spot when looking only at statistics
and another approach that we often use is simply to dump the entire field at
relevant places in the code thus producing two sets of files A(x)i∈1,...,t and
B(x)i∈1,...,t. If we expect binary identical results of A and B it is sufficient
to use md5sum on the two sets of files to find the point of time and the corre-
sponding subroutine. If this is not the case then we need to post-process the
two sets of files to find the point of time and the corresponding subroutine.

As revealed above these two very simple operations (adding statistical print-
outs and storing fields) are crucial to debug numerical problems incremen-
tally. Unfortunately, this approach comes with severe drawbacks: Adding
new code lines and rebuild means a new executable being generated by the
compiler, and this again may result in different results, especially in situ-
ations with a code-bug present; all experienced developers have tried this.
Not to mention that this approach is - mildly speaking - not easy to deal

www.dmi.dk/dmi/tr12-11.pdf page 113 of 147

DMI
Technical Report 12-11

with when debugging across multiple tasks in an MPI application. Thus,
we need to come up with an easier way that does not involve adding extra
code or rebuilding the application to obtain the required information.

We have established a framework for both interactive and non-interactive
debugging and validation using the totalview tvscript facility. The frame-
work is based on code comments and thus far, we have implemented to parse
the following F90 comments:

! TVSCRIPT : statistics [level]

! TVSCRIPT : dprintstat [level] printarg

! TVSCRIPT : cmd [level] cmdarg

! TVSCRIPT : ddump [level] filename field

Note that the statistics is meant to be statistics for the most relevant prog-
nostic variables and thus tailored to the application at hand where as the
cmd instruction is generic and can be used for any fortran application. Note
that the optional level allows us to build up a hierarchy of debug prints
and one will set a global upper bound when running the application and
only comments whose level does not exceed this upper bound will be ac-
tivated. The more debug output we produce the more information need
to be post-analysed and it is consequently important to have some kind of
filter mechanism. Thus far, the hierarchy approach has been sufficient for us.

When one adds the comment ’! TVSCRIPT: statistics’ the debugger will
give detailed statistics for all relevant prognostic variables whenever the ac-
tionpoint is hit when running the code. This is something that coincides
somewhat with the HBM internal validate subroutine. The output will
be a list of blocks like the one shown below and contains more detailed
information than the internal validate provide today. However, it is im-
portant to realize that the statistics is the statistics that emerges from the
internal totalview implementations and their implementations does not co-
incide completely with ours. We use a doubly compensated sum algorithm29

to ensure as accurate statistics as possible in the HBM implementation itself.

29The actual algorithm is the one invented by Priest which is an improvement of the
famous summation algorithms by Donald Knuth and William Kahan.

www.dmi.dk/dmi/tr12-11.pdf page 114 of 147

DMI
Technical Report 12-11

Count: 479081

Zero Count: 0

Sum: 4422764.84702221

Minimum: 5.73619261069032

Maximum: 18.7505818671698

Median: 8.02156057004163

Mean: 9.23176842125279

Standard Deviation: 2.26401041287361

First Quartile: 7.41735188698377

Third Quartile: 11.1451235690212

Lower Adjacent: 5.73619261069032

Upper Adjacent: 16.7245665976456

NaN Count: 0

Infinity Count: 0

Denormalized Count: 0

Checksum: 55131

When one adds the comment ’! TVSCRIPT: dprintstats <arg>’ the de-
bugger will allow one to print statistics for the variable(s) whenever the
actionpoint is hit, e.g.

! TVSCRIPT: dprintstat cmod_arrays‘cmp(1)%p(2,2:);

will print statistics for the salinity from all subsurface layers in area 1.

When one adds the comment ’! TVSCRIPT: cmd <arg>’ the debugger will
allow one to do execute commands whenever the actionpoint is hit, e.g.

! TVSCRIPT: cmd dprint cmod_arrays‘cmp(1)%p(1,924:927)

! TVSCRIPT: cmd dprint i; dprint j ; dprint k

! TVSCRIPT: cmd (if i==11) $stop

Finally, one can use the comment ’! TVSCRIPT : ddump [level] filename

field’ to get a binary dump of the field whenever the actionpoint is hit.

5.5 Analysing longer simulations

All the tests performed above are of a relatively short duration, i.e. simu-
lating 6 or 24 hours. From these tests, we now know how sensible our im-
plementation is with respect to platforms/compilers/flags/parallelizations
and even some source rewrites30, and we have fixed all the known bugs that

30For instance, the rewrite of momeqs required for the openACC support.

www.dmi.dk/dmi/tr12-11.pdf page 115 of 147

DMI
Technical Report 12-11

our modelling projects requires. Especially, we should now have a good
understanding of how our operational setup performs, and we should be in
a very good position to make a qualified choice of the compiler and run-
configuration we wish to use for our production runs. Moreover, we have
established lower bounds on calibration/validation efforts in the sense that
it does not make sense to strive for deviations less than those presented in
the worst-case studies.

This is important prior to the calibration and validation phases because
then we can have confidence in the model implementation, we have a ref-
erence and a solid foundation; it would make little sense to continue long,
time consuming model simulations if we had no evidence whatsoever of a
sane implementation or if we knew that we carried important or even crit-
ical bugs. At this point, it is important to stress that we do not intend to
reinvent the wheel and describe all the different kinds of analysis that one
can think of and that is traditionally performed during model calibration-
validation studies and studies of sensitivities to e.g. model forcing, choice of
model parameters, etc. Our intention here is merely to reveal some of the
pitfalls that one should keep in mind before going into these kinds of heavily
man-time consuming studies.

It is therefore recommended to do one or more multi-year hindcast runs as
part of the model testing prior to release of the software, the purpose be-
ing to reveal possible issues that were not covered by the short runs. And
if issues are found, have them treated appropriately. Then we are ready to
release the model code for production and the user can start the calibration-
validation work which should of course never be finalized with experimental,
unreleased code.

Issues we particularly look for with these longer simulations are:

• Run-time fluctuations from the reference; might indicate that a part
of the implementation is not so healthy after all.

• During storms, both high and low water situations, is the model on
its way to a blow-up due to e.g. strong currents or drying grid cells?

• During cooling or heating, do we see issues? E.g. freezing to soon,
accumulation of heat.

• Volume balance; does an area loose water?

www.dmi.dk/dmi/tr12-11.pdf page 116 of 147

DMI
Technical Report 12-11

• Salinity balance; is salt mass preserved?

If we discover an issue, we need to uncover its origin; if it is a problem with
the implementation it must be fixed in the code; if it is a problem with the
forcing it should be dealt with there; is it a problem in the setup, it is the
setup that should be corrected. It is important that we at this stage are
capable of distinguishing between these different issues and deal with it at
appropriate places, else the risk is that we will delay the present project and
all other projects that rely on it.

A simple approach is to study statistics of model variables and this will
often bring us a long way forward, but more sophisticated analyses can be
performed as well. Here follows a brief description of what we do.

Let the model run for a longer period of time, e.g. one or more years and
collect spatial minimum, maximum and average of relevant forcing variables
and relevant prognostic variables over the entire period in say yearly chunks.
If all statistical values are within expected ranges, fine. If not, locate and
fix the problem before proceeding. Hopefully, we will be able to catch silly
issues that might otherwise build up over time. A typical issue revealed in
this way include drift in a prognostic variable which cannot be explained
from physics and which is due to improper implementations of some parts
of the code.

We have prepared a script, long stats.sh, that extracts min and max and
average for all the variables from the logfiles and thus provide ranges. It
also plots min, max and average for all variables in all areas. It is impor-
tant to study these plots and ensure that everything works as expected on a
per area basis. If e.g. the forcing is off at certain timepoints then a refined
calibration-validation study later on may be a waste of time. Moreover, if
the area statistics of the prognostic variables is off at certain timepoints,
then the pointwise behaviour (the one that we track with observations) will
likely be off too and the calibration-validation study will be a waste of time.

One thing we would like to do in the future is to analyse how our epsilons gen-
erated from short-term model runs relate to uncertainties on multi-decade
simulations. I.e. can we say anything about how large the expected error
on a prognostic variable, say temperature, will be when you have epsilons
of the shown magnitudes? Or can we say that in order to have a certain ac-
curacy in the results from long simulations we must ensure epsilons smaller

www.dmi.dk/dmi/tr12-11.pdf page 117 of 147

DMI
Technical Report 12-11

than a given order of magnitude? This is - to the best of our knowledge -
an uncovered subject in the ocean modelling community in general, but it
ought to have a high priority on the agenda due to the increasing interest
in climate scenario modelling with ocean circulation models of the type like
the HBM.

www.dmi.dk/dmi/tr12-11.pdf page 118 of 147

DMI
Technical Report 12-11

A Appendix: Survey of global variables

Here we give a brief survey of the most important global variables.

In table 24 we list the prognostic variables, and the major diagnostic vari-
ables are listed in table 25.

In table 26 we have listed parameters of the meteorological forcing which
are read in from a file. Also shown in this table are derived meteorological
forcing parameters, i.e. first the time-interpolated meteorological parameters
and then the forcing parameters which are obtained from model diagnostics.

The most important index arrays are listed in table 27, and table 28 shows
the variables that are related to description of the grid.

We have listed the major variables used for open boundary conditions and
for nesting conditions in table 29.

Table 24: Prognostic global variables.

Internal Description Located at
name

un, u zonal component of current east face of grid cell
at new and old time steps

vn, v meridional component of current south face of grid cell
at new and old time steps

zn, z sea surface elevation surface grid points
at new and old time steps

cmp component array to store sea temperature, grid points
salinity, and any optional passive tracers
(e.g. biogeochemical tracers)

tke turbulent kinetic energy grid points

diss dissipation of turbulent kinetic energy grid points

avv eddy diffusivity for momentum upper face of grid cells

t soil temperature of a 3-layer soil grid points below sea bed
model of the sea bed

ice component array to store ice thickness, surface grid points
continues ...

www.dmi.dk/dmi/tr12-11.pdf page 119 of 147

DMI
Technical Report 12-11

Table 24: ... continued

ice concentration and snow cover

casus mask for ice coverage (no ice = .true.) surface grid points

tsnei ice/snow surface temperature surface grid points

ueis zonal component of ice velocity east face of surface grid cell

veis meridional component of ice velocity south face of surface grid cell

Table 25: Diagnostic global variables.

Internal Description Located at
name

w vertical component of velocity upper face of grid cell

ui, vi zonal and meridional components of east and south cell
current, time-averaged for tracer advection faces, resp.

dispv component array to store the eddy upper face of grid cells
diffusivities for sea temperature,
salinity, and any possible passive tracers

shear horizontal shear of horizontal velocity south-east corner
of grid cell

stretch horizontal stretch of horizontal velocity grid points

div horizontal divergence of horizontal velocity grid points

eddyh horizontal Smagorinsky eddy viscosity grid points

eddyd horizontal divergence eddy viscosity grid points

rho local density of sea water grid points

press hydrostatic pressure grid points

geopot geopotential grid points

www.dmi.dk/dmi/tr12-11.pdf page 120 of 147

DMI
Technical Report 12-11

Table 26: Global meteorological forcing parameters and de-
rived quatities.

Internal Description
name

wua, wun zonal component of 10 m wind at the surface grid points,
at old and new time step of the meteo file (input)

wva, wvn meridional component of 10 m wind at the surface grid points,
at old and new time step of the meteo file (input)

pla, pln mean sea level air pressure at the surface grid points,
at old and new time step of the meteo file (input)

atempa, 2m air temperature at the surface grid points,
atempn at old and new time step of the meteo file (input)

humida, relative humidity at the surface grid points,
humidn at old and new time step of the meteo file (input)

clouda, cloud cover at the surface grid points,
cloudn at old and new time step of the meteo file (input)

precipo, precipitation at the surface grid points,
precipn at old and new time step of the meteo file (input)

wu, wv zonal and meridional components of 10 m wind at the surface
grid points, interpolated to the main HBM time step

pl, atemp, pressure, temperature, humidity, cloud cover, and
humid, cloud precipitation at surface grid points, interpolated to
precip the main HBM time step

taux, tauy zonal and meridional components of wind stress over sea,
available at the eastward and southward surface grid cell
faces, resp., interpolated to the HBM time step

hflux buyoancy-affecting part of the surface heat flux at
grid points, interpolated to the main time step

evapo evaporation at surface grid points, interpolated to the
HBM time step

tpe precipitation/evaporation temperature at surface grid points

www.dmi.dk/dmi/tr12-11.pdf page 121 of 147

DMI
Technical Report 12-11

Table 27: Major global index arrays used.

Internal Description
name

mm1k permuted wet-point index look-up table

ind i,j index pair corresponding to each wet-point
in the surface

kh number of k-levels at each horizontal location,
i.e. defining the water column

khu, khv number of active transport levels at the east
and south face, resp., at each location

khbnd number of k-levels at each location along the
open boundary

me1 surface wet-point index look-up table

mm1 un-permuted wet-point index look-up table,
should not be used or used with care

krz i,j index pair and type (W,E,S,N) of each point
on an z boundary of a domain

kru, krv i,j index pair and type (W,E,S,N) of each point
on an u or v nesting border, resp.

idx lower/upper index pair of the openMP
thread decomposition for easy look-up

krq i,j index position of each point source (rivers)

muvse1 index of the 8 quantities of ice mechanics
associated with each grid cell

induvse position i,j along with type of each component
of the ice mechanics

Table 28: Global variables describing the grid.

Internal Description
name

hz static height of each grid cell (input)

h dynamic height of each grid cell, hz + z

hu, hv dynamic height of the eastward and southward faces, resp.,
continues ...

www.dmi.dk/dmi/tr12-11.pdf page 122 of 147

DMI
Technical Report 12-11

Table 28: ... continued

of each grid cell

h old, height of each grid cell at old and new time step
h new for use in tracer advection

ti topography at each horizontal grid point

Table 29: Global boundary and nesting variables.

Internal Description
name

bndzk prescribed boundary conditions for S and T (and possible
passive tracers) at the open, lateral boundaries (model input)

bndz array to store boundary conditions for S and T (and possible
passive tracers). That is, sponges at open lateral boundaries,
and nesting conditions at nesting borders

rwz sea level boundary values at open boundaries for main area
and for nesting conditions at nesting borders

zetac actual baroclinic correction to z at open boundaries, either as
calculated from the density field or prescribed or combo

zetac2 prescribed baroclinic correction to z at open boundaries,
read from file

iceobc prescribed boundary conditions for ice variables at the open
model boundaries (input)

bndice array to store boundary conditions for ice variables. That is,
That is, sponges at open lateral boundaries, and nesting
conditions at nesting borders

www.dmi.dk/dmi/tr12-11.pdf page 123 of 147

DMI
Technical Report 12-11

B Appendix: Code styling

Following the ansi Fortran standard when you code gives you some assur-
ance of the quality of your work in the sense that the syntax can be verified
and that different compilers are expected to be able to understand each code
statement, cf. chapter 5. But it does not guarantee that the semantics is
such that the code behaves as intended when executed. There are lots of
pitfalls in coding; we have seen far too many examples of code taken from
textbooks that simply is not well suited for practical applications. Technical
bugs and unfortunate technical approaches make it difficult or impossible
to do satisfactory validation of model results, to obtain portability, robust-
ness across platforms/compilers, and also to do further development and to
add new features, incrementally. Most of these troubles can be avoided if
one applies rules and styling throughout, and performs testing and technical
validation as outlined in chapter 5 frequently.

It is inevitable that there will be ’silly’ ways to use smart features of the
Fortran language. Clearly, we want to avoid that and to recommend certain
practices over others. The general ethos is to write portable code that is
easily readable and maintainable. Code should be written in as general a
way as possible to allow for unforeseen modifications. In practice this means
that coding might take a little longer. This small extra effort is well spent,
however, as maintenance costs - and headaches of your fellow developers -
will largely be reduced over the lifetime of the software.

The rather lengthy description of our programming rules is available for
those persons with affiliation to the relevant modelling and development
projects31 but a comprehensive except will be given in the present chapter.
That is, we will here describe the main concepts behind our styling rules.

The above-mentioned document contains a collection of concepts/rules/styles
for documentation of the code, for version management, as well as defining
standards for writing code and guide on practical implementation issues.
The coding standards are designed to improve code readability and main-
tainability as well as to ensure, as far as possible, its portability and the
efficient use of computer resources as well as of manpower.

Our code styling is based somewhat on literature survey and previous prac-

31http://hbmtrac.dmi.dk/browser/trunk/cmod/doc/web/f90style dmi.txt

www.dmi.dk/dmi/tr12-11.pdf page 124 of 147

DMI
Technical Report 12-11

tice but most of all on experience. The rules are designed to encourage good
programming practice, to simplify maintenance, and to ease readability of
the code by establishing some basic common style rules. It must be empha-
sized that the style rules have for sure not been prepared to put restrictions
into the developer’s working routines. The developers are not expected to
know every single detail by heart before they can contribute to the develop-
ment. If some part of our styling rules for one reason or the other doesn’t
make sense, e.g. is outdated, it should be changed.

Some of the most important aspects of our styling rules dictate, in summary,
that we

• use standard ansi Fortran95

• use no obsolete constructs (e.g. no GOTO)

• always use IMPLICIT NONE and explicit declaration of all variables in
all source files

• assign explicit scope, PRIVATE or PUBLIC, on all module variables

• use explicit INTENTion on all arguments in all subroutines

• always explicitly apply the ONLY clause with the USE statement

• have automatic interface blocks provided through MODULEs

• allow no namespace cluttering

• allow no implicit KINDs in declaration or in intrinsics

• allow no unused variables, no unused arguments

• allow no unnecessary hardcoding

and that the source code must

• pass building/running with checks for uninitialized variables on the
stack/heap and boundary checking on all the platforms and with all
compilers available to us (see chapter 5)

• be able to run parallel, all configure incarnations, i.e. serial, OMP,
MPI, and combinations hereof, and produce the same results (see chap-
ter 4)

www.dmi.dk/dmi/tr12-11.pdf page 125 of 147

DMI
Technical Report 12-11

So far, no enforcement strategy has been agreed. It is up to the individual
developer to behave nicely. It is obviously important, however, that stan-
dards are adhered to - particularly that the documentation is kept up to
date with the software; and that the software is written in as portable a
manner as possible. If standards are not adhered to the code will not be
exchangeable.

Automatic tools (e.g. a script) has been devised to test for compliance with
the standards. This has been included into the nightly test suite (see chapter
5) as a pre-processing to the compilations.

B.1 Documentation and version management

Documentation may be split into two categories: external documentation
outside the code, and internal documentation inside the code. In order for
the documentation to be useful it needs to be both up to date and readable.
For readability, all documentation, both internal and external, must be in
English.

The source code including ”everything”, that is build/run scripts, various
reports and test-cases, documentations (including this paper), is managed
with a version control system, gluing it all together and keeping track of all
revisions.

External documentation:
In most cases this will be provided at the project level or in a separate doc
folder, rather than for each individual routine. Preferably, it includes the
following:

• Top Level Scientific documentation: This sets out the problem be-
ing solved by the project and the scientific rationale for the solu-
tion method adopted. This documentation should be independent of
(i.e. not refer to) the code itself.

• Implementation documentation describing the particular implementa-
tion of the solution method described in the scientific documentation;
a road map of the project; how to compile, link and run the project;
the use of the project, preferably - if appropriate - advising test-cases
with description of sensible results; the modification history for larger
chunks of code revisions in a separate Changelog (while individual files’

www.dmi.dk/dmi/tr12-11.pdf page 126 of 147

DMI
Technical Report 12-11

history is kept track of by the version management system); ongo-
ing considerations, discussions, design issues, feature implementation
notes, etc, concerning the code together with descriptions on post-
poned tasks and planned activities.

Internal documentation:
This is to be applied at the individual routine level. There are four types of
internal documentation, all of which must be present.

• Procedure headers: Every subroutine, function, module etc should
have a header. The purpose of the header is to describe the function
of the routine, probably by referring to external documentation, and
to document the variables used within the routine. All variables used
within a routine must be declared in the header and, preferably, com-
mented as to their purpose. The intention, type, kind, and dimension
of all arguments must be explicitly stated in the attribute list of the
argument declaration.

• Section comments: These divide the code into logical sections and may
refer to the external documentation. These comments must be placed
on their own lines at the start of and at the indent level of the section
they are defining.

• Other comments: These are aimed at a programmer reading the code
and are intended to simplify the task of understanding what is going
on. These comments must be placed either immediately before or on
the same line as the code they are commenting.

• Meaningful names: Code is much more readable if meaningful words
are used to construct variable and subprogram names.

Version management:
Subversion (svn) has been chosen for HBM code development project. The
agreements made for proper behavior in a code development project are
usually specific to each particular development project. There is a doc-
ument describing the HIROMB-BOOS co-operative guidelines32 which can
be found in the MyOWP6 document library33. That document aims towards
answering specifically how development is done and what process is followed.
These guidelines are internal to that particular project, but the body of the
document has been adapted from the very general KDE TechBase SVN

32MYO-BAL-HBMDevGuideline 20100204.pdf
33http://intranet.myocean.eu/share/page/site/WP6Room/documentlibrary

www.dmi.dk/dmi/tr12-11.pdf page 127 of 147

DMI
Technical Report 12-11

Commit Policy34 dual licensed under the GNU Free Documentation License
1.2 and the Creative Commons Attribution-ShareAlike License.

B.2 General styling rules

Here we describe some of our general styling rules.

ANSI standard:
The code must be compliant with the ANSI Fortran 95 standard. We use
free format syntax and allow a maximum line length of 80 characters. The
ANSI standard allows a line length of up to 132 characters, however this
could cause problems when viewing, or if print-outs have to be obtained.

If exceptions from the ANSI Fortran standard occur they must be confined
to single statements which are then thoroughly documented. At present,
two ”valid” exceptions from the ANSI Fortran standard are accepted; that
is the use of the routines EXIT([status]) and FLUSH(unit) which are non-
ANSI Fortran 90 or 95 standard but which are both supported by most
compilers. During configuration care is taken as to test for availability and
act accordingly, i.e. compilers that do not offer this feature will still build
fine without requiring any manual intervention.

Use of CCP flags:
In general, we do not allow CCP flags, being not a part of the standard;
the standard has no defined preprocessor flags. However, some preprocessor
flags like OPENMP and OPENACC are part of the the openMP and openACC
standard, respectively. We use two preprocessor flags OPENMP and MPI in
the current implementation. The reason being that we wish to be able to
run in serial, with openMP, with MPI, as well as with MPI and openMP in
conjunction and we wish to use the same source code for all these runs.

The compiler must define OPENMP according to the openMP standard when
one builds with openMP support. Thus, one can safely use constructs like:

#if defined (_OPENMP)

...

#endif

assuming that the compiler understands openMP. The symbol MPI on the
other hand is not forced by the MPI standard. Just as for openMP, MPI

34http://techbase.kde.org/Policies/SVN Commit Policy

www.dmi.dk/dmi/tr12-11.pdf page 128 of 147

DMI
Technical Report 12-11

needs library support, i.e. some functions only exists if the platform support
MPI (assuming that we build and link with the library).

We still wish to be able to build and run on our desktop machines without
support of MPI, and this implies that we cannot have code that assumes
the existence of MPI.

It should be mentioned that this does not imply that we will accept the
OPENMP and MPI symbols scattered all over. We should confine this to ap-
pear only in the related module, dmi omp and dmi mpi, respectively, and
only there.

Fortran source code files that need pre-compilation are identified by their
.F90 extension (compared to the regular .f90).

Precision and kind issues:
The application is a 64/32-bit application, i.e. 64bit reals and 32bit integers.
Usually this can be specified by compiler flags like e.g. ”-r8 -i4” but un-
fortunately this is not standard in any way and different compilers behave
differently; some do not have a -i4 flag, some interpret a -r8 flag such that
variables of type real become 64bit precision reals (i.e. of KIND=8) but have
no influence on constants or on real variables or constants passed to intrinsic
functions, etc. In fact, there is no standard for specifying the precision of
both variables and constants and their interpretation with respect to intrin-
sics, in other ways than carefully stating the wanted KIND explicitly in the
Fortran code.

KIND issues relate to maintaining consistency between caller and callee, to
type casting and to precision, and it is in the hands of the developer to as-
sure that we don’t run into troubles with these. This is extremely important
for portability, for performance and for numerical accuracy. Failing to do so
will most likely cause a blow-up at runtime, or at least cause inconsisten-
cies between results across platforms, compilers and configure incarnations,
or there will be a penalty due to run-time type conversions, if the code
will compile at all, that is; the code will for sure have potential for mis-
interpretations by the reader of the code.

You must always explicitly state the wanted precision through the (KIND)

specification in the declaration of the variables, using the syntax of append-
ing KIND to constants, and applying the KIND argument to intrinsics, i.e.

www.dmi.dk/dmi/tr12-11.pdf page 129 of 147

DMI
Technical Report 12-11

real(8) :: x, y

integer(4), parameter :: i = 17

x = 42.0_8

y = x + real(i,8)

Be explicit, write what you mean:
It is generally recommended that we write what we mean as clear and ex-
plicit as possible to avoid ”clever” guessing from the compiler and ingenuous
speculations from our fellow developers. There exists a bunch of language
constructs that can help us with that, some of which we have adapted into
our set of styling rules:

IMPLICIT NONE must be used in all program units. This ensures that all
variables must be explicitly declared, and hence documented.

To avoid namespace cluttering with modules, it is a must to explicitly spec-
ify which of the variables, type definitions, etc, defined in a module are to be
used from the respective program unit, i.e. always apply the ONLY attribute
with the USE statement and all module variables, type definitions, and sub-
routines must always be explicitly defined in the module as either PRIVATE
or PUBLIC, depending on their intended scope.

With variable declarations, always use the :: notation, even if there are no
attributes, always explicitly state the INTENTion of arguments in the list of
declarations (also if it’s INTENT(INOUT)), and always declare the length of
a character variable using the (len =) syntax.

Fortran compilers automatically provide explicit interface blocks between
routines following a CONTAINS statement (e.g. in a MODULE). The interface
blocks are also supplied to any routine USEing the module. Thus, it is possi-
ble to design a system where no interface blocks are actually coded and yet
explicit interface blocks are provided between all routines by the compiler.
The way to do this is to ’modularize’ the code at the Fortran MODULE level,
i.e. to place related code together in one MODULE after the CONTAINS state-
ment.

”Magic numbers” should be avoided; use a variable, possibly a PARAMETER,
with a meaningful name to store the value.

www.dmi.dk/dmi/tr12-11.pdf page 130 of 147

DMI
Technical Report 12-11

Recursive:
In general, we do not recommend using recursive routines due to lack of
efficiency; they tend to be inefficient in their use of cpu and memory. There
is so far one exception, and that is to structure the computational flow of
the nested hydrodynamics as shown in section 3.2.

The ”plug compatibility” rule:
A HBM code shall refer only to its own modules and subprograms and to
those intrinsic routines included in the Fortran standard.

There may, however, be a need to use third-party libraries such as e.g. GRIB
and NetCDF libraries, and there is for sure a need to couple externally de-
veloped tracer models (e.g. biogeochemical or suspended particulate matter
models) to HBM.

We would not like to jeopardize the portability of HBM and we therefore
need to establish a framework that will keep the pollution off the building
of the HBM core code. We can separate the code into the following subsets:

• *.f90 files (and a few *.F90 files) constituting the set of HBM core
source files

• a single Fortran file, e.g. coupler.f90 or nc-output.f90, that bridges
the gap between HBM and the coupler/output functionality

• *.f90 files constituting the coupler/output code, either available as
part of HBM (one need to select them at configure time to have them
build into the executable, though) or available in an external library.

The way we have accomplished this is by using autoconf/automake.

Unused variables:
Generally, just as all used variables much be explicitly declared, we require
that all declared variables and arguments are actually used. That is, we do
not allow any unused variables anywhere in the code. There are, however,
two exceptions to this rule:

The first one is when one compiles without MPI. In that case, by use of

#if defined (MPI)

...

#else

www.dmi.dk/dmi/tr12-11.pdf page 131 of 147

DMI
Technical Report 12-11

...

#endif

some portions of the dmi mpi code only constitute subroutine interfaces with
no body contents, and thus there will unavoidably be unused arguments. We
will allow unused arguments with intent(in) to be present in our code at a
dedicated segment of the dmi mpi.F90 file, not scattered all over the source
code.

The second exception is with the coupler.f90 which, in the default case
where no tracer model is explicitly attached at configure time, is merely an
empty stub consisting of only the interfaces. In that case we allow for unused
arguments with proper INTENT in all subroutines in the coupler module file
default coupler.f90 and only there.

No hard coding:
The project should be written so that it is as time-space resolution indepen-
dent as possible. The resolution and other specific feature choices particular
to a given setup must be separated from the general core code, and if needed,
must be adjusted or changed at configure time or by reading in from files
(e.g. NAMELISTs) at run-time.

Aliasing:
There are rules against aliasing in the ansi standard. The rules against
aliasing allows for better optimization by the compiler (one of the main rea-
sons that Fortran generally optimizes better than C). For this reason, and
because the code will be very difficult to understand and to maintain, alias-
ing is banned. It can, however, be very difficult or even impossible for the
compiler to figure out and warn against aliasing, so it is solely in the hands
of the developer to carefully review the code. We can demonstrate it by an
example:

A routine has two dummy arguments; one being only referenced, the other
being assigned:

subroutine foo (a,b)

real(8), intent(in) :: a

real(8), intent(out) :: b

... = ... a ...

b = ...

end subroutine foo

www.dmi.dk/dmi/tr12-11.pdf page 132 of 147

DMI
Technical Report 12-11

At compile time, the compiler will help you check that the intention of
the arguments is also fulfilled in the body code of foo. Seen from the
compiler’s point of view, the same effect is implied on the corresponding
actual arguments. The caller, however, may not know the intentions, so at
compile time you might get through with nasty things like:

real(8) :: c

real(8), target :: d

real(8), pointer :: e

call foo(c,c)

e => d

call foo(d,e)

This is not allowed; if it was, what would the expected behavior be of such
a code?

B.3 Dynamic memory

The use of dynamic memory is highly desirable as, in principle, it allows one
set of compiled code to work for any specified resolution (or at least within
hardware memory limits); and allows efficient reuse of work space mem-
ory. Care must be taken, however, as there is a risk for inefficient memory
usage, particularly in parallelized code. For example heap fragmentation
can occur if space is allocated by a lower level routine and not deallocated
before control is passed back up the calling tree. On the other hand, al-
locating/deallocating in a lower level routine is expensive. So a reasonable
solution must be implemented.

There are three ways of obtaining dynamic memory in Fortran 95:

• Automatic arrays: These are arrays initially declared within a sub-
program with bounds depending upon variables known at runtime
e.g. variables passed into the subprogram via its argument list.

• Pointer arrays: Array variables declared with the POINTER attribute
may have allocated space at run time by using the ALLOCATE command.
We recommend using pointers with care because Fortran pointers are
just an extra name (an alias) for something else, are not memory
addresses as in other languages, are not a specific data type of its
own, but should rather be understood as an attribute to the other

www.dmi.dk/dmi/tr12-11.pdf page 133 of 147

DMI
Technical Report 12-11

data types, and they have both type and rank which must agree with
the corresponding target.

• Allocatable arrays: Array variables declared with the ALLOCATABLE

attribute may have allocated space at run time by using the ALLOCATE
command. However, unlike pointers, allocatables are not allowed in-
side derived data types.

Recommendations on dynamic memory allocation:

• Use automatic arrays in preference to the other forms of dynamic
memory allocation, locally in subroutines.

• Temporary space allocated locally in a routine using pointer arrays or
allocatable arrays as described above should be explicitly freed using
the DEALLOCATE statement.

• In a given program unit do not repeatedly ALLOCATE space. This will
almost certainly generate large amounts of unusable memory. Instead,
DEALLOCATE it and then ALLOCATE a larger block of space.

• Preferably, always test the success of a dynamic memory allocation
and deallocation. The ALLOCATE and DEALLOCATE statements have an
optional argument to let you do this.

Heap allocation is very expensive compared to stack allocation (all systems,
all compilers). Heap allocation at runtime requires a system call (imply-
ing a kernel context switch and later interruption once the kernel has the
memory for you) and some heuristics dealing with with heap fragmentation.
There are even savings during compile time since every decent compiler will
try to collect allocations and help the runtime lib doing a better job when
it eventually hands off the request to the kernel.

As a rule of thumb, one should only use heap space to store global variables
that are allocated together at the beginning of the program in as large
chunks as possible and are deallocated at the end of the program. The stack
can be a limited resource and there may be cases where heap allocation
for the global vars is the only feasible approach. Though the stack can be
very large it is not unlimited, and it can be very expensive to use the stack
repeatedly for large arrays.

www.dmi.dk/dmi/tr12-11.pdf page 134 of 147

DMI
Technical Report 12-11

Recommendations with respect to contiguous data:
It is always advisable to keep data contiguous for performance. In some situ-
ations, we have seen that a couple of compilers fail to handle non-contiguous
data correctly (due to bugs in those compilers failing to handle copy-in/copy-
out correctly), so if you want to use those compilers you must avoid non-
contiguous data for correctness as well.

Looking at the OpenMP 3.0 specification35 it seems that the specifications
have been tightened. A careful look at ”2.9.3.2 shared clause”, page 88 and
the example A.29, page 231 suggests that we must avoid non-contiguous
shared data in OpenMP parallel sections:

... Under certain conditions, passing a shared variable to a non-intrinsic
procedure may result in the value of the shared variable being copied into
temporary storage before the procedure reference, and back out of the tempo-
rary storage into the actual argument storage after the procedure reference.
It is implementation defined when this situation occurs. ...

This gave rise to a complete code review and we found several places where
we had constructions that are fully compliant with the Fortran 90 or 95
standard but doubtful with respect to these newer, more strict and, above
all, implementation dependent (!) OpenMP 3.0 specifications.

So, for correctness as well as for performance and portability, the use of non-
contiguous variables should be avoided, and especially, as shared variables
in OpenMP parallel sections non-contiguous data is banned.

B.4 Obsolete and banned Fortran features

This section details features deprecated in or made redundant by Fortran
90 or later language dialects. We also ban features whose use is deemed
to be bad programming practice as they can degrade maintainability and
efficiency of the code. Some old Fortran 77 constructs have died or will
most likely die in future Fortran versions, some have better alternatives in
the present Fortran version. Here follows a list of banned Fortran features
with suggested permitted alternatives.

35http://www.openmp.org/mp-documents/spec30.pdf

www.dmi.dk/dmi/tr12-11.pdf page 135 of 147

DMI
Technical Report 12-11

Table 30: Banned Fortran features.

Banned Alternative

COMMON blocks use a MODULE instead

EQUIVALENCE use POINTERs or derived data types instead

Assigned and computed GO TO SELECT CASE construct

Conditional GOTO statement you may easily find a better way of
branching your code, e.g. by use of
IF, CASE, DO WHILE, EXIT
or CYCLE statements

Arithmetic IF statements use the block IF ELSEIF construct

PRINT statements write to unit iu06 which is specific
to each MPI task, e.g. WRITE(iu06,*)

Never use tabs Use blank space instead; this will ensure
that the code looks as intended ... and tabs
are not allowed by the Fortran standard

SYSTEM calls better wrap the application into a script that
does the necessary system related handling

STOP use CALL EXIT(status)

(see above under ANSI Standard)

FORMAT statements use character parameters or explicit format
specifiers inside the read/write statement

I/O routines’ END and ERR use IOSTAT instead

DO-loops that terminate in some
other way than with ENDDO or EXIT

Floating point DO-loop always use INTEGER control variables
control variables

Jump to ENDIF/ENDDO or into
IF/DO blocks from an outer block

PAUSE

BLOCK DATA

ENTRY a subprogram may only have one entry
point; use separate subroutines or
possibly overloading (polymorphism)

There are some other banned features that requires some words:

www.dmi.dk/dmi/tr12-11.pdf page 136 of 147

DMI
Technical Report 12-11

• Reserved keywords as variable names. To avoid namespace cluttering
variable names are not allowed that already have a meaning in FOR-
TRAN 90. That is, you cannot introduce a variable called IF or USE,
or which shares its name with intrinsic functions or names from loaded
libraries (e.g. omp lib and mpi). If you really intend to do overload-
ing of predefined functions, the code documentation should be very
particular on its intention and usage!

• Functions with side effects, i.e. functions that alter variables in their
argument list or in modules used by the function; or one that performs
I/O operations. This is very common in e.g. C programming, but can
be confusing. Also, inefficiencies can be avoided if the compiler knows
that functions have no side effects.

• Implicitly changing the shape of an array when passing it into a sub-
routine. Although actually forbidden in the standard it was very com-
mon practice in FORTRAN 77 to pass N-dimensional arrays into a
subroutine where they would, say, be treated as a 1 dimensional ar-
ray. This practice, though banned in Fortran 90, is still possible with
external routines for which no Interface block has been supplied. This
may only work due to assumptions made about how the data is stored:
it is therefore unlikely to work on a massively parallel computer. In
fact, there is no well-documented standard for mixing F77 argument-
passing-style into F90 code; the result being at best undetermined.
Hence the practice is banned!

• The CONVERT in OPEN statements to specify the endianess of the binary
file, e.g.

open(unit=lun,file=trim(filename),convert=’big_endian’,iostat=ios)

since this is not supported by the standard. Instead, you need to check
with your compiler of choice how to select endianess though compiler
flags, like e.g. -convert big endian for use with ifort at compile
time, or like e.g. export GFORTRAN CONVERT UNIT="big endian" for
use with older versions of gfortran at run time. Compilers that have
flags for handling endianess are handled automatically by the autoconf
setup.

• Labelled DO constructs like

DO 77 i=1,n

...

77 CONTINUE

www.dmi.dk/dmi/tr12-11.pdf page 137 of 147

DMI
Technical Report 12-11

Instead you should use DO-ENDDO, possibly labelled, like

iloop: DO i=1,n

...

END DO ! iloop

www.dmi.dk/dmi/tr12-11.pdf page 138 of 147

DMI
Technical Report 12-11

C Appendix: Other ocean models

C.1 HBM at DMI (future experiments)

We have described the test-case that we are using today, i.e. MyO V2, in
details in the paper but the experiments with the somewhat artificial DMI
large test-case have shown that we can use the proof-of-concept MPI imple-
mentation to run real cases too. In table 31 we describe the next version,
MyO V2.1, of our setup which is planned for production during the third
quarter of 2012. The Ir number for this setup is 60.6. This case has in-
creased horizontal resolution in the BS domain and it can be seen as an
intermediate step towards finer resolution in the entire region. As figure 21
indicates, we can run this somewhat larger case within the same operational
time window as we do today with the current MyO V2 setup; it is only a
matter of how many computer resources we want to spend. For comparison,
we have included timing and resources as obtained on our local Cray XT5
for a beta version of the MyO V2.1 setup (using 5 MPI tasks) as well as for
the current MyO V2 setup (using 1 MPI task) in table 40.

Domain Res. mmx nmx kmx iw2 iw3 dt Ir
[n.m.] [sec]

IDW 0.5 482 396 77 80884 1583786 12.5 12.0

NS 3 348 194 50 18908 479081 25 1.8

WS 1 149 156 24 11581 103441 25 0.4

BS 1 720 567 122 119334 6113599 12.5 46.3

Table 31: The next version of the MyO operational model, MyO V2.1. The
Ir number for this setup is 60.6.

In table 32 and table 33 we describe two variants of finer resolution setups
that we at the time of writing are working on, aiming at future operational
applications. We have tried to run the first variant and the scaling of this on
our local system is illustrated in figure 22. Moreover, figure 23 shows how
the four sub-domains nest to each other. The Ir numbers for these setups
are 89.6 and 227.4, respectively.

www.dmi.dk/dmi/tr12-11.pdf page 139 of 147

DMI
Technical Report 12-11

Figure 21: Scaling of the MyO V2.1 test case using automatically generated
I-slices performed on our local Cray XT5 with 12 openMP threads on each
MPI task and one MPI task on each node.

C.2 HIROMB at SMHI

Lars Axell, SMHI, reports that their official HIROMB consists of two do-
mains, a 3 n.m. North Sea and a 1 n.m. Inner Danish Waters and Baltic
Sea, cf. table 34. The two domains are run separately, i.e. it is not one
nested setup.

Moreover, it takes roughly 15 minutes to run a 24 hour forecast using 32
MPI tasks during summer and roughly 20 minutes to run a 24 hour forecast
using 32 MPI during winter.

C.3 GETM at FCOO

Jesper Larsen, The Danish Maritime Safety Administration, reports that
their official GETM setup consists of two separate domains, a 1 n.m. setup
for the North Sea/Baltic Sea and a 600 meter setup for the Inner Danish
waters, cf. table 35.

www.dmi.dk/dmi/tr12-11.pdf page 140 of 147

DMI
Technical Report 12-11

Domain Res. mmx nmx kmx iw2 iw3 dt Ir
[n.m.] [sec]

IDW 0.5 482 396 77 80884 1583786 10 15.0

rNS 3 220 127 46 15593 409049 20 1.9

WSNS 1 389 208 110 32515 1560598 10 14.8

BS 1 720 567 122 119334 6113599 10 57.9

Table 32: The next HBM experiment at DMI - variant 1. The Ir number
for the setup is 89.6.

Domain Res. mmx nmx kmx iw2 iw3 dt Ir
[n.m.] [sec]

IDW 0.25 964 792 77 323536 6335114 5 120.1

rNS 1 660 381 46 140337 3687912 10 34.9

WSNS 1 389 208 110 32515 1560598 10 14.8

BS 1 720 567 122 119334 6113599 10 57.9

Table 33: The next HBM experiments at DMI - variant 2. The Ir number
for the setup is 227.4.

Domain mmx nmx kmx iw2 iw3 dt Ir
[sec]

BS01 735 752 47 144237 1918522 25 7.3

NS03 350 415 50 34410 506074 50 0.96

Table 34: HIROMB production at SMHI.

Domain mmx nmx kmx iw2 iw3 dt Ir
[sec]

NS1C 1371 1203 60 335823 20149380 180 10.6

DK600 857 820 60 177806 10668360 90 11.2

Table 35: GETM production at FCOO

www.dmi.dk/dmi/tr12-11.pdf page 141 of 147

DMI
Technical Report 12-11

Figure 22: Scaling of the the next HBM experiment at DMI - variant 1 using
automatically generated I-slices performed on our local Cray XT5 with 12
openMP threads on each MPI task and one MPI task on each node.

Moreover, they are using 207 tasks to run a 54 hour forecast for NS1C and it
takes roughly 23 minutes and 126 tasks to run a 54 hour forecast the DK600
setup and that takes roughly 25 minutes.

C.4 Nemo at ECMWF

Kristian Mogensen, ECMWF, reports that ECMWF in 2012 is running nemo
with the global ORCA1 grid but they have started to look into the larger
ORCA025 grid, cf. table 36. They are coupling NEMO to IFS in an EPS
setup with 51 members.

With 96 MPI tasks running on the Power6 platform at ECMWF it takes
150 minutes to complete an ORCA025 run without ice and approximately
300 minutes to complete a run with ice. The forecast length for these runs
is 744 hours (a month).

www.dmi.dk/dmi/tr12-11.pdf page 142 of 147

DMI
Technical Report 12-11

Figure 23: Illustration of new test domain.

C.5 Nemo at Mercator

Fabrice Hernandez, Mercator, reports that the largest test-case that they
run is a global 1/12 degree setup, cf. table 37. It takes 5 hour on 64 NEC
sx9 CPUs to run a 1-week forecast and somewhat surprising they only run
this once a week. The total amount of output for 1-week is 75 Gb. The
model runs every week on the MeteoFrance machine SX9 called Yuki. The
run needs 63 CPUs for the model and the coupling scheme (PALM) needs 1
CPU which means 64 tasks in total. An NEC sx9 node has 16 CPUs, which
means that the forecasting system run uses 4 NEC sx9 nodes.

www.dmi.dk/dmi/tr12-11.pdf page 143 of 147

DMI
Technical Report 12-11

Domain mmx nmx kmx iw2 iw3 dt Ir
[sec]

ORCA1 362 292 42 ≈ 66414 ≈ 2789388 3600 0.07

ORCA025 1442 1021 75 ≈ 809755 ≈ 60731632 1200 4.8

Table 36: Nemo production at ECMWF (ORCA1) and Nemo tests at
ECMWF (ORCA025).

Domain mmx nmx kmx iw2 iw3 dt Ir
[sec]

Global 1/12◦ 4320 3058 50 660528000 342299000 360 90.1

Table 37: Nemo production at Mercator.

C.6 HYCOM at DMI

Till Andreas Rasmussen, DMI, reports that the regional NAA setup for
HYCOM-CICE that they run in production in 2012 is defined as shown in
table 38.

Domain mmx nmx kmx iw2 iw3 dt Ir
[sec]

NAA 1228 1213 29 606551 ≈ 11099883 300 3.5

Table 38: HYCOM production at DMI

They are using 144 MPI tasks to complete a 90 hour forecast within 45 min-
utes.

C.7 HYCOM at NRL

Joe Metzger, United States Naval Research Laboratory, reports that the
largest HYCOM setups that they have tried to run are the global 1/12 de-
gree and 1/25 degree setups, cf. table 39.

On a cray XE6, they do a 72 hour forecast of the 1/12 degree setup in
64.28 minutes using 503 tasks or in 31.85 minutes using 1001 tasks or
17.13 minutes using 2034 tasks or 9.55 minutes using 4074 tasks.

On a cray XE6, they do a 24 hour forecast of the 1/25 degree setup in

www.dmi.dk/dmi/tr12-11.pdf page 144 of 147

DMI
Technical Report 12-11

Domain mmx nmx kmx iw2 iw3 dt Ir
[sec]

NRL 1/25◦ 9000 6595 32 35900000 ≈ 861600000 100 816.5

NRL 1/12◦ 4500 3298 32 9100000 ≈ 218400000 240 86.2

Table 39: HYCOM setups at NRL.

72.38 minutes using 1001 tasks or 36.88 minutes using 2045 tasks or 19.95 min-
utes using 4043 tasks.

C.8 Summary

In table 40 we have tried to include all the setups that we have heard about
and sorted them according to their Ir numbers. We have not tried to cross-
compare the NEC vector cpus with conventional CPUs since that would not
make much sense.

www.dmi.dk/dmi/tr12-11.pdf page 145 of 147

DMI
Technical Report 12-11

Model Domain cores Time CM Ir Ir/CM
[sec] [x10−3]

HYCOM NRL 1/25◦ 4043 1235 83218 816.5 9.8

HBM DMI variant 2 N/A N/A N/A 227.4 N/A

Nemo Mercator 1/12◦ N/A 2571 N/A 90.1 N/A

HBM DMI variant 1 108 1484 2671 89.6 33.5

HYCOM NRL 1/12◦ 4074 198 13467 86.2 6.4

HBM DMI MyO V2.1beta 60 1477 1477 60.6 41.0

HBM DMI MyO V2* 16 808 215 14.0 65.0

HBM DMI MyO V2 12 1428 286 14.0 49.0

GETM FCOO dk600 126 667 1401 11.2 8.0

GETM FCOO ns1c 207 613 2115 10.6 5.0

HIROMB SMHI 32 1050 560 7.3 13.0

Nemo ECMWF experiment 96 435 696 4.8 6.9

HYCOM DMI naa 144 720 1728 3.5 2.0

Nemo ECMWF production N/A N/A N/A 0.07 N/A

Table 40: Summary of the reports that we have received where we have
normalized the time so that we report what it takes to do a 24 hour sim-
ulation. The number CM is shorthand for the compute minutes it takes
to complete the 24 hour simulation, i.e. the power used to solve the prob-
lem. The number Ir/CM indicates the resource efficiency, the larger the
better. The domain DMI MyO V2* refers to a test made on a standalone
intel Xeon which seems more efficient than the usual AMDs available on the
Cray systems.

www.dmi.dk/dmi/tr12-11.pdf page 146 of 147

DMI
Technical Report 12-11

References

[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Princiles,
Techniques, and Tools. Addison-Wesley, 1986.

[2] M. R. Garey and David S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman, 1979.

[3] David Goldberg. What every computer scientist should know about
floating-point arithmetic. ACM Comput. Surv., 23(1):5–48, March
1991.

[4] Hans Kellerer, Ulrich Pferschy, and David Pisinger. Knapsack problems.
Springer, 2004.

[5] David Blair Kirk and Wen mei W. Hwu. Programming Massively Par-
allel Processors - A Hands-on Approach. Morgan Kaufmann, 2010.

[6] David Monniaux. The pitfalls of verifying floating-point computations.
ACM Trans. Program. Lang. Syst., 30(3):12:1–12:41, May 2008.

[7] Jean-Michel Muller, Nicolas Brisebarre, Florent de Dinechin, Claude-
Pierre Jeannerod, Vincent Lefèvre, Guillaume Melquiond, Nathalie
Revol, Damien Stehlé, and Serge Torres. Handbook of Floating-Point
Arithmetic. Birkhäuser Boston, 2010. ACM G.1.0; G.1.2; G.4; B.2.0;
B.2.4; F.2.1., ISBN 978-0-8176-4704-9.

[8] David A. Patterson and John L. Hennessy. Computer Organization
and Design - The Hardware / Software Interface (Revised 4th Edition).
The Morgan Kaufmann Series in Computer Architecture and Design.
Academic Press, 2012.

[9] RogueWave software. Debugging memory problems with memoryscape,
version 3.2.1. Technical report, 2011.

[10] Nathan Whitehead and Alex Fit-Florea. Precision and performance:
Floating point and ieee 754 compliance for nvidia gpus. Technical re-
port, 2011.

Previous reports
Previous reports from the Danish Meteorological Institute can be found on:
http://www.dmi.dk/dmi/dmi-publikationer.htm

www.dmi.dk/dmi/tr12-11.pdf page 147 of 147

