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1 Introduction

1 Introduction

The global positioning system (GPS) is a system of satellites placed at an altitude of 26000km.

The system is used for precise positioning on the Earth. The GPS satellites transmit radio

signals with a very well de�ned phase. When a receiver measures this signal the position of the

receiver relative to the GPS satellite can be determined by calculating the phase delay of the

signal. The phase delay is caused by the propagation from the GPS to the receiver and is thus

equivalent to a time delay.

When the receiver is placed on board a low Earth orbiting satellite (LEO) the signal will propa-

gate horizontally through the atmosphere of the Earth. This is illustrated in Figure 1. The LEO

is placed at an altitude of 800km. The signal will propagate as illustrated by the ray path.

Figure 1: The geometry of the occultation.

The atmosphere of the Earth is approximately locally spherically symmetric and the density

decreases exponentially with altitude. The propagation through the atmosphere will introduce

a further phase delay compared to the one seen in free space propagation. Also the signal will

not propagate in a straight line but rather be bend. As the density decreases the signal delay

and bending will decrease accordingly.

If the position of the GPS and the LEO satellite is known the phase delay measured by the

LEO satellite contains information about the atmosphere. The principle in an radio occultation

measurement is to measured the change in the delay measured by the LEO as the LEO sets

behind the limb of the Earth relative to the GPS satellite. The amplitude of the received signal

in principle contains the same information as the phase but is less precise.

The radio occultation measurement can be inverted to give information on the density, pressure

and temperature of the atmosphere. To do this a model for the signal propagation must be

made. The signal has a frequency of L1 = 1:227Ghz or L2 = 1:572GHz - both frequencies are

transmitted and received. The model used should thus be an electromagnetic wave propagation

model.

When inverting radio occultation measurements of the atmosphere of the Earth a geometrical

optics approach is usually taken. In this approximation the wave propagation is approximated

by rays. The geometrical optics approximation is valid in the limit � ! 0 where � denotes

the wavelength. This is usually a good approximation but due to the vertical gradient in the

refractive index in the atmosphere the vertical resolution obtained by using the geometrical optics
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2 The nonlinear high resolution inversion method

approximation will be di�raction limited. Di�raction is seen when the wavelength is �nite and

causes the ray to spread out as the signal propagates, thus, the signal will be defocused and the

resolution decreased. The geometrical optics inversion method further more assumes that the

atmosphere is spherically symmetric.

Alternative inversion methods are based on full wave propagation methods but due to the very

large propagation distance it is necessary to introduce several approximations in the models.

One such method is described in the following. The method has the potential for high vertical

resolution and avoidance of the spherical symmetry assumption.

2 The nonlinear high resolution inversion method

2.1 The geometry

A schematic illustration of the model of the occultation geometry is shown in Figure 2.

Figure 2: The two screen approximation of an occultation.

For each sample in the occultation measurement a coordinate system (z; �) is de�ned in the

plane given by the position of the GPS and the LEO satellites and the center of the Earth. The

z�axis is the vector from the GPS satellite tangential to the Earth closest to the LEO satellite.

The ��axis is perpendicular to the Earth at the tangent point.

This two dimensional approximation can be used under the assumption that the horizontal

structures in the atmosphere are large compared to the lateral dimensions of the Fresnel zone.

The Fresnel zone is a measure of the area which has in
uence on the measurement. In an occul-

tation measurement of the Earth the Fresnel zone size is less than 2km so the two dimensional

approximation is normally good.

The dashed line illustrates the actual ray path which approximates the propagation of signal.

The model uses two thin screens to model the atmosphere. At each thin screen a phase delay

due to atmosphere is added and the signal is bend. In between the screens and to and from

the screens the signal is assumed to propagate in free space. As can be seen from Figure 2 this

will introduce an approximation of the length of the signal propagation path. As long as the

bending of the signal is relatively small the error originating from this approximation will be
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2.2 Propagation

negligible. It has previously been shown that use of a single thin screen to model the atmosphere

gives promising results [Mortensen and H�eg, 1998] and use of two screens is expected to give

better results. It is not clear from beforehand whether the expected improvement is su�cient to

comply with the very high accuracy demands for atmospheric measurements, but conceptually

the model can easily be extended to include more screens once the improvement of introducing

the extra thin screen has been proven.

2.2 Propagation

The complex amplitude u of the scalar electro-magnetic �eld in vacuum satis�es the Helmholtz

equation

�u+ k2u = 0 (1)

where k is the free space wave number. The scalar version of the wave equation can be used

because the atmosphere is tenuous [Tartarskii, 1971].

If the electro-magnetic �eld u0 is known at a distant straight line S a solution u(~x) to the

Helmholtz equation can be found in a given point ~x. This is the two dimensional solution for

the external boundary problem for the Helmholtz equation [Born and Wolf, 1993]

u(~x) =
i

2

Z
S

u0(~y)
@

@ny
H

(1)
0 (kj~x� ~yj) dSy (2)

where ny is the external normal to S and H
(1)
0 is the Hankel function of �rst kind of zero order.

When using the high frequency expansion (kj~x � ~yj) ! 1 of H
(1)
0 , the expression for the �eld

becomes

u(~x) =

�
k

2�

�1=2 Z
S

u0(~y) cos'xy
exp(ikj~x � ~yj � i�=4)p

j~x� ~yj
dSy (3)

where 'xy is the angle between the normal ~ny to S and the vector ~x� ~y. This solution can be

used to describe the �eld measured at the LEO if the �eld is known on the thin screens (�; z0)

indicated in Figure 2.

As the signal propagates in free space from the GPS satellite to the �rst thin screen the �eld u1
at this will be given as

u1(�; z1) = uG
exp(ikrG;1)p

rG;1
exp(ik (�)): (4)

In this equation, uG denotes the �eld transmitted from the GPS, rG;1 is the distance from the

GPS to the point (�; z1) in the thin screen and  is the phase delay due to the atmosphere.

The �eld at the second thin screen will then be

u2(�; z2) =

r
k

2�
exp(ik (�))

1Z
�1

u1(�
0; z1) cos'1;2

exp(ikr1;2 � i�=4)
p
r1;2

d�0 (5)
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2.2 Propagation

using (3) and (4). In this case r1;2 denotes the distance between the points (�; z1) and (�; z2)

and '1;2 is the angle between the vector ~r1;2 and the z-axis.

Reusing (3) the �eld measured by the LEO can be determined as

uL(~rL) =

�
k

2�

�1=2
1Z

�1

u2(�; z2) cos'2;L
exp(ikr2;L � i�=4)

p
r2;L

d� (6)

when (5) is used for the �eld u2. Here r2;L denotes the distance between the points (�; z2) and

~rL and '2;L is the angle between the vector ~r2;L and the z-axis.

The expressions have been written using thin screens parallel with the �-axis but the expressions

can easily be generalized to include a slope compared to the �-axis. At both thin screens the

�eld will be zero below the surface of the Earth.

The propagation method assumes stationarity in time as the occultation samples used to calcu-

late the �eld are in reality a time series. This is a good approximation for the atmosphere as the

occultation measurement only takes about a minute during which time interval the atmosphere

can not change signi�cantly.

The phase delay  due to the atmosphere is found using a geometrical optics approximation

and using an assumption of spherical symmetry in the atmosphere. This is not limiting for the

results though as the geometrical optics approximation is a good approximation when the area

for which it is used is relatively small. In the case case here it is only used to �nd the phase

delay due to the atmosphere and the spherical symmetry assumption becomes local, i.e., must

only be valid in the vicinity of each screen. For each screen the phase delay will be given as

[Born and Wolf, 1993]

 i(�) =

1Z
�+RE

(ni � 1)
nirq

n2i r
2 � a2

dr (7)

where ni is the refractive index (proportional to the density) in the part of the atmosphere

corresponding to screen number i = 1; 2 and a = ni(�)(� + RE). RE denotes the radius of the

center of refractivity for the Earth [Syndergaard, 1998]. Figure 3 illustrates the parameters used

for calculating the phase delay  i.

Figure 3: The occultation geometry.
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2.3 Inversion

2.3 Inversion

In an occultation measurement the electromagnetic �eld is measured in the form of amplitude

and phase of the signal sent from the GPS. The information wanted from the measurements are

temperature, pressure and density pro�les. These quantities are proportional to the refractive

index, i.e., the purpose of the inversion here is to derive refractive index pro�les from the

occultation measurement.

It is obvious to split the inversion in two parts: Calculation of phase delay  i from the measured

phase and calculation of refractive index from phase delay. In the formulation given in the

previous section both will be nonlinear inversions.

As an occultation measurement gives a one-dimensional data set some a priori information about

the horizontal variations in the refractive index is necessary if  1 6=  2. To keep the inversion as

simple as possible it has thus been assumed that the atmosphere is spherically symmetric, i.e.,

 1 =  2 =  . Once the inversion works for a spherically symmetric atmosphere the extension

to  1 6=  2 should conceptually be a minor extension.

Calculation of the refractive index from the phase delay can be performed analytically. An

approximation for the expression (7) is

 (�) = �
1Z
�

(dn=dr)

ni

p
n2r2 � a2 dr (8)

The approximation is valid for a tenuous atmosphere (n � 1) which is a good approximation for

the Earth especially when the atmosphere is departed in to two or more parts. This expression

can be inverted giving

n(a) = exp

0
@� 1

2�

d

da

2
4 1Z
a

a (�n �RE)

�n
p
�2n � a2

d�

3
5
1
A (9)

with � = a
n(a)

� RE (after the inversion) and using �n = n(� + RE) � � + RE . Use of the

approximation �n � � + RE is equal to a slight change in the propagation path. As n > 1 the

ray path will be moved slightly outwards. From Figure 3 it can be seen that the approximation

is equal to assuming that the distance to the center of the Earth at the thin screens is equal to

a instead of (�+RE). As the distance from the satellites to the atmosphere of the Earth is a lot

larger than the propagation distance within the atmosphere this gives the best approximation

of the propagation path.

The inversion from measured �eld to phase delay can not be simpli�ed in the same manner so

this part is solved by discretizing and performing a nonlinear iterative inversion algorithm.

The propagation through the atmosphere of the Earth has in
uence on both the measured

amplitude and phase. The approximation of the propagation to the two-thin screen model will

thus also both have in
uence on phase and amplitude of the measurement. On the other hand

the expression for the measured �eld as shown in (6) only contains an unknown phase. In order
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2.3 Inversion

to perform the nonlinear iterative inversion the expression is rewritten to better comply with

the measured quantity:

uL(~rL) = KL

1Z
�1

	(�)
exp(ikr2;L)p

r2;L
cos'2;L

1Z
�1

	(�0)
exp(ik(rG;1 + r1;2)p

rG;1r1;2
cos'1;2 d�

0d� (10)

where KL is a complex constant and 	(�) = A(�) exp(ik (�)). Thus, the unknown to be derived

is the complex quantity 	 of which only the phase  is to be used to �nd the refractive index.

The expression (10) for the measured �eld will be inverted using Newton's method. The idea in

this is to use an initial guess of the phase delay 	 to calculate the two thin screen propagation

solution and then a Taylor's expansion of the nonlinear equation is used to calculate an updating

of the model for the unknown. The updated phase delay can then be used to calculate the two

thin screen propagation and the steps can be repeated until convergence or not.

The operator equation which is to be solved for 	 is written as

uL(~rL) = F [~rL;	(�)]: (11)

A guess for the solution is 	(k). When this guess is not the exact solution 	 a correction @	(k)

must be found such that the sum 	+ @	(k) is the correct solution, i.e.,

F [	(k) + @	(k)] = uL: (12)

The position dependencies ~rL and � has been omitted in the equation and will be omitted in

the following for the sake of simplicity.

The truncated Taylor expansion of equation (12) is

F [	(k) + @	(k)] ' F [	(k)] +

�
@F
@	

�(k)

@	(k): (13)

Thus, an updating equation, which will be likely to improve the guess is

[Blok and Oristaglio, 1995, ch. 3.4]

uL �F [	(k)] =

�
@F
@	

�(k)

@	(k) (14)

and the updated result for the phase becomes

	(k+1) = 	(k) + @	(k) (15)

where (k) denotes the iteration number.

The Taylor expansion truncated to the �rst order is not necessarily a good approximation of

the nonlinear equation, particularly if the initial guess is far from the correct result. Thus, it is

commonly used to regularize the updating solution @	(k) in the sense that @	(k) is chosen as

[Blok and Oristaglio, 1995, ch. 3.4]

min

�


uL �F [	(k) + @	(k)]




2
2
+ �2 k@	k22

�
: (16)

In the present case this regularization has been done by trial and error. Thus, this aspect is

treated in section 3 where the results are shown.
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2.3 Inversion

2.3.1 Solving the updating equations

The updating equation (14) is ill posed. Thus it must be solved using the least squares solution

to the regularized problem [Hansen, 1997, ch. 1.3]:

min

8<
:






�
@F
@	

�(k)

@	(k) �
�
uL �F [	(k)]

�





2

2

+ �2 k@	k22

9=
; (17)

As can be seen from the equation it has been chosen to minimize with respect to k@	k22. This
is not necessarily the optimal choice of smoothing norm for the problem at hand but is used as

an initial choice.

Even though the atmosphere of the Earth is tenuous the horizontally propagation path in an oc-

cultation makes the complex phase 	 vary rather fast. 	 will thus be an oscillating function with

the number of oscillations increasing exponentially when the signal is approaching the Earth. It

has been chosen to discretize this function by linear interpolation to make the calculation of the

expansion functions reasonably simple. Due to the increasing number of oscillations the stepsize

in the discretization must be variating with decreasing stepsize as the signal gets closer to the

Earth. The discrete version of 	 is thus,

	(�) =
X

�i�i(�) for i = 1; : : : ; n (18)

with

�i(�) =

8><
>:

1
�i��i+1

(� � �i+1) for � 2 [�i+1; �i[

1
�i�1��i

(�i�1 � �) for � 2 [�i; �i�1]

0 otherwise:

(19)

The discretization scheme and the expansion functions are illustrated in Figure 4.

Figure 4: The expansion functions.

The discretization of the measurement is natural to perform as collocation, i.e., delta function

expansions as this equals the samples in a measurement

�j = uL(~rL;j) for j = 1; : : : ;m (20)

where ~rL;j denotes the position for sample j. This sampling density increases as the Earth is

approached. Similarly, the operator will be discretized in the same points Fj = F [~rL;j ]

The discretized equations are thus,

�j = Fj[�
(k)] for j = 1; : : : ;m (21)
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2.3 Inversion

then the updating equations becomes

�j � Fj [�
(k)] =

nX
i=1

�
@Fj

@�i

�(k)
@�

(k)
i for j = 1; : : : ;m (22)

and the updated result for the phase becomes

�
(k+1)
i = �

(k)
i + @�

(k)
i for i = 1; : : : ; n (23)

The partial derivative of the measured �eld with respect to one of the expansion function is

given as

@F
(k)
j

@�
(k)
i

= KL

0
@ 1Z
�1

�i(�)
exp(ikr2;L)p

r2;L
cos'2;L

1Z
�1

	(�0)
exp(ik(rG;1 + r1;2))p

rG;1r1;2
cos'1;2 d�

0d�

+

1Z
�1

	(�)
exp(ikr2;L)p

r2;L
cos'2;L

1Z
�1

�i(�
0)
exp(ik(rG;1 + r1;2))p

rG;1r1;2
cos'1;2 d�

0d�

1
A (24)

Due to the unequal sampling density an appropriate weighting factor must be used in the dis-

cretization scheme to calculate k@	k2 . The chosen expansion functions are not orthonormal so

a direct normalization of the functions can not be done directly, instead the functions have been

weighted according to their width to give them all the same in
uence, i.e., wi =
p
�i�1 � �i+1.

The updating equation (22) is not regular and further more it is ill posed. The discrete version

of the least squares solution to the regularized problem thus looks like [Hansen, 1997, ch. 1.3]:

min

(




�
@F

@�

�
@�� (� � F[�])






2

2

+ �2 kL@�k22

)
(25)

where L is a diagonal matrix containing the weighting values wi and the superscript (k) has

been dropped.

As an occultation normally extends from 100km altitude to around the surface of the Earth

the number of samples in one occultation is large, i.e., around 1500. Even with this number

of samples the measured phase variation from sample to sample close to the Earth is larger

than 2�. So, in order to get a good representation of the signal in complex notation the signal

is resampled giving 3000 samples from 100km down to 4km, of which only 100 is used in the

range from 100 to 50km. Furthermore, because of the increasing density of the atmosphere of the

Earth a large number of expansion functions are necessary to give an appropriate approximation

of the phase with the given expansion functions. Thus, the least squares minimization problem

has been solved using the Conjugate gradients least squares (CGLS) method.

To use the CGLS method on the given minimization problem (25) the problem must be trans-

formed to standard form. As L is square and invertible the transformation is simple

[Hansen, 1997, ch. 2.3]:�
@F

@�

�
=

�
@F

@�

�
L�1; (� � F[�]) = (� � F[�]); @� = L�1@� (26)
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3 Results

giving the minimization problem

min

8<
:






�
@F

@�

�
@�� (� � F[�])







2

2

+ �2


@�

2

2

9=
; (27)

where L�1 is a diagonal matrix with the elements 1
wi
.

The CGLS method is an iterative method for solving linear equations. When the CGLS method

is used on a standard form problem the regularization is controlled by the number of iterations.

The fewer the iterations the more regularization [Hansen, 1997, ch. 6.3].

3 Results

As example used to test the inversion method a simulated occultation data set has been used.

A one dimensional forward occultation simulator which takes into account di�raction has been

developed at JPL, i.e., large gradients can be simulated. The model uses a spherical Earth,

spherical satellite orbits and a piecewise linear temperature pro�le as atmosphere model

[Kursinski et al., 1997]. Forward simulation data from this model has been provided by Roger

E. Lin�eld and Rob Kursinski, JPL.

The approximations in this model compared to a real occultation are relatively small and the

in
uence on the results are well known so when using the simulated data set a good test of the

inversion method can be performed.

Figure 5 shows the temperature pro�le and the corresponding refractivity pro�le for the example

used here. The refractivity N corresponds to the refractive index as

Figure 5: Temperature and refractivity pro�les as a function of height for the example used.

N = (n� 1) � 106: (28)
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3.1 Inversion Results

Figure 6 shows the simulated occultation measurement as a function of the corresponding height

in the atmosphere. The results shown has been obtained with the �rst screen placed at z1 =

�50km and the second screen placed at z2 = 110km� 0:5�. These positions of the screens gives

the optimal results of the forward calculation using two thin screens. The measured amplitude

is shown relative to the amplitude that would be measured in the absence of the atmosphere

and the measured phase is similarly shown subtracted with the phase delay caused by the direct

propagation in the case where there is no atmosphere. The oscillations in the amplitude are
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Figure 6: Measured amplitude and phase for the example used.

caused by changes in the temperature gradient. The slight change in the temperature gradient

seen from 8-9km height in Figure 5 is seen to cause rather large oscillations in the measured

amplitude. In general the oscillations increases as the gradient change increases but furthermore

the oscillations increases as the gradient changes gets closer to the Earth. The temperature

gradient changes also causes oscillations in the phase but due to the very fast increase of the

phase below 20km the oscillations can not be distinguished as easily as in the amplitude. It

should be noted, that the wavelength at the frequency used is approximately 0:2m so the excess

phase shown is equal to 1500 � 2� at the height 4km.

3.1 Inversion Results

The inversion results in this section is only inversion to the phase delay 	 due to the atmosphere.

Once the 	 has been found the inversion to refractivity using (9) is relatively simple to perform.

When inverting the data shown above an initial guess of the phase delay must be obtained.

To obtain this guess, the traditionally used geometrical optics solution is used to invert the

data to a refractivity pro�le and then the phase delay is calculated from (7). The phase delay

thus obtained for each of the thin screens for the example used is shown in Figure 7. In the

complex representation this phase delay will be 1 � exp(ik ). The geometrical optics solution is

very good for smooth pro�les. The example has a quite smooth pro�le which the geometrical

optics solution can invert with very high accuracy so the initial guess should be pretty accurate.

Discrepancies between the simulated measurement and the two thin screen propagator when

using  in Figure 7 as initial guess will thus mainly be due to errors in the two thin screen

approximation. But as the purpose is to derive the inversion result obtainable with the two

10



3.1 Inversion Results
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Figure 7: The phase delay corresponding to the refractivity pro�le derived using a geometrical

optics solution for the example used.

thin screen approximation, iterations must be performed to obtain the phase delay result which

complies best with the two thin screen method.

The error of the two thin screen propagation when using the phase delay shown in Figure 7

compared to the simulated measurement is shown in Figure 8. Both amplitude and phase errors
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Figure 8: Relative errors in amplitude and phase using the initial phase delay guess.

are shown relative. The results are only shown below 60km. This is because the phase decreases

exponentially giving accuracy problems for high altitudes. Normally only results below 30-40km

are considered reliable no matter what inversion method is used. The high altitude are necessary

though to initialize the algorithm.

The increasing errors in the phase above 40km is thus not a very big problem although better

results should be obtainably. In absolute measures the error in the phase below 10km is a much

bigger problem as the phase varies very fast in this area and even 0:25% errors are several periods

of the complex phase. Below 30-40km the error should be less than � 0:05% in order to accept

the result as converged. But still, the relatively small error in the phase with the initial guess

implies that the results obtainable with the two thin screen method will have a reasonably good

11



3.1 Inversion Results

average accuracy.

The errors in the amplitude increases as the altitude decreases. This is because the absolute

amplitude decreases. Also, it is seen that the temperature gradient changes causes some problems

for the amplitude results. The large errors seen in the amplitude results compared to the phase

results are to be expected as any approximation of the wave propagation approximates the phase

better than the amplitude. As only the phase is necessary to derive the refractive index pro�le

this is not a problem for the further inversion process but it is likely to cause problems for the

inversion to phase delay as this inversion can only be performed on the complex phase delay

and thus will be in
uenced by both errors.

3.1.1 CGLS solution to the updating equations

The error in Figure 8 is used as right hand side in the updating equations (22) for the �rst

iteration. Figure 9 shows the real and imaginary part of the right hand side as it look in

absolute measures. The electromagnetic �eld has been normalized to the �eld which would have

been measured in free space as in the �gures shown previously. The right hand side contains
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Figure 9: Real and imaginary part of errors in initial phase delay guess.

numerical noise. Due to accuracy problems in the calculation of the forward propagation the

noise level in the right hand side is approximately kek2 � 0:2. This noise is a combination

of model error and rounding error from numerical integrations. The noise is assumed to be

uncorrelated although this is probably only approximately correct. The noise is particularly

easy to see at high altitude, where amplitude and phase oscillations are obvious due to the

relatively small in
uence from the atmosphere. The simulated occultation data set is assumed

to be noise free.

The exact number of samples used are 3044 and the number of expansion functions used for the

phase delay is 2456. In principle the updating matrix will be a full matrix as the measured �eld

depends on �eld at any point of the thin screens. In practice the dependence is very concentrated

around a center point so the matrix will be banded. The CGLS algorithm is initialized with the

starting vector d�(0) = 0.
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3.1 Inversion Results

In Figure 10 the L-curve for the CGLS solution of the updating equations is shown and Figure 11

shows the residual norm and the solution norm as a function of iteration number. The CGLS

Figure 10: The L-curve
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Figure 11: The development of the residual norm for the CGLS solution of the updating equa-

tions is shown on the left and on the right is the corresponding development of the norm of the

solution.

iterations are stopped after 200 iterations. In Figure 10 the iteration number is shown in a few

point. As can be seen from the �gure the corner of the L-curve appears after approximately 80

iterations. The corner is placed well above the noise level in the right hand side but on the other

hand the updating matrix is know to contain noise as well. Although it is di�cult to estimate

the noise level in the updating matrix it is expected that it will be substantially larger than the

noise level in the right hand side as matrix is obtained by di�erentiation of the equations used

for the forward propagation. The development of the residual norm shown in Figure 11 and the

development of the error norm which is also shown in Figure 11 behaves as would be expected

[Hansen, 1997, ch. 6.4].

In Figure 12 solutions corresponding to the iteration numbers marked in the L-curve is shown
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3.1 Inversion Results

with the exception that the corner solution has been substituted with the solution for iteration

number 50. The �gure shows the amplitude of the solution on the left and the unwrapped phase
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Figure 12: Phase and amplitude for di�erent iteration numbers.

of the complex solution on the right. The �gure shows that the results are rather noisy and

furthermore, the noise is seen to increase a lot with iteration number. The solution is to be added

to the initial phase guess and should compensate the error shown in Figure 8. From theoretical

considerations and experience from single screen models it is known that the updating solution
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3.1 Inversion Results

should have a relatively constant amplitude with a maximum around 1. When the amplitude

of the updating equation is larger than one the updating result will dominate the phase when

added to the initial guess. Taking the very fast phase variations in the updating results into

account it is seen that it will be necessary to chose a solution which when compared to the

L-curve corner solution seems to be over-smoothed.

Use of a di�erent smoothing norm in the minimization problem for the updating solution (25),

i.e., kL@�k22 instead of k@�k22 with L equal to the �rst derivative operator does improve the

results signi�cantly.

3.1.2 The updated phase

Instead of using the L-curve corner solution the solution to the updating equations has been

chosen by trial and error. This process is equal to the �nding the regularized solution in ac-

cordance with equation (16), i.e., �nding the solution which minimizes the error of the forward

propagator when the updated phase is used.

Figure 13 shows the error in the measured phase obtained with the two thin screen forward

propagator with the updated phase using the solutions shown in Figure 12 for the updating.

The results are shown together with the error obtained using the initial phase guess. It should
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Figure 13: Relative phase errors when using di�erent iteration numbers for the updating solution.

In each plot the error obtained using the initial phase guess is shown for comparison.

15



3.1 Inversion Results

be noted that the scale is di�erent for the result obtained using the iteration number 50 in the

updating. Only the phase error has been shown as this is the result which is important for

�nding the refractivity but also because amplitude and phase results are very closely connected.

A small error in the phase will indicate a small error in the amplitude but with the complication

that the amplitude is less accurate than the phase and will be very sensitive to noise particularly

close to the Earth.

The �gure shows - as would have been expected from Figure 12 - that the updating solutions

corresponding to high iteration numbers only work well for high altitudes. As the Earth is

approached the iteration number used for the solution to the updating must be lowered. The

�gure furthermore shows that the solution for iteration 50 is to noisy at any altitude and the

average solution has started to give increasing errors. On the other hand using a low iteration

number gives to small amplitudes of the updating equations for high altitudes, i.e., the updating

makes no di�erence in the result. Therefore, the updating solution has been composed of a

number of solutions corresponding to di�erent numbers of CGLS iterations.

From 100km down to 50km the solution from the 21th iteration has been used. From 50km

down to 10km the solution from iteration number 6 has been used and below 10km the solution

from iteration number 3 has been used. The resulting updated complex phase delay 	 is shown

in Figure 14.
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Figure 14: The complex phase after addition of initial data with updating results.

Even when a low iteration number is used for the solution below 50km the resulting amplitude

is seen to be oscillating pretty much - compared to the initial amplitude of 1 constant. The

updated phase delay � which is shown on the right looks very reasonably compared to the

original guess shown in Figure 7. It seems likely that an increased number of samples in the

right hand side as well as an increased number of expansion function might help to minimize the

problems with the solution below 10km but as the number of unknown is already rather large a

further increase in the sampling density gives substantially computationally di�culties. This is

because calculation of the matrix elements is a very slow process so the matrix elements should

only be calculated once in order to keep the computational time reasonably.

The resulting updated complex phase is used in the two thin screen propagator. The error in

the amplitude and phase compared to the simulated data set is shown in Figure 15. The �gure
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3.1 Inversion Results

also shows the error obtained using the initial phase delay guess. As might have been expected
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Figure 15: The relative error after �rst iteration shown together with the relative error after

using the initial phase delay guess.

from the look of the updated complex phase the error in the amplitude is actually increases after

this �rst iteration due to the large oscillations in the amplitude of the updated complex phase.

On the other hand the relative phase error is decreased although there are oscillations in this

result also.

The tendency of the updated solution to oscillate is both a result of the large right hand side of

the updating equation and of the discretization errors in the matrix. That is, already the two

thin screen propagation is seen to have a slight tendency to oscillate and as the matrix in the

updating equation is derived from a di�erentiation of the forward propagation the problem is

increased. Use of a smoothing operator L like a �rst order di�erentiation in the least squares

solution (27) instead of just the simple weighting does not improve the results signi�cantly.

The average of the phase almost ful�lls the convergence criteria of an error less than 0:05% in

the area below 30km. Below 7km the phase error still increases somewhat. But overall the error

is decreased implying that the inversion method is feasible. Further iterations to improve the

phase result below 7km is likely to be di�cult due to the large oscillations in the amplitude

results.

3.1.3 Further improvements of the results

The results shown uses only one iteration in the non linear iterative solution. In principle the

error shown in Figure 15 could be used as right hand side for the updating equations in a new

iteration. But due to the large noise level in the amplitude and the di�culties with noise in the

updating equations this is not expected to give useful results.

It is known that the true solution to the inversion problem does not oscillate like the solution

obtained using the nonlinear updating equation. Therefore, tests has been performed where

a simple smoothing of the updated complex phase delay shown in Figure 14 has been applied

before the two thin screen propagation is performed again. This process equals trying to �nd
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4 Conclusions

the best solution to the regularized problem (16) with an empirical method. Even though the

smoothing has not been optimized this seems to be a way of removing most of the unwanted

oscillations in the results and giving the same average accuracy of the phase. Figure 16 show the

error in the measured data when a smoothed version of the complex phase shown in Figure 14

has been used as the updated phase. The amplitude of the complex phase has been set to 1

constant and the high frequency oscillations in the phase of the complex phase has been removed.

The result shown in Figure 16 is reasonably good for both the measured phase and amplitude.
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Figure 16: The relative error after �rst iteration using the smoothed updated phase shown

together with the relative error after using the initial phase delay guess.

The �gure shows that a part from giving noisy results the updating equations works for the non

linear inversion. The results could be used for performing another iteration in the nonlinear

inversion but below 35km the accuracy is approximately as required so another iteration has

not been considered necessary.

4 Conclusions

The initial test results of the two thin screen inversion method shows that the nonlinear inversion

method is feasible although it is computationally and implementationally demanding.

The method still needs a lot of development before it can be used in general even on simulated

data without noise. Especially, work could be done on choosing better expansion function for

the phase and �nding better and more automated regularized solutions. But with an e�ort

of making the implementation more e�cient it is expected that very high resolution inversion

results should be obtainable.
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