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Preface
The mixing scheme as described here is implemented into the HIROMB-BOOS ocean circulation
model, HBM (Berg and Poulsen, 2012), and has proved its worth for some years in operational
applications such as the DMI storm surge forecast model and in the MyOcean Baltic model.

The present document is the proper choice if you need a reference to the mixing scheme in HBM. It
is appreciated if you quote the present document as well as the general implementation document for
the HBM model by Berg and Poulsen (2012).

Front Page
The figures on the front page shows modelled profiles of salinity and temperature at four stations
during 2007:
From top to bottom BMP13 in Botnian Bay, Læsø Øst in Kattegat, BMPK2 in Bornholm Basin and
BMPI2 in Gotland Deep; salinity to the left and temperature to the right; vertical axis is depth and
horizontal axis is time.

These results are obtained by the MyOcean Baltic V2 set-up using the latest release of the HBM
code. Plotting of the results was made by Priidik Lagemaar and Germo Väli (Marine Systems
Institute, Tallinn University of Technology) for the "Scientific Calibration Report (ScCR) for V2,
WP 6 - Baltic MFC" of the MyOcean project, reference: MYO-WP6-ScCR-V2.
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1. Introduction
A good turbulence model has extensive universality, and is not too complex to develop or use. Uni-
versality implies that a single set of empirical constants or functions, inserted into the equations,
provides close simulation of a large variety of types of flow. Complexity is measured by the number of
differential equations which the model contains, and the number of empirical constants and functions
which are required to complete them; increase in the first complicates the task of using the model,
increase in the second that of developing it.

LAUNDER AND SPALDING, 1973.

In ocean circulation models of the type considered here one solves equations for the mean variables.
Mixing, which enters through non-resolved, higher-order moments of the fluctuating components of
the variables, can be expressed in terms of vertical diffusivities and vertical gradients of the resolved
mean variables. The reliability of a mixing scheme - which is the model of providing the vertical
diffusivities - is predicated upon the physical content of its ingredients, and it is these ingredients
which we have attempted to improve from previous models.

Our new mixing scheme consists of a two-equation turbulence closure model and algebraic structure
functions. The two-equation turbulence closure model consists of transport equations for the
turbulent kinetic energy, k, and for the inverse turbulent time scale or turbulent frequency, ω. The
structure functions are algebraic functions not only of the gradient Richardson number as is most
often the case, but also of the gradients of temperature and salinity and of the turbulent time scale.
These choices are motivated by the need for properties such as accuracy, robustness, physical
soundness, general applicability, and flexibility to add new features, still maintaining an acceptable
level of the computational costs. Thus, from our own experience and testing as well as from
literature, e.g. (Umlauf et al., 2003), the k-ω turbulence model has convincingly proved superior to
other two-equation models, i.e. better than or at least as good at the same computational cost, and the
structure functions of (Canuto et al., 2002) follow a formalism sufficiently general to describe the
needed range of processes and to allow for extensions (plug-in features), yet not being too
cumbersome to maintain.

Using well-known procedures, it then becomes a matter of algebra, rather than physics or empirical
reasoning, to derive expressions for the vertical diffusivities in terms of the prognostic variables of
the two-equation turbulence model and gradients of the resolved mean variables of the circulation
model.

2. Summary
Our scheme is based on the - in aerodynamics - classical k-ω turbulence model (Wilcox, 1988)
extended for buoyancy affected geophysical flows by Umlauf et al. (2003) but we apply a new set of
coefficients developed by the present author to obtain consistency during transition between the
different regimes of turbulence being predicted by the model. Through parameterizations we take
both breaking surface waves (Craig and Banner, 1994) and internal waves (Axell, 2002) into account
in the turbulence model. The atmospheric forcing (i.e. wind stress and cooling surface heat flux) of
the turbulence model is provided through a new set of surface flux boundary conditions for k and for
ω . We have introduced a new way of parameterizing extended buoyancy production during
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convection into the turbulence model, by inclusion of third order moments using concepts from
(Abdella and McFarlane, 1997; D’Alessio et al., 1998).

Different algebraic structure functions are applied for the vertical diffusivities of momentum, heat
and salt. We have reconstructed the structure functions of (Canuto et al., 2002) into new,
computationally sound expressions in turbulent time scale, temperature gradient, salinity gradient,
resolved velocity shear and unresolved but parameterized shear from breaking internal waves.

To account for penetration of short wave radiation into the subsurface model layers a
parameterization of the insolation properly suited for the Baltic Sea area was implemented (Meier,
2001).

Also, during storm cases, to avoid the surface flow from increasing to unrealistically high current
speeds, our implementation of the wind stress uses the effective wind velocity relative to the current
velocity. A realistic description of the surface roughness length scale as seen from the ocean, z0, is
one of the major unsolved problems is oceanography, and our choice of implementing z0 as being
proportional to the turbulent surface velocity scale comes from considerable numerical
experimentation in attempt to obtain good predictions in storm cases, both with respect to high water
and to low water situations. During calm situations a constant z0 of 10 cm is sufficient. It is, however,
of vital importance that there is consistency between the z0 applied in the turbulence model and the
z0 applied in the momentum equations, otherwise it may lead to spurious results in the forecasts.

An overview of our complete mixing scheme with some details is given in the following sections.
First, in section 3, we describe the structure functions and the vertical diffusivities. Obtaining the
vertical diffusivities is what is needed for obtaining closure to the system; the remaining sections of
this document thus deal with determining the terms from which we can construct the vertical
diffusivities. In section 4, we state the k-ω model equations. Then, in section 5, we describe the
procedure for determining the coefficients of two-equation turbulence models consistently with the
chosen stability functions and the physics being predicted. Parameterization of breaking internal
waves and surface waves is described in section 6 and 7, respectively. Our new formulation of the set
of surface boundary conditions for the k-ω turbulence model is given in section 8. Section 9
describes how we parameterize convection from third order moments. Thermal diffusivity and
insolation is briefly described in section 10 and 11, respectively, before we end with a short
description of how we have implemented the mixing scheme.

Most of the sometimes rather lengthy derivations and equations are left out of this document,
though. It must be emphasised that our new mixing scheme has not yet been published and the
present report documents original work by the author. More detailed documentation and validation
exists as internal and personal notes at DMI, extracts of which constitute the present document.

3. Structure Functions And Vertical Diffusivities
To bring closure to the system of equations in our ocean circulation model we need to determine the
three vertical diffusivities, namely KM for momentum, KH for heat, and KS for salinity. These can
be expressed as

Ki = 2
k2

ε
Si with i = M,H or S

where k is the turbulent kinetic energy and ε is the dissipation rate of turbulent kinetic energy. The
dimensionless functions Si are called structure (or sometimes, stability) functions. For constructing
suitable structure functions there is a variety of approaches described in the literature as well as
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implemented in ocean circulation models worldwide, ranging from simple constants to more
involved expressions, including a variety of different features. A comparative analysis of some
candidate formulations is given in (Burchard and Bolding, 2001). We have, however, chosen the
more recent structure functions of Canuto et al. (2002) which, despite relatively high complexity,
after some algebra with pen and paper turned out to become usable for operational oceanographic
applications. In brief, these structure functions are expressed in terms of gradients of the prognostic
variables of the ocean circulation model and of the turbulent time scale. We have also introduced
’shear’ of unresolved scales (i.e. from parameterized internal wave breaking) into the formulae.

Below we give a brief description of the structure functions, but before that we need to define some
basic quantities. The gradients of the mean salinity and temperature enter through RS and RH which
are given by

RS = gβS
∂S

∂z

RH = gαH
∂θ

∂z

in which S is salinity, θ is temperaure, z is the vertical coordinate with positive direction upwards, g
is gravity, βS is the local haline contraction coefficient and αH is the local thermal expansion
coefficient. The density gradient enters through the buoyancy frequency squared

N2 = −g
ρ

∂ρ

∂z
= RH −RS

The total shear
Σ2
T = Σ2 + σ2

is contributed by the resolved, large scale shear of the mean flow

Σ2 =

(
∂u

∂z

)2

+

(
∂v

∂z

)2

where (u, v) is the mean current, and by unresolved small scales which we for convenience have
added up in the term σ. Such unresolved processes include e.g. internal wave breaking as discussed
in section 6. The gradient Richardson number is defined as

Ri =
N2

Σ2
T

The first thing to do is then defining a critical value of the gradient Richardson number Ri,crit above
which turbulent mixing ceases to exist. In the regime Ri > Ri,crit we set Ki to a small background
value. A method to obtain Ri,crit as a function of the above-mentioned gradients was presented by
Canuto et al. (2002). We have adapted their idea and from that we have constructed a
computationally sound procedure. Instead of going into algebraic details which involves treating
removable singularities when RS and/or RH approaches zero, we jump directly to showing our
Fortran 90 source code implementation in Appendix 2.

With Ri,crit in place, we can derive expressions for the structure functions Si which are valid in the
regime Ri < Ri,crit. Again we lean towards the work of Canuto et al. (2002) and write each
structure function as a fraction with a common denominator

Si =
Ni

D
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but we choose to proceed with modified forms of the expressions, outfactorizing common terms, and
raising singularities in N2, RS and RH . First, we need to define dimensionless functions
representing resolved heat gradient, salt gradient and shear

fH = −π2π3τ
2RH

fS = π2
3τ

2RS

fM = 0.16τ 2Σ2

where τ is the dynamical turbulent time scale which will be defined in the next section, and π2 and
π3 are constants (see Appendix 1). These are computationally simpler than the corresponding
functions applied in (Canuto et al., 2002). Having done so, we find that

D = D(fH , fS, fM)

NM = NM(fH , fS)

NH = NH(fH , fS, fM)

NS = NS(fH , fS, fM)

Our Fortran 90 source code implementation of these is shown in Appendix 3. The constants
appearing in the expressions for Ri,crit and for fi, D and Ni are given in Appendix 1.

4. The k-ω Model Equations
The transport equations for the turbulent kinetic energy k and for the turbulent frequency ω read

∂k

∂t
=

∂

∂z

(
KM

σk

∂k

∂z

)
+ P +G− ε

∂ω

∂t
=

∂

∂z

(
KM

σω

∂ω

∂z

)
+
ω

k
(c1ωP + c2ωG− c3ωε)

where P and G represents the production of turbulent kinetic energy by shear and buoyancy,
respectively. The relationships between dissipation rate of turbulent kinetic energy ε, turbulent time
scale τ , turbulent length scale l, and our prognostic turbulence variables k and ω are

ε = c4µ0kω

τ = 2k/ε

l = c3µ0k
3/2/ε

The coefficients of turbulence cµ0, c1ω, c2ω, c3ω, σk and σω which occur above will be determined in
section 5.

The shear production has contributions from the resolved shear production of the mean flow and
from non-resolved processes like e.g. internal wave breaking, i.e.

P = PS + PIW

While the first term is expressed in terms of the resolved shear of the mean flow as

PS = KMΣ2

www.dmi.dk/dmi/sr12-03.pdf page 8 of 21



Danish Meteorological Institute
Scientific Report 12-03

the PIW term must be parameterized, see section 6. One might also consider adding a
parameterization of shear production due to Langmuir circulation as done e.g. by Axell (2002); this
has also been implemented into the HBM code but it has not been used for any real production run
yet.

The buoyancy production has contributions from gradients of the mean salinity and temperature
fields, and from higher order moments

G = KSRS −KHRH +GTOM

The last term GTOM is short-hand notation for our new way of parameterizing extended buoyancy
production during convection by inclusion of third order moments (TOM) as will be described later
in section 9.

5. Determine Coefficients In Two-Equation
Turbulence Models
We will determine the constants used in the mixing scheme to be consistent with the chosen structure
functions and the physics being predicted. The procedure is new and might prove generally
applicable to two-equation turbulence closure models, but it is here demonstrated only for the k-ω
turbulence model. In the seven steps outlined below we will bring forward our argumentation for the
choice of closure coefficients.

Step 1: Having chosen an appropriate set of structure functions we need to determine the structure
constant cµ0. This is done by considering the structure function for momentum during
quasi-equilibrium when production equals dissipation, in the absence of buoyancy. After some
algebraic manipulations we find to four decimals precision that

cµ0 = 0.5234

Our value differs slightly from values found in the literature, where most studies depart from the
classical value cµ0 = 0.091/4 ≈ 0.5477, see e.g. (Launder and Spalding, 1974; Rodi, 1987; Wilcox,
1988). An example is in (Umlauf et al., 2003) where cµ0 = 0.55, the rounded classical value, is used.
The value cµ0 = 0.5562 is used by Burchard and Petersen (1999), by Axell and Liungman (2001) and
by Axell (2002) without further argumentation. Other authors derive - like we do - a value of cµ0

consistently from the applied structure functions, e.g. cµ0 = 0.0771/4 ≈ 0.5268 was derived by
Burchard and Bolding (2001) and is in very close agreement with our value due to the close
relationship between the applied structure functions (Canuto et al., 2001).

Step 2: While much literature on turbulence modelling, including (Burchard and Bolding, 2001;
Meier, 2001; Axell, 2002), uses the value 0.4 for von Karman’s constant, κ, experiments and theory
suggest a range of values gathered around a slightly greater value, see e.g. (Long et al., 1993; Orszag
and Patera, 1981). We here choose the representative value

κ = 0.41

Step 3: From grid-stirring experiments it is known that turbulence decays with distance according to
a power law, see e.g. a summary in (Umlauf et al., 2003). That is, the geometric length scale, l,
which is the turbulent length scale in the limit of neutral shear flow, has a linear variation

l = L(z0 − z) with 0.06 < L < 0.33 < κ

www.dmi.dk/dmi/sr12-03.pdf page 9 of 21



Danish Meteorological Institute
Scientific Report 12-03

while the turbulent kinetic energy behaves like

k = K(z0 − z)α with − 3 < α < −2

Besides the roughness length scale z0 there are three unknown constants in these expressions,
namely K, L and α. We can consider z0 and K as arbitrary constants at this point but we do need
explicitly to assign useful values to L and α. It is, however, important to note that L is not equal to
von Karman’s constant, κ, as authors commonly assumed in the literature (see e.g. Craig and
Banner, 1994; Axell and Liungman 2001; Meier 2001); using L equal to κ would simply yield a too
large length scale. We choose nice, rounded values to represent the above quoted ranges, and select

L = 0.25

α = −2.5

While the value of α is a rather crucial choice since it affects the value of other coefficients as we
shall see in Step 5 below, the value of L can be chosen more freely since L in our model will only
enter explicitly through the expression for the surface boundary condition for ω where it appears as a
factor to other constants of empirical origin (see the description of our boundary conditions later in
section 8) and deviations in L can be absorbed therein.

Step 4: The diffusivity parameters σk and σω are found from numerical experimentations. We
choose the values following Wilcox (1988) who claims

σk = σω = 2

to be a saddle point in closure-coefficient space. We have not found justification for modifying these
values of σk and σω. Actually, one of the advantages of the k-ω model is indeed that it does not
exhibit extreme sensitivity to variations of the values of these diffusivity parameters like the k-ε
model does, see e.g. (Umlauf et al., 2003).

Step 5: Having determined α, σk and σω in steps 3 and 4 above, we now consider the wave affected
surface layer where dissipation equals diffusion and we derive

c2ω =
σk
σω

(3− 4/α)2 − 1

24
= 0.84

Umlauf et al. (2003) also derived the relation between c2ω, α, σk and σω but they introduced a
sign-bug on α.

Our derived value for c2ω differs slightly from the values found in the literature; the value c2ω =
(3/40)/(9/100) ≈ 0.8333 was originally proposed by Wilcox (1988), and rounded to c2ω = 0.83 in
(Umlauf et al., 2003). Our value can, however, be further justified: In the case of decaying, isotropic
turbulence we find that the asymptotic solution for k in our model is

k ∼ t−1/c2ω = t−1.19

Experiments (Wilcox, 1988) suggest the asymptotic behaviour k ∼ t−1.2. We believe that our k-ω
model thus is sufficiently consistent with those experiments. Furthermore, we have hereby also
indirectly justified the chosen value of α, since a different choice of α would result in a different
value of c2ω and thereby a different (and possibly wrong) asymptotic solution.

Step 6: With κ, cµ0, σω and c2ω in place, we consider the stationary case in the logarithmic boundary
layer to derive

c1ω = c2ω −
1

σω

(
κ

cµ0

)2

= 0.53
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This value differs somewhat from values found in the literature due to discrepancies in the other four
constants, mainly through cµ0 squared, but it is consistent with the rest of our model. Originally,
Wilcox (1988) used c1ω = 5/9 ≈ 0.5556, while Umlauf et al. (2003) rounded that to c1ω = 0.56.

Step 7: The remaining coefficient to be determined is the buoyancy coefficient c3ω. While all the
former coefficients determined during steps 1-6 are constants, this last coefficient need be
dynamically adjusted.

During unstable stratification (convection) we use the value

c3ω = 0

Since application of the k-ω model for buoyancy affected geophysical flows is of a relatively recent
date there is no literature available that discusses the role of c3ω during unstable stratification, not
even, strangely enough, in the original paper (Umlauf et al., 2003). Our chosen value, c3ω = 0,
results from numerical experimentation by the present author. This value amounts to turning off the
buoyancy sink for turbulent frequency during unstable stratification. In this respect, it should be
mentioned that a straight-forward application of the differential relationship

dω
ω

=
dε
ε
− dk

k

in combination with the classical value of the controversial buoyancy coefficient for the k-ε model
during unstable stratification, c3ε = 1, see e.g. (Rodi, 1987), would confirm our result that c3ω = 0,
i.e. a value that would neglect effects of the unstable stratification in the scale determining equation.
It is likely that we in the future will find a more useful value somewhere in the range from 0 to 1, but
for now we find the value c3ω = 0 reasonably well justified.

To determine c3ω during neutral and stable stratification we consider the k-ω model equations during
full equilibrium flow

P +G = ε

c1ωP + c2ωG = c3ωε

which by elimination of ε from the first of these and of P and G by use of the definition of the flux
Richardson number

RF = −G
P

can be written as
c3ω = c2ω −

c2ω − c1ω
RF,ST

where RF,ST is the stationary flux Richardson number. Clearly, c3ω must be less than -0.4, else our
model will predict unphysical conditions with RF,ST > 0.25. To maintain physically sound
predictions we first choose representative values for RF,ST according to the actual regime of
turbulence, and then, use the above formula to obtain c3ω. In the regime of patchy turbulence, where
the shear production due to breaking internal waves PIW exceeds the shear production due to the
resolved mean flow PS , we set

RF,ST = 0.09 for PS < PIW

while the value is doubled for non-patchy turbulence

RF,ST = 0.18 for PS ≥ PIW
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These values for RF,ST are in close agreement with those used by Axell (2002). We are now able to
determine c3ω during neutral and stable stratification as

c3ω = −2.60 for PS < PIW

c3ω = −0.88 for PS ≥ PIW

This is a new approach to obtaining useful values for c3ω.

It should be noted, that Umlauf et al. (2003) occasionally obtain c3ω values which imply the
unphysical condition RF,ST > 0.25, in their investigations of two-equation turbulence models and
structure functions.

6. Parameterization of Breaking Internal Waves
Different approaches have been suggested for mixing below the mixed-layer in ocean circulation
models, ranging from using simple constant background diffusivities to more complex
parameterizations of internal waves, see e.g. (Canuto et al., 2002) for a summary. Here, we apply the
work of Axell (2002) and let the shear production due to breaking internal waves during stable
stratification have the following vertical distribution

PIW (z) =
F0N(z)

ρ0Nave

with F0 = 0.9 mW/m2

where Nave is the depth averaged buoyancy frequency. The justification of this can be found from
the numerical experiments performed by Axell (2002) who applies this production term to simulate
deep water mixing in the Baltic Sea.

7. Parameterization of Breaking Surface Waves
The wind drag is described in the usual way through

uF =
√
|τw| /ρ

τw = CDρair |W − u| (W − u)

where uF is the surface friction velocity and bold face letters indicate vector quantities, wind
velocityW , current velocity u, and surface wind stress τw. The wind-strength dependent drag
coefficient CD will not be described further here.

There is little known about the surface roughness length scale z0 as seen from the ocean. Some
models/authors apply a constant value of typically 10 cm or an approach à la Charnock

z0 ∝ HS = bS
u2
F

g

relating z0 to the significant wave height HS , i.e. relating the surface roughness length scale as seen
from the atmosphere to the friction velocity squared through a free parameter bS . However, we find
the quadratic dependency too strong for high wind speeds and too mild for low wind speeds
(remember, we must use the same z0 in the momentum equations). Numerical experimentations
suggest a linear relation to uF in absence of surface cooling and we are thus lead to choose

z0 =
1

2

√
ρ(q3)1/3
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q3 = u3
F + 0.54w3

H

The combined velocity scale q is thus expressed in terms of uF which is generated mechanically by
the wind, and of wH which is thermally produced by surface cooling. The convective velocity scale
wH can physically be thought of as a sinking velocity of a parcel of fluid undergoing unstable
surface forcing through a negative surface buoyancy flux B, i.e.

wH = (−BH)1/3

where H is the mixed-layer depth, see later in section 9. The weight factor 0.54 is from (Fischer et
al., 1979). In the absence of surface buoyancy (i.e. when B = 0) we see that z0 varies approximately
linearly with the wind speed in our approach, which is different from what we see in most other
models where z0 is chosen simply as a constant, or sometimes has the quadratic Charnock-like
variation.

8. Boundary Conditions
Some authors have suggested

KM

σk

∂k

∂z
= mFu

3
F −Bκz0 at z = 0

where the first term on the right hand side models the injection of turbulent kinetic energy due to
surface wave breaking, and mF=100 is an empirical constant suggested by Craig and Banner (1994)
and later commonly used by modellers, see e.g. (Burchard, 2001; Meier, 2001; Umlauf et al., 2003).
In the last term on the right hand side B is the negative surface buoyancy flux and κz0 is taken as a
measure of the surface roughness (Meier, 2001; Axell and Liungman, 2001).

Indeed, we agree with above mentioned authors that Neumann boundary conditions are superior to
Dirichlet boundary conditions for this purpose. However, we do not find it justified that κ should
play any role here since we are not likely dealing with a logarithmic boundary layer, see also the
discussion in (Umlauf et al., 2003). We find it much more plausible to apply the combined velocity
scale q which was defined in the previous section. Thus, our new surface boundary condition for k
simply reads

KM

σk

∂k

∂z
= mF q

3 at z = 0

We then derive the surface boundary conditions for ω analytically. From the power law of decay of k
from the surface and the linear increase in length scale l, as we also used in step 3 of section 5, we
differentiate with respect to z and apply the above-shown boundary condition for k at z=0. After
some algebra our new surface boundary condition for ω then becomes

KM

σω

∂ω

∂z
=

1− 1
2
α

σωLz0

(
σk

−αLcµ0

mF q
3

)2/3

at z = 0

The boundary conditions at the bottom are obtained by assuming, between the sea bottom and the
lower-most grid point, a logarithmic boundary layer and a local balance between production and
dissipation of turbulent kinetic energy, in the absence of buoyancy, and are commonly expressed in
terms of k and ε as

k =

(
uFb
cµ0

)2

ε =
u3
Fb

κz0b
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where z0b is the bottom roughness length scale which we assign the typical value of 10 cm, and uFb
is the friction velocity obtained from the bottom-most velocity components as

uF =
√
r (u2 + v2)

In the above, r is a model setup specific bottom roughness parameter with a typical value of around
0.002. This formulation is unfortunately sensitive to the vertical grid resolution and there is no
consistency between the applied turbulence model and the bottom friction implemented in the
momentum equations, which in some situations lead to some spurious model effects. A more
consistent formualtion, in line with the above-shown approach for the surface boundary conditions,
is under considerations/development.

9. Extended Buoyancy Production During
Convection
The only term we still need to find is GTOM which enters the buoyancy production, see section 4.
We apply the usual notation with a prime denoting fluctuations, and angled brackets mean averaging
over the grid cell and the time step of the circulation model. The buoyancy production may then be
expressed as a buoyancy flux which again is described in terms of a heat flux and a salinity flux

G = 〈b′w′〉 = g (αH〈θ′w′〉 − βS〈S ′w′〉)

The two flux terms are treated separately. After some manipulations of expressions derived in
(D’Alessio et al., 1998), we arrive at

〈θ′w′〉 = −KH
∂θ

∂z
+ γ
〈θ′w′〉0
H

τ
[
0.4wH +

αHg

2

c2
c3
θHτ

]
for the heat flux. We see that on the right hand side, besides the first term which is the usual
down-gradient term resulting from treating second order moments, we obtain non-local terms as a
result of including third order moments. In these new terms, H is the mixed-layer depth and

wH = (〈b′w′〉0H)1/3

is the convective velocity scale established during surface cooling with surface buoyancy flux given
by

〈b′w′〉0 = gαH〈θ′w′〉0 = −gαH
Q

ρCp
= −B

where Q represents the net non-solar heat flux (that is, the sum of net long wave radiation, sensible,
and latent heat fluxes) received at the sea surface and is negative for cooling. In the above, the
kinematic surface heat flux is given by

〈θ′w′〉0 = − Q

ρCp

The convective temperature scale θH is expressed in terms of the kinematic surface heat flux and the
convective velocity scale wH

θH =
〈θ′w′〉0
wH

Entrainment parameter, temperature variance dissipation constant and time scale constant are given
as:

γ = 1.2 , c2 = 7.8 , c3 = 1.56
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Now we have everything we need to implement the increased buoyancy production due to
convection, except that we must know the mixed-layer depth H . This is the penalty we have to pay
for the non-local terms, and it can be argued that this is a severe drawback of the model, since
estimating H is not always that straight-forward and different authors prefer different methods. Here
we determine H as the depth were the buoyancy frequency becomes zero (for B<0 of course). This
choice has been justified sufficiently well through numerical experiments.

Possibly, at a later stage we may extend our model with yet another feature by introducing non-local
terms to the salinity flux in a similar way by including a net precipitation surface flux. The
expressions are ready:

〈S ′w′〉 = −KS
∂S

∂z
+ 0.4γwS

〈S ′w′〉0
H

τ

where again the first term is the usual local down-gradient term, and in the last term

wS = (〈b′w′〉0H)1/3

〈b′w′〉0 = −gβS〈S ′w′〉0 = gβSS0(E − P )

〈S ′w′〉0 = −S0(E − P )

It is left as an exercise for the future when/if applications should require such non-local terms;
presently they do not, but if we should find it beneficial the description is developed, ready to plug
in. Including the salinity flux may also be useful in cases of brine rejection under freezing sea water;
the model will then be as described above with E − P replaced by the brine rejection rate.

10. Thermal Diffusivity
To complete our mixing scheme we will include heat conduction through the water column as a
diffusion process. The thermal diffusivity can be easily calculated from the specific heat capacity
and thermal conductivity of sea water. Values for thermal conductivity of sea water is in the range
from 0.561 W/m/K at 272 K to 0.673 W/m/K at 353 K, so without much argumentation we add the
thermal diffusivity coefficient

Dtherm =
0.58W/m/K

ρCp

to the vertical diffusivity for temperature KH . Here Cp is specific heat of sea water. Please note, the
thermal diffusivity is very small in magnitude (∼10-7 m2/s) and thus just amounts to a small
background diffusion so that the precise value is not important for our applications.

11. Penetrating Insolation
The model equation for conservation of temperature is

∂θ

∂t
+ A(θ) = D(θ) +

1

ρCp

∂I

∂z

where A is the advection operator, D is the diffusion operator, and I is the intensity of the insolation
down through the water column. The last term on the right hand side of this equation represents the
non-turbulent source flux due to solar radiation. Recall, the turbulent heat flux has been taken into
account through the boundary conditions for k and for ω as well as through the TOM
parameterization. We parameterize I following (Meier, 2001) as

I(z) = QSW

[
RSW ez/ζ1 + (1−RSW )ez/ζ2

]
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where QSW is the short wave energy flux at the sea surface. The above formulation is suitable for the
Baltic Sea with RSW=0.64 and extinction lengths ζ1=1.78 m and ζ2=3.26 m.

It has been indicated through testing that the above-mentioned parameterization of I might actually
not be very well suited for the North Sea - Baltic Sea region, so another formulation is being
considered but until then we stick to Meier’s (2001) formulation.

12. Discretization And Solution Method
Most of the model equations presented here are algebraic expressions and it is a more or less trivial
task to implement these into the model code. We do, however, need to solve the transport equations
for the turbulent kinetic energy and for the turbulent frequency. The equations and related quantities
are discretized on the staggered grid with e.g. k and ω located at the grid points and with the
diffusivities KM , KH , and KS located at the top faces of the grid cells.

We use a semi-implicit scheme, where the diffusion, negative production and dissipation terms are
treated fully implicitly while positive production terms are treated explicitly. The resulting system of
equations can be solved with a standard tri-diagonal solver.

13. Concluding Remarks
The mixing scheme described here is implemented in the HBM ocean circulation model. The latest
tagged release of HBM code runs operationally, using different setups, at DMI as the storm surge
model and at the four MyOcean1 Baltic Model Forecasting Centre production units BSH, DMI,
SMHI, and FMI (Finnish Meteorological Institute) as the MyOcean Baltic Sea Version 2. Improving
the storm surge forecasts as well as other operational model activities and project hindcasts (e.g.
climate modelling) is a continuous mission of the HBM development.

As indicated in respective chapters it is reasonable to expect improvements and to include more
phenomena. It is rather straight-forward to plug in extensions and improvement into the presented
framework. One of the on-going tasks is to improve the bottom friction description, another is to test
other formulations of the insolation. In a more long term perspctive it will be interesting to include
wave effects from a wave model coupled to the circulation model.

1MyOcean is the main European project dedicated to the implementation of the GMES Marine Service for ocean
monitoring and forecasting, http://www.myocean.eu/
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Appendix 1: Constants In The Structure
Functions

! Constants for Part II structure functions (Canuto et al, 2002):
real(8), parameter :: pi1 = 0.08372_8, pi4 = pi1, &

pi2 = 1.0_8/3.0_8, pi3 = 0.72_8, &
pi5 = pi3, &
p1 = 0.832_8, p2 = 0.545_8, &
p3 = 0.2093_8, p4 = 0.0323_8, &
p5 = 0.0538_8, p6 = 0.0698_8, &
p7 = 1.6666_8, p8 = p1, &
p9 = 0.2511_8, p10 = p5, &
p11 = 0.1163_8, &
a1 = 0.3022_8, a2 = 0.2986_8, &
a3 = 0.064780_8, a4 =-3.99459_8, &
a5 =-1.8493_8, &
b1 =-0.0625_8, b2 =-0.1163_8, &
b3 = 0.5702_8, b4 =-0.9689_8, &
b5 =-2.0930_8, b6 =-0.0538_8, &
b7 =-0.13488_8, &
d1 = 0.03201_8, d2 = 0.0318_8, &
d3 = 0.00686_8, d4 =-0.0289_8, &
d5 =-0.04272_8, d6 =-0.019780_8, &
d7 =-0.0028750_8, d8 =-0.41319_8, &
d9 =-0.1912_8, d10 = 1.1773_8, &
d11 = 1.1612_8, d12 = 0.2523_8, &
d13 = 1.1857_8, d14 =-10.7721_8, &
d15 =-4.9871_8

Appendix 2: Critical Value Of The Gradient
Richardson Number

subroutine CheckRgCrit( rT, rS, Rg, CRg )
!---------------------------------------------------------------------------
! check if critical Rg is exceeded.
!---------------------------------------------------------------------------
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!- directives --------------------------------------------------------------
implicit none

!- arguments ---------------------------------------------------------------
real(8), intent(in) :: rT, rS, Rg
logical, intent(out) :: CRg

!- local vars --------------------------------------------------------------
real(8) :: f, f1, f2, rT2, rTS, rS2
real(8), parameter :: rsmall = 0.00000001_8 ! rather small value
real(8), parameter :: A0 = -6.25_8*pi2*pi3, B0 = 6.25_8*pi3*pi3
real(8), parameter :: AB = A0*B0

!- check for obvious Rg value ----------------------------------------------
if (Rg < one) then

CRg = .false.

else

!- treat small rT:
if (abs(rT) < rsmall) then

f1 = two*a3*B0 + five*pi1*b3*b6 - six*d3*B0
f2 = (six*d7*B0 - five*pi1*b4*b6)*B0

!- treat larger rT:
elseif (abs(rS) < rsmall) then

f1 = two*a1*A0 - five*pi4*b3*b2 - six*d1*A0
f2 = (six*d4*A0 + five*pi4*b2*b5)*A0

!- super-critical density ratio:
elseif (rS/rT > Rrho_crit) then

f1 = ten ! dummy values to make f larger than Rg
f2 = one

!- general case:
else

rT2 = rT**2
rTS = rT*rS
rS2 = rS**2
f1 = (two*a1*A0-five*pi4*b3*b2-six*d1*A0)*A0*rT2 &

+ (two*a2*AB-five*pi4*b3*b1*B0+five*pi1*b3*b7*A0-six*d2*AB)*rTS &
+ (two*a3*B0+five*pi1*b3*b6-six*d3*B0)*B0*rS2

f2 = (six*d4*A0+five*pi4*b2*b5)*A0*A0*rT2*rT &
+ (six*d5*AB+five*pi4*(b1*b5+b2*b4)*B0-five*pi1*b5*b7*A0)*A0*rTS*rT &
+ (six*d6*AB-five*pi1*(b6*b5+b7*b4)*A0+five*pi4*b1*b4*B0)*B0*rTS*rS &
+ (six*d7*B0-five*pi1*b4*b6)*B0*B0*rS2*rS

endif

!- compare Rg to f:
if (f2 >= zero .and. f2 < tinyv) then

f2 = tinyv
elseif (f2 < zero .and. f2 > -tinyv) then

f2 = -tinyv
endif
f = ccrit*f1/f2
if (f > one) then

CRg = (Rg >= f)
else
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CRg = .false.
endif

endif

end subroutine CheckRgCrit

Appendix 3: Computation Of The Structure
Functions

subroutine PartIIDiff( Km, Kh, Ks, tke, diss, rT, rS, Sh2, kb, &
eddydif_max, eddyvis_max, Piw)

!---------------------------------------------------------------------------
! Calculates the stability functions
! and the resulting eddy viscosity and eddy diffusivities.
!
! Inputs: tke: Turbulent kinetic energy.
! diss: Dissipation.
! rT: Temperature gradient, g*alphaT*dT/dz
! rS: Salinity gradient, g*alphaS*dS/dz
! Sh2: Mean shear.
! kb: Number of active cells.
! Piw: Shear production due to internal waves.
!
! Outputs: Km: Momentum diffusivity.
! Kh: Heat diffusivity.
! Ks: Salt diffusivity.
!---------------------------------------------------------------------------

!- directives --------------------------------------------------------------
implicit none

!- arguments ---------------------------------------------------------------
integer(4), intent(in) :: kb
real(8), intent(inout) :: Km(1:), Kh(1:), Ks(1:)
real(8), intent(in) :: tke(1:), diss(1:), rT(1:), rS(1:), Sh2(1:)
real(8), intent(in) :: Piw(2:)
real(8), intent(in) :: eddydif_max, eddyvis_max

!- locals vars -------------------------------------------------------------
real(8) :: t2, ss, D, Nm, Nh, Ns, fc
real(8) :: fm, fs, fh, Rg_t, Sh2_t, N2
integer(4) :: k
logical :: CheckRg
real(8) :: PiwKm(2:kb)
real(8), parameter :: y0 = 0.16_8, D0 = 24.0_8
real(8), parameter :: nn1 = 8.0_8, nn2 = 12.0_8, nn3 = 75.0_8
real(8), parameter :: ff1 = 4.0_8, ff2 = 60.0_8, ff3 = 15.0_8

!- skip one-layers ---------------------------------------------------------
if (kb < 2) return

!- some initial settings ---------------------------------------------------
PiwKm(2:kb) = Piw(2:kb)/Km(2:kb)

!- find vertical diffusivities ---------------------------------------------
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! k = 1 (dummy values, not used anywhere) .................................

! Do the rest of the water column k=2,kb ..................................
do k=2,kb

!- dynamical turbulent time scale squared, t2
t2 = (tke(k-1)/diss(k-1) + tke(k)/diss(k))**2

!- total shear and Rg:
N2 = rT(k) - rS(k)
Sh2_t = Sh2(k) + PiwKm(k)
Rg_t = min( N2/max(Sh2_t,tinyv), Rg_max )

!- no mixing if critical Rg is exceeded:
call CheckRgCrit(rT(k), rS(k), Rg_t, CheckRg)
if (CheckRg) then

Km(k) = laminarvis
Kh(k) = eddydif_min
Ks(k) = eddydif_min

!- mixing if critical Rg is not exceeded:
else

fh = -pi2*pi3*t2*rT(k)
fs = pi3*pi3*t2*rS(k)
fm = y0*t2*Sh2_t

D = D0 &
+ ((d1*fh + d2*fs + d8)*fh + (d3*fs + d9)*fs + d13)*fm &
+ ((d4*fh + d5*fs + d10)*fh + (d6*fs + d11)*fs + d14)*fh &
+ ((d7*fs + d12)*fs + d15)*fs

if (D >= zero .and. D < tinyv) then
D = tinyv

elseif (D < zero .and. D > -tinyv) then
D = -tinyv

endif

!- momentum:
Nm = nn1*(nn2 + (a1*fh + a2*fs + a4)*fh + (a3*fs + a5)*fs)/nn3

!- heat:
fc = ff1*(ff2 + b3*fm + b4*fs +b5*fh)/ff3
Nh = pi4*(one + b1*fs + b2*fh)*fc

!- salinity:
Ns = pi1*(one + b6*fs + b7*fh)*fc

!- eddy diffusivity normalised w/ structure function=1, ss:
ss = tke(k-1)**2/diss(k-1) + tke(k)**2/diss(k)

!- vertical diffusivities:
Km(k) = min( max(ss*Nm/D, laminarvis), eddyvis_max )
Kh(k) = min( max(ss*Nh/D, eddydif_min), eddydif_max )
Ks(k) = min( max(ss*Ns/D, eddydif_min), eddydif_max )

endif

enddo

end subroutine PartIIDiff
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