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Abstract 
 
In this study, three Danish sites having the longest (1990-2004) time-series of ozone measurements 
were analysed on inter-annual, monthly and diurnal cycle variability as well as elevated and low-
ered ozone concentration events were identified. The atmospheric trajectory (HYSPLIT) and 
dispersion (HIRLAM+CAMx) models were employed to study dominating atmospheric transport 
patterns associated with elevated events and to evaluate spatio-temporal variability of ozone spe-
cific episode and typical seasonal patterns for Denmark. 
 
It was found that generally inter-annual variability has a positive trend, and events with low ozone 
concentration (≤10 μg/m3) continued to diminish. On a monthly scale, the highest and lowest mean 
concentrations are observed in May and November-December, respectively. The elevated concen-
trations (≥120 μg/m3) are observed during March-September. On a diurnal cycle, it is observed 
mostly during 13-16 of local time, and more frequent (ten-fold) compared with nighttime – early 
morning hours.  
 
For ozone elevated events, several sectors (or pathways of atmospheric transport) were identified 
depending on the sites’ positions, showing the largest (39%) number of such events  associated with 
the north-western sector, and lowest (13% each) - south-western and northern sectors. For each site, 
less than 60 events showed very high concentrations (≥180 µg/m3). Among 12 episodes, one long-
est elevated episode (19-21 Jun 2000) simultaneously registered at all sites and characterized by 
dominating transport from the south-southwestern sector, low wind speed, clear-sky, and multiple 
inversions was studied using modelling tools.  
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1. Introduction 
 
Ozone (O3) is one of the pollutants of the major concern for population and environment, and its 
high levels are an indicator of high pollution representing significant risks to humans, flora, fauna, 
(Schmalwiesera et al., 2003) as well as economic damage (Vlachokostasa et al., 2010). For several 
decades ozone has been operationally forecasted by many countries. It has been analyzed to get 
insight on local and regional trends, daily, seasonal and inter-annual variability, spatial and tempo-
ral distribution. Ozone is a natural component of the troposphere, produced by photochemical 
reactions of nitrogen oxides (NOx = NO + NO2) and volatile organic compounds (VOCs) emitted 
from local and remote anthropogenic and biogenic sources. Once it has been produced it could exist 
in the troposphere for several days. Close to anthropogenic sources such as industrial or highly 
urbanized areas, emitted NO may react to form NO2, and hence, to reduce ozone locally. Therefore, 
generally maximum concentration and exposure to ozone pollution will occur downwind of the 
sources (MacKenziea et al., 1995), e.g. in suburban and rural areas. However, for some regions with 
specific topography and under certain synoptical conditions air masses can re-circulate and stay 
within a region for longer period of several days. 
 
Francisa et al. (2011) showed that the major mechanisms responsible for elevated ozone during 
heat-wave episode included horizontal transport from continental Europe with existence of a long-
lived anticyclone, convergence of westerly and easterly near-surface winds, or downward entrain-
ment of ozone-rich air from residual layers in the free troposphere. Ozone production highly de-
pends on meteorological conditions including sunlight, cloudiness, temperature, and wind charac-
teristics (Niatthijsen et al., 1997). Ozone measured at specific site may be produced many hundred 
kilometres away. It can be transported from elsewhere in the world because intercontinental ozone 
transport is an efficient process (Derwenta et al., 2004). Even application of various policy options 
for ozone precursors may still remain a significant potential for photochemical ozone formation and 
long-range transport (Derwent, 1990). Episodes of high ozone concentrations are the most interest; 
and these are based on a sum of existing regional background ozone levels, stratospheric ozone 
injections, and contribution of ozone produced in troposphere from naturally occurring and man-
made precursors. 
 
In Denmark, automatic ozone measurements are performed by the Danish National Environment 
Research Institute (NERI) in selected urban and rural areas. Such data are publically available at the 
European Monitoring and Evaluation Programme (EMEP; http://www.emep.int) website. In general, 
instruments record the regional background level for Denmark, but also, on occasion, pollution 
transported from sources outside of the country. 
 
In this study, the long-term (1990-2004) time-series of ozone measurements at 3 sites have been 
analysed on inter-annual, monthly and diurnal cycle variability as well as cases with elevated and 
lowered concentrations were identified. Atmospheric trajectory and dispersion modelling tools were 
applied to study dominating atmospheric transport patterns associated with elevated ozone events 
and spatial and temporal variability of concentration patterns for selected episodes and on a sea-
sonal scale for Denmark (Mahura et al., 2009; 2010ab). 

2. Methodology 

2.1. Ozone Measurements 
 
The original time-series of ozone measurements at three selected Danish sites - DK31 (56.28°N, 
08.43°E; Ulborg), DK32 (55.97°N, 12.33°E; Frederiksborg), and DK41 (55.69°N, 12.13°E; Lille 
Valby) covered a period from 1990 to 2004. Two of these sites (DK41 and DK32) are located on 
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the Zealand island and one site (DK31) is placed on the Jutland Peninsula (Figure 1a) of Denmark. 
After pre-screening and removing all missing and below detection limit values, the total number of 
available measurements for analysis had been reduced (Table 1). Each record included information 
on a value of concentration and corresponding temporal parameters (year, month, day, hour of 
measurement).  

 

  
(a)                                                                             (b) 

Figure 1: (a) Geographical positions (extracted from Google-Earth) of Danish sites for ozone measurements 
(A: DK31, DK32, and DK41), synoptical meteorological stations (W: WMO-06160 – Vaerlose, WMO-06168 

– Nakkehoved Fyr, WMO-06058 –  Hvide Sande, WMO-06052 –  Thyboron) and sounding stations (S: 
Jaegersborg, Karup); and (b) Boundaries of domains for atmospheric (NWP_G45) and chemical transport 

(ACT-CAMx) modelling. 
 

Table 1: Summary statistics on a number of the cases (N) with ozone concentration levels (above 120, 150, 
and 180, and below 10 μg/m3) for three Danish measurement sites /H – highest, L – lowest/. 

 

Measurement Site 
Parameter 

DK-31 DK-41 DK-32  

Original # measurements 131495 122735 105192 
Revised # measurements 115690 (100%) 115447 (100%) 97939 (100%) 
N (O3 > 120 μg/m3) 1745 (1.5%) 1079 (0.9%) 811 (0.8%) 

H (N – year) 221 – 1992 212 – 1992 199 – 1992
L (N – year) 41 – 1998 10 – 2001 22 – 1991

N (O3 > 150 μg/m3) 206 161  140 
H (N – year) 41 – 2000 45 – 1992 38 – 1992
L (N – year) 1 – 1998 1 – 1996/1998 1 – 1999

N (O3 > 180 μg/m3) 36 42 31 
H (N – year) 15 – 2000 15 – 1992 11 – 1992
L (N – year) 1 – 2001 2 – 1997/1999 2 – 1994

N (O3 < 10 μg/m3) 2990 (2.6%) 8732 (7.6%) 8464 (8.6%) 
H (N – year) 370 – 1997 994 – 1997 980 – 1990
L (N – year) 55 – 2003 399 – 2001 366 – 2001

Abs Max O3, μg/m3 221 (1990) 213 (1992) 213 (1992) 
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General statistics from analysis of the revised time-series showing a number of the cases with 
different elevated (i.e. above 120, 150, and 180 μg/m3) and lowered ozone concentrations (i.e. 
below 10 μg/m3) as well as years with highest and lowest number of such cases in selected years for 
the three sites is summarized in Table 1. As seen, during the period studied the absolute maximum 
value of concentration was above 200 μg/m3 for all 3 sites. The elevated ozone levels were regis-
tered only in about 1.5% and less than 1% of the cases for the DK31 and DK41, DK32 sites, respec-
tively. Note that ozone levels above 120 μg/m3  were registered practically in all years analyzed, but 
very high levels (above 180 μg/m3) were observed only in 5 years from all 15 years considered. 
Note that observed peaks in ozone concentration are dependent on regional background levels of 
ozone, specific rate of photochemical production during a day, and contribution of other chemical 
species (such as nitric oxide and VOCs) to ozone related chemical reactions. In addition, both local 
and remote sources and on occasion, stratospheric ozone injections could play an important role. 
The lowered ozone levels were observed more frequently (up to 8.6%), and a number of such cases 
was larger for sites of the Zealand compared with Jutland regions. 
 

2.2. HYSPLIT Atmospheric Trajectory Modelling 
 
The backward trajectory modelling is a widely used tool for evaluation of possible atmospheric 
transport to geographical locations where short- or long-term measurements of chemical species are 
conducted. The tracking of air parcels spatial positions in the atmosphere during such transport can 
allow identifying potential paths and regions from where pollution can be transported and associ-
ated. The accuracy of the trajectories had been evaluated by Stohl (1998) and it is typically of the 
order of 20% of the travelling distance, although in some cases it can be larger. 
 

In our study, the National Oceanic and Atmospheric Administration (NOAA) on-line transport and 
dispersion HYSPLIT 4.5 model available in an interactive mode 
(http://www.arl.noaa.gov/ready/open/hysplit4.html) was used. This model called the Hybrid Single-
Particle Lagrangian Integrated Trajectory model (Draxler & Rolph, 2003; Rolph, 2003) performs 
computing of both forward and backward types of trajectories using several methods. To drive 
trajectory simulations the gridded meteorological dataset (http://dss.ucar.edu/pub/reanalysis) – 
NCEP/NCAR Global Reanalysis 1948-Present – was used. The temporal coverage is 4 times per 
day (00, 06, 12, 18 UTCs), including daily and monthly values from 1 Jan 1948 to present. Spatial 
coverage includes all globe. There are 17 pressure level and 28 sigma levels. Detailed description is 
given by Kalnay et al. (1996). 
 

Each computed trajectory was associated with the corresponding elevated ozone measurement at 
one of the three sites. For simplicity, only one trajectory arriving at the measurement sites at the 
ground level for term with the highest value of concentration was computed backward in time up to 
120 hours (5 days) using vertical motion calculation method. This duration was selected because of 
the residence time of ozone in the atmosphere which is leading to a characteristic scale of its atmos-
pheric transport of 1000 km. A set of meteorological data was also extracted along each trajectory 
at 6 hour intervals. It included the terrain height, potential temperature, air temperature, precipita-
tion, relative humidity, and mixing layer height. Because there is a difference of 1 hour between the 
universal coordinated time (UTC) and Danish LST, the trajectories were computed at corrected 
times in order to fit the corresponding measurements done at local times. Then all trajectories were 
grouped depending on pathway of atmospheric transport and area from where trajectories have 
arrived. 
 

In addition it should be noted that other on-line available trajectory modeling systems can be also 
used. For example, the FLEXTRA (Stohl et. al., 1995; Stohl and Seibert, 1998) - Air Mass Trajec-
tories (NILU; http://tarantula.nilu.no/trajectories/) developed by the Norwegian Institute for Air 
Research (NILU, Oslo) in cooperation with the Institute of Meteorology and Geophysics (Vienna, 
Austria). This model uses meteorological data provided from the European Centre for Medium 
Range Weather Forecast (ECMWF). 
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2.3. Meteorological and Chemical Transport Modelling 

2.3.1. HIRLAM Meteorological Modelling 
 
The numerical weather prediction (NWP) models (with their 3D meteorological output) are used as 
drivers for the Atmospheric Chemistry Transport (ACT) models. The selection of meteorological 
driver as well as boundaries for domain of interest will depend of specific application. Hence, 
different meteorological operational or re-analyzed archived datasets from NWP can be used. 
Output from operational and climatological models can be used in different applications.  
 
DMI runs several nested versions of the HIRLAM (http://hirlam.org) model with horizontal resolu-
tion ranging from 15 to 3 km and forecast length up to 72 hours. Moreover, there is urbanized 
version of HIRLAM model (resolution 1.5 km) run in a research mode for environmental applica-
tions. The operational DMI forecasting modelling system (Yang et al., 2005; Unden et al., 2002) 
includes the pre-processing, climate file generation, data assimilation, initialization, forecasting, 
post-processing, and verification. It includes also a digital filtering initialization, semi-Lagrangian 
advection scheme, and a set of physical parameterizations such as Savijaervi radiation (Savijärvi, 
1990), STRACO condensation (Unden et al., 2002), CBR turbulence scheme (Lenderink and 
Holtslag, 2004), and ISBA land surface scheme (Noilhan and Planton, 1989). The lateral boundary 
conditions are received every 6 hour from European Center for Medium-Range Weather Forecasts 
(ECMWF). The system is running on the DMI CRAY-XT5 supercomputer and produced output is 
archived on a mass storage system. In our study, the DMI-HIRLAM-G45 model (45 x 45 km, 40 
vertical levels) was run to produce 3D meteorological fields (see domain in Figure 1b). 

2.3.2. CAMx Chemical Transport Modelling 
 
The chemical transport modelling is based originally on the CAMx (Comprehensive Air quality 
Model with extensions) model (http://www.camx.com) with built an interface between NWP (DMI-
HIRLAM-G45) and ACT (modified CAMx, v 4.4) models. Through interface necessary informa-
tion was extracted from the NWP model output, and then it served as input for the ACT model.  The 
Carbon Bond IV (CB-IV) Mechanism (Gery et al., 1989) with is used. This mechanism is used 
together with the Tropospheric Ultraviolet and Visible radiation model (TUV) (Madronich, 2002) 
to calculate photolysis rate coefficients. The modelling system is used to simulate aerosols and gas-
phase compounds from different scales of ground-level gas-phase air pollutants. It can be used for 
air quality forecasts and modelling of historical data. 
 
The horizontal and vertical resolutions of the ACT model depend on a resolution of the used mete-
orological and emission data. The selected ACT-CAMx domain (Figure 1b) includes the European 
countries with Denmark in the center. It has a horizontal resolution of 0.2º×0.2º (appx. 20 x 20 km) 
and 25 vertical HIRLAM levels covering the lowest 3 km of the troposphere. The amount of chemi-
cal compounds, which is transported from the free troposphere into the atmospheric boundary layer, 
is determined by the meteorological information and concentration of chemical compounds in the 
free tropospheric. These concentrations depend on the longitude, latitude, land/ sea mask and month 
of the year. The TNO MEGAPOLI emission (Kuenen et al., 2010) inventory (0.06º x 0.12º resolu-
tion) had been interpolated into grids of the ACT model taking into account vertical distribution. In 
order to reach a chemical equilibrium, a 2 day spin up has been applied, and the forecast length 
extended up to 24 hours. 
 
Moreover, in order to study the chemical transport and links with dominating meteorological 
conditions, it is necessary to analyze in more details the available surface maps, vertical sounding 
diagrams, and observations at synoptical meteorological stations (Figure 1a) located near the ozone 
measurement sites. 
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3. Results and Discussions 

3.1. Observed Inter-Annual, Monthly and Diurnal Variability 
 

Analysis of inter-annual variability (during the period studied 1990-2004) of ozone time-series 
showed generally a positive trend of ozone increase (Figure 2a). The number of cases with lowered 
ozone concentration levels (i.e. below 10 μg/m3, see Figure 2b) continued to decease throughout the 
period of measurements, and it occurs more rapidly for sites located on the Zealand Island (DK32 
and DK41) compared with DK-31 site on the Jutland Peninsula. In general, for a period of more 
than 10 years, the number of such cases decreased almost twice. 
 

Month-to-month variability of the mean ozone concentration show clear differences between the 
sites (Figure 2c). As seen, throughout the year, the higher mean ozone levels are observed for the 
DK31 site, compared with others; and the lower – for DK32 site. The highest mean concentrations 
are characteristic in May for all sites, and for DK31 site it is the largest of about 80 μg/m3. The 
mean concentrations are the lowest in November-December, decreasing to about 40 and 30 μg/m3 
for the DK31 and DK32, DK41 sites, respectively. The elevated concentrations (i.e. more than 120 
μg/m3) are observed during March-September (Figure 2d).  Throughout the mentioned period the 
number of such cases is larger for the DK31 site compared with two others. The maximum number 
of such cases is in August for DK31 and DK41 sites, compared with DK32 - in June. 
 

   
(a)                                                        (b)                                                        

   
 (c)                                                          (d) 
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(e)                                                        (f)                                                       

    
 (g)                                                          (h) 

 
Figure 2 : Ozone inter-annual (a,b), monthly (c,d) and diurnal cycle (e,f,g,h) variability for the mean 

concentration in μg/m3 (a,c,e), absolute maximum concentration (f), number of cases with concentrations 
below 10 μg/m3 (b, h) and above 120 μg/m3 (d, g) for three Danish sites DK31, DK32, and DK41. 

 
On a diurnal cycle, all sites showed similar shape of variability with a maximum occurred at about 
midday (14 hour of the local time) and a minimum – in the morning (at 06 hour) (Figure 3e). A 
shape of such diurnal variability is due to high reactivity of ozone. Concentration at the surface 
level is decreased rapidly in evening hours (although it could remain elevated above the mixing 
layer and then contribute to elevated ozone levels in the following days). In time-series, the absolute 
ozone maxima (considering levels of above 120 μg/m3) are observed mostly during 13-16 hours, 
and the number of such cases is ten-fold larger compared with nighttime – early morning hours 
(Figure 2fg). The number of the cases with the lowest ozone concentration (less than 10 μg/m3) 
varied from about 100 (DK31) to 200 (DK32) cases during 11-15 hours, and it was up to 3 times 
higher during late evening – nighttime hours for the Zealand sites, but almost non-variable for the 
Jutland site (Figure 2h). 
 
Note that on figures for the mean ozone concentration (i.e. Figure 2a,c,e) the similar pattern of 
higher ozone concentrations on inter-annual, monthly, and diurnal cycle scales exists for the DK31 
site compared with two other locations. 
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3.2. Atmospheric Transport Sectors and Pathways 
 
Distribution of trajectories (number and percentage) arrived at three measurement sites during 
1990-2004 by sectors and pathways, linked with atmospheric transport, is summarized in Table 2. 
As seen, the clustering of trajectories revealed 7 possible atmospheric transport pathways divided 
into sectors (i.e. from where trajectories have arrived). In total, 207, 139, and 160 trajectories were 
associated with elevated ozone events observed at the DK31, DK32, and DK42 measurement sites, 
respectively. 
 
The largest number of trajectories connected with such events was associated with the North-West 
sector (in total 155 trajectories). Trajectories from this sector are all originated over the Atlantic 
Ocean aquatoria. But there are several paths of such transport through: 1) UK, Benelux countries, 
and Germany; 2) UK and North Sea (only for DK31 site; 9 trajectories), 3) Norway and North Sea; 
and 4) Benelux countries and Germany. The first path dominates among others (more than 20 
trajectories per each site). The smallest number of trajectories was associated with the South-West 
sector (where trajectories also originated over Atlantic Ocean, but additionally passed over France  
and Benelux countries before reaching Denmark) for DK31 and DK32 sites, and with the North 
sector – for DK41 site.  
 
Trajectories, arriving at the three measurement sites from the North sector, are all originated over 
Scandinavian countries (Norway and Sweden). There are two possible comparable paths of such 
transport through: 1) Baltic Sea and Poland/Germany (28 trajectories), and 2) Baltic Sea (26 trajec-
tories). Note, that the first path is more characteristic for the DK31 site (18 trajectories), but the 
second path is almost equally (about 8 trajectories per site) observed at all three sites. 
 
Atmospheric transport from the South sector (through Germany/ Benelux countries) is the second 
largest (accounting for 81 cases). Moreover, some trajectories did not show clear pathway of at-
mospheric transport (i.e. had complex structure and circulated over Denmark) and these were 
assigned to “no clear identification” category. In total, this category includes 34 trajectories (out of 
506).  
 

Table 2: Summary (number and percentage) of trajectories arrived at 3 ozone measurement sites during 
1990-2004 by sectors and pathways of atmospheric transport. 

 
% of trajectories by site Sector N traj  

by sector 
Pathway 

DK31 DK32 DK41 
E 71 BST (RU)  Sea  PL  (GE) 12.1 11.5 18.6 

SW 43 AO  FR  Blux / GE  5.8 7.9 12.5 
S 81 GE / Blux 16.8 21.6 10 

SE 68 PL/ GE 6.8 22.4 14.4 
NW 155 From AO   38.7 24.4 25.7 

N 54 From Scandinavia  13.1 10.8 7.5 
NOID 34 No clear identification 6.7 1.4 11.3 

  
506 

total % of trajectories by site 
total number of trajectories 

100 
207 

100  
139 

100 
160 

 
Comment: AO – Atlantic Ocean; BST – Baltic States; RU – Russia; PL – Poland;  

GE – Germany; FR – France; Blux – Benelux countries;  
Scand. – Scandinavian countries (Norway/Sweden). 

 
Several examples of simulated backward trajectories associated with elevated ozone arriving at sites 
underline dominating direction of atmospheric transport of air parcels toward the measurement 



 Scientific Report 10-04 

www.dmi.dk/dmi/sr10-04.pdf  page 12 of 26 

sites’ locations (as seen in Figure 3). In figures a distance between marked 12 h intervals shows 
approximate speed of such transport. The changing spatial position of trajectory shows movement 
of air parcels through possible source regions.  

 

   
(a)                                                     (b)                                                      (c) 

   
 (d)                                                     (e)                                                      (f) 

 

Figure 3: Backward trajectories (calculated by the NOAA HYSPLIT model) showing atmospheric transport 
from the (a) South-Western sector arrived at DK41 on 30 Jul 1994, 15 UTC; (b) Southern sector arrived  at 

DK31 on 6 Jun 1996, 18 UTC; (c) Eastern sector arrived at DK31 on 2 Jun 1992, 14 UTC; (d) South-
Eastern sector arrived at DK32  on 28 Apr 1993, 12 UTC; (e) Southern sector arrived  at DK32 on 13 May 

1993, 15 UTC, (f) South-Western sector arrived at DK32 on 28 Jul 1994, 11 UTC. 
 

For example, as seen in Figure 3a, air parcels arriving at the DK41 site, located on the Zealand 
Island, originated from the Atlantic Ocean aquatoria 5 days before. These have traveled through the 
UK metropolitan and industrial areas as well as the North Sea on its way to Denmark. This pathway 
is associated with atmospheric transport from the South-West sector. Figure 3b depicts that air 
parcels arrived at the DK31 site, located on the Jutland Peninsula, originated over Benelux countries 
and heavily populated and industrialized Rein-Ruhr area (Germany). This example is associated 
with atmospheric transport from the South sector. Figure 3c presents transport from the East sector. 
In particular, the trajectories originated over the North-West Russia passed through the Baltic States 
and aquatoria of the Baltic Sea before reaching the DK31 site.  
 
The obtained distribution (as a function of the sector and pathway for the atmospheric transport) of 
trajectories (associated with elevated ozone has underlined a strong variability between 3 locations 
(Table 2). Depending on the positions of the measurement sites, up to 18%  of elevated events are 
associated with transport from the eastern sector, up to 13% - from the south-west, up to 22% - from 
the south,  up to 22% - from the south-east, up to 39% - from the north-west,  up to 13% - from the 
north; with some trajectories having no clear identification. Among trajectories there are those 
passing through inland (i.e. through the Baltic States, Russia, Poland, Germany, France, Benelux 
and Scandinavian countries) as well as water areas (i.e. transport from the Atlantic Ocean, Baltic 
and North Seas). 

3.3. Elevated Concentration Episodes 
 
Several episodes with elevated levels were identified from detailed analysis of multi-year ozone 
time-series. For such episodes the level of concentration depends on both the local conditions and 
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due to long-range transport contribution. The following criteria were chosen: (i) concentration 
higher 150 μg/m3, (ii) observed, at least, during 24 hours period; (iii) simultaneously, at least, at two 
measurement sites; and (iv) associated with one of the potential source regions (i.e according to 
identified sectors of atmospheric transport (see Ch. 3.2).  
 
Note that for the time series analyzed the ozone concentration above 150 μg/m3 was recorded for 
207, 140, and 161 cases for the DK-31, DK-32, and DK-41 sites, respectively. From these, in total, 
7 relatively long-term elevated ozone episodes were identified for the DK31 site; 6 episodes - for 
DK32 site; and 5 episodes - for DK41 site. Appendix A includes summary for episodes with a 
scatter plot of ozone vs. days of the month when episode had been taken place. 
 
In more details, focusing on cases with elevated ozone concentration (170+ μg/m3) and their dura-
tion the ranking of episodes occurred at DK-31 showed that these episodes are: 1). 19-20-21 June 
2000; 2). 06-07-08 June 1996; 3). 30 June 1992; 4). 09 August 1992; 5). 04 August 1990; 6). 16 
May 2000; and 7). 26 July 1994. The ranking of such episodes at DK-32 station has included: 1) 
20-21 June 2000; 2). 30 June - 1 July 1992; 3). 05 May 1995; 4). 04 August 1990; 5). 28 July 1995; 
and 6). 10 August 1992. The ranking of episodes at DK-41 station has been arranged as the follow-
ing: 1). 30 June - 1 July 1992; 2). 20-21 June 2000; 3). 28 July 1994; 4). 05 May 1995; and 5). 06 
August 1999. The episode with the longest duration was observed simultaneously at 3 locations 
during 19-21 Jun 2000. This episode was selected for a more detailed analysis employing the 
HIRLAM+CAMx modeling system. 

3.4. Case Study - Episode for 19-21 June 2000 

3.4.1. Meteorological Conditions 
 
During 19-21 Jun 2000 elevated ozone episode, in the Danish studied area the typical meteorologi-
cal conditions near the surface were characterized by dominating winds (with low speeds up to 5 
m/s) from the south-southwestern sector (associated with Benelux countries and Germany). Al-
though wind conditions in this sector were similar to Danish but it had been warmer there. During 
the episode the air temperature varied 16-30ºC (sector) compared with 14-24ºC (Denmark). Most 
time it was cloud-free and become partly cloudy on the last day of the episode. The relative humid-
ity ranged from 48 to 97% on Jutland and from 41 to 99% on Zealand. The twice daily sounding 
diagrams from the Jægersborg (on Zealand) and Karup (on Jutland) stations showed the presence of 
several inversions in the low layers (some originated at the surface and some at higher altitudes, and 
extended up to 850 hPa). Moreover, on a preceding day (i.e. 18 Jun 2000) to the episode the iso-
thermal layers were also observed at 600-650 hPa levels. The wind patterns remained of the south-
southwestern sector and dominated within the boundary layer up to 850 hPa (with speeds up 5-10 
and 5-15 m/s for the Jægersborg and Karup stations, respectively). 

3.4.2. Ozone Observations 
 
The elevated ozone episode in June 2000 started at 12 UTC on 19 June 2000 (see Figure 4a), i.e. 
when ozone concentration became above 150 μg/m3 at DK31 site. Then, concentration rapidly 
increased at this site reaching more than 200 μg/m3 within a few hours. Due to atmospheric trans-
port the plume with elevated ozone levels reached the DK32 site around 08 UTC on 20 Jun 2000, 
and a few hours later - the third site DK41. On this day from 10 UTC, the elevated concentrations 
were recorded at all three sites simultaneously. On the same day at about 16 UTC, the absolute 
maxima 194 and 207 μg/m3 were observed at DK32 and DK41 sites, respectively. Both maxima 
were observed almost a day later after the maximum at the DK31 site. Then, the concentration 
gradually decreased at all three locations, and this episode has ended after 17 UTC on 21 Jun 2000 
(i.e. when concentration become below 150 μg/m3).  
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 (a)  

 
 (b)                                                     (c)                                                     (d) 

Figure 4 : (a) Time-series of ozone measurements at 3 sites during Jun 2000; and (b,c,d) ensemble of 
backward trajectories arriving at (b) DK31, (c) DK32, and (d) DK41 sites during 19-21 Jun 2000. 

 

3.4.3. Trajectory and Chemical Transport Modelling for Ozone 
 
As seen in Figure 4bcd, the atmospheric transport toward three measurements sites have occurred 
from the South-Western sector, i.e. mostly from the industrial and urbanized areas of the Benelux 
countries and north-western parts of the Rein-Ruhr region. Before arrival in Denmark during 3 days 
the air masses travelled mostly within the atmospheric boundary layer and passed over these regions 
getting additional ozone load.  
 

An example of the CAMx simulated chemical transport patterns (Figure 5) is given on one of the 
days of the selected episode (nighttime – noon on 19 June 2000) with output provided at every 12 
hour interval. At nighttime, the ozone concentration is below 30 μg/m3 over the most area of the 
European domain, including Denmark and it had started to increase during morning hours reaching 
more than 130 μg/m3 at noon in the northern territories of Germany and Jutland Peninsula of Den-
mark where the DK31 site is located.  
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(a)  

 
(b)  

Figure 5: Spatial distribution of ozone concentration (in μg/m3) field for 19 Jun 2000 (at nighttime - noon; 
00 -12 UTC) (simulated by HIRLAM+CAMx). 

 
The time-series shows almost similar value of measurements (150 μg/m3), which underlines that the 
CAMx model showed relatively good performance, although some discrepancies can be attributed 
to a relatively low horizontal resolution of the model run (i.e. when peaks in concentration associ-
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ated with specific location will be smoothed over grid-cell). For comparison of elevated ozone 
concentration episode, the typical monthly concentration patterns for June 2000 are shown in Figure 
6 (see explanation in Ch. 3.5). See also output of the HIRLAM-CAMx chemical transport model-
ling in Appendix B. 

3.5. Typical Averaged Patterns of Atmospheric Chemical Transport 

3.5.1. Monthly 
 
The simulated monthly-averaged typical atmospheric chemical transport patterns (characteristic for 
the June 2000) over the European domain are shown in Figure 6. As seen, during June the ozone 
concentration over Denmark varied, on average, between 50 μg/m3 (for northern parts of Denmark) 
and 60 μg/m3 (more characteristic for the southern parts of Denmark and border regions with Ger-
many) The territories southerly of Denmark have higher ozone levels (60 μg/m3 and above). These 
are also associated with the Rein-Ruhr industrialized region and London metropolitan areas which 
are both located in a relative proximity to Denmark. 
 

    
Figure 6: Averaged monthly ozone concentration (in μg/m3) for June 2000  

(simulated by HIRLAM+CAMx). 

3.5.2. Seasonal 
 
The simulated averaged typical atmospheric chemical transport patterns (characteristic for the year 
of 2000) over the European domain for different seasons are shown in Figures 7-10. As seen in 
Figure 7, during spring the averaged ozone concentration over Denmark varied between 40-50 
μg/m3. The large area of the inland well industrialized territories of France, Benelux countries, 
Germany, Po Valley (Italy) is associated with the ozone concentrations more than 50 μg/m3.  The 
concentrations of less than 40 μg/m3  are observed over the large parts of the Scandinavian countries, 
Baltic States, Belorussia, and North-West Russia.  
 
During summer (Figure 8), the situation has been changed. The concentration has increased above 
50 μg/m3 for the Zealand, Fyn and Southern Jutland, except the northern and middle parts of the 
Jutland Peninsula. The total area with the ozone level of 50 μg/m3 had increased by almost a factor 
of 2, and it is more expanded in the west-east compared to north-south direction. The Rein-Ruhr 
industrialized region became more visible (above 60 μg/m3) as well as the London and Paris metro-
politan areas compared with other territories. Moreover, the lower (below 30 μg/m3) concentrations 
are observed over the central and northern territories of the Scandinavian countries, partially over 
the Baltic States, and parts of the North-West Russia. 
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.    
 

Figure 7: Averaged seasonal ozone concentration (in μg/m3) for spring 2000  
(simulated by HIRLAM+CAMx). 

 

   
Figure 8: Averaged seasonal ozone concentration (in μg/m3) for summer 2000  

(simulated by HIRLAM+CAMx). 
 

    
Figure 9: Averaged seasonal ozone concentration (in μg/m3) for fall 2000  

(simulated by HIRLAM+CAMx). 
 
During fall (Figure 9), for the entire territory of Denmark the ozone level is slightly above  40 μg/m3. 
Practically, the concentration is around 40 μg/m3 over territories of countries located southerly of 
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Denmark and within the 0-15 °E longitudinal belt. Moreover, the area with ozone levels below 30 
μg/m3 moved more northward compared with summer and it is covering only central and northern 
parts of Sweden, Finland, as well as Karelia and, partially, the Kola Peninsula. 
During winter months (Dec – Jan – Feb) (Figure 10), the concentration is the lowest (around 30 
μg/m3  and below) compared with other months analyzed. Such levels are also characteristics for the 
territories of European countries situated above 50 °N. 
 

   
Figure 10: Averaged seasonal ozone concentration (in μg/m3) for winter 2000  

(simulated by HIRLAM+CAMx). 

3.5.3. Annual 
 
The annual averaged ozone concentration over Denmark varied between 40-50 μg/m3 (Figure 11). 
The lowest concentrations are observed for the central parts (around 65 ± 2 °N) of the Scandinavian 
countries. Practically, for all inland territories of the most of the European countries, except the 
Baltic States, Belorussia, and Russia the ozone levels are above 40 μg/m3. The Rein-Ruhr industrial 
region (Germany and Benelux countries) and Po Valley region (Italy) have the higher ozone levels 
of about 50 μg/m3.  
 

    
Figure 11: Averaged annual ozone concentration (in μg/m3) for year of 2000  

(simulated by HIRLAM+CAMx). 
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4. Conclusion 
 
In this study, three Danish measurement sites having the longest time-series of ozone measurements 
(with a time resolution of 1 hour and started in early 1990s) were evaluated – Ulborg (DK31); and 
Frederiksborg (DK32) and Lille Valby (DK41). These sites are located on the Jutland Peninsula and 
Zealand Island of Denmark. After pre-screening of the time series covering almost 15 year period, it 
has been analysed on inter-annual, monthly and diurnal  cycle scales with more detailed evaluation 
of cases characterized by elevated and lowered ozone concentrations. Both the atmospheric Lagran-
gian trajectory (HYSPLIT) and Eulerian dispersion (HIRLAM+CAMx) models were employed to 
study dominating atmospheric transport patterns (attributed to sectors) associated with elevated 
ozone events and to evaluate spatio-temporal variability of ozone concentration patterns for selected 
elevated episode in Jun 2000 and comparison with monthly (Jun) and seasonal patterns for Den-
mark. 
 
It was found that ozone inter-annual variability showed generally a positive trend, and the number 
of cases with low ozone concentration (less than 10 μg/m3) continued to diminish, and in particular, 
is has decreased almost twice. Monthly ozone variability showed clear differences between meas-
urements on Jutland vs. Zealand. The highest mean concentrations are observed in May for all sites. 
The mean concentrations are the lowest in November-December. The elevated concentrations (more 
than 120 μg/m3) are observed during March-September, and number of such cases is larger for 
Jutland (with maximum in August). On a diurnal cycle, ozone above 120 μg/m3 is observed mostly 
during 13-16 of local time, and the number of such cases is ten-fold larger compared with nighttime 
– early morning hours. 
 
For all ozone elevated cases (in total, 506), using trajectory analysis, several sectors or pathways of 
atmospheric transport were identified. Depending on the geographical position of the site, up to 
39% of elevated events can be  associated with transport from the north-western sector, from 
southern and south-eastern - 22% each, eastern - 18%, and from south-western and northern sectors 
- 13% each. Among trajectories associated with elevated ozone levels, most of them travelled 
through inland (i.e. through the Baltic States, Russia, Poland, Germany, France, Benelux and 
Scandinavian countries) as well as over water areas (i.e. transport from the Atlantic Ocean, Baltic 
and North Seas). 
 
Among ozone elevated events, less than 60 events for each site showed very high ozone concentra-
tions (i.e. above 180 µg/m3). Several long-term episodes with continuous elevated ozone levels 
were identified: 7 (in Jun 1996 and Jun 2000) and 5 (in Jul 1992 and Jun 2000) for the Jutland and 
Zealand sites, respectively. One episode (19-21 Jun 2000) simultaneously registered at all three 
sites was studied in more details using the chemical transport model. This episode was character-
ized by low wind speed with atmospheric transport from the south-southwestern sector (associated 
with Benelux and German urban areas), mostly cloud-free conditions, and multiple inversions 
within the boundary layer. Measurements and modeling (trajectory and dispersion) results showed a 
relatively good agreement during the first day of the episode, although some discrepancies in 
concentration could be attributed to a relatively low horizontal resolution of the model run. For 
comparison, at the same time the typical monthly (June) ozone concentration varied between 50-60 
μg/m3 for northern vs. southern territories of Denmark. In spring and summer, the averaged ozone  
concentration varied 40-50 and above 50 μg/m3, respectively. In fall, it is slightly more than 40 
μg/m3, and in winter – it is the lowest (less than 30 μg/m3) throughout the year. 
 
The results of this study are applicable for evaluation of short- and long-term ozone effects on 
health of population in both urban and rural areas and impact on environment (agriculture, forest, 
etc. damage), estimation of exposure levels for elevated episodes, and decision and policy making 
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Appendix A: Selected elevated ozone episodes during 1990-2004. 
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Appendix B: Specific Case Study (19-21 Jun 2000) 

 
Figure B1: Ozone concentration (in μg/m3) field for 19 Jun 2000 (03, 06, 09, 12, 15, 18, 21, 24 UTC)  

(simulated by HIRLAM+CAMx). 
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Figure B2: Ozone concentration (in μg/m3) field for 20 Jun 2000 (03, 06, 09, 12, 15, 18, 21, 24 UTC)  

(simulated by HIRLAM+CAMx). 
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Figure B3: Ozone concentration (in μg/m3) field for 21 Jun 2000 (03, 06, 09, 12, 15, 18, 21, 24 UTC)  

(simulated by HIRLAM+CAMx). 
 
 
 


