
Danish Meteorological Institute
Ministry of Transport

Copenhagen 2007www.dmi.dk/dmi/sr07-08 page 1 of 14

Scientific Report 07-08

An efficient method to solve implicit generalized similarity
equations for the stable and neutral boundary layer

Niels Woetmann Nielsen



Danish Meteorological Institute
Scientific Report 07-08

Colophone
Serial title:
Scientific Report 07-08

Title:
An efficient method to solve implicit generalized similarity equations for the stable and neutral
boundary layer

Subtitle:

Authors:
Niels Woetmann Nielsen

Other Contributers:

Responsible Institution:
Danish Meteorological Institute

Language:
English

Keywords:
HIRLAM, stable boundary layer, generalized similarity, truly neutral, conventional stable, long-lived
stable

Url:
www.dmi.dk/dmi/sr07-08

ISSN:
1399-1949

ISBN:
978-87-7478-556-9

Version:
Website:
www.dmi.dk

Copyright:
Danish Meteorological Institute

www.dmi.dk/dmi/sr07-08 page 2 of 14



Danish Meteorological Institute
Scientific Report 07-08

Dansk Resume
En generalisering af similaritetsteorien for for det neutrale og stabile atmosfæriske grænselag er for
nylig (2007) blevet foreslået af Zilitinkevich og Esau. Til forskel fra den gængse teori afhænger
turbulensen i grænselaget også af den statiske stabilitet i luftlaget over grænselagets top. Desuden
betragtes de turbulente transporter af impuls, varme og fugtighed ikke længere som uafhængige af
højden over overfladen. I den gængse teori antages, at der ved bunden af grænselaget eksisterer et
overfladelag, hvor turbulenstransporterne er konstante med højden. De generaliserede
similaritetsligninger for impuls, temperatur og fugtighed er implicitte ligninger, som løses iterativt.
For at kunne komme i betragtning i en operationael numerisk vejrmodel er kravet, at iterationen
konvergerer hurtigt. I nærværende rapport beskrives en løsningsmetode, som har hurtig kongergens i
et meget bredt parameterrum, mere specifikt fra neutral til stærk stabil stratificering i og over
grænselaget, fra en glat til en ru overflade og fra tropiske til polare grænselag. I dette parameterrum
er løsningen efter to iterationer praktisk taget identisk med løsningen efter 50 iterationer.
Vinddrejningen med højden op gennem grænselaget er et tilbageværende problem. Rapporten giver
et forslag til en mulig løsning på dette problem.
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Abstract
Introduction
The present report contains a pilot study with the purpose of investigating the feasibility of appying a
parameterization of turbulence in the neutral and stable planetary boundary layer (PBL) based on a
newly developed generalization of the Monin-Obukhov similarity theory (Zilitinkevich and Esau,
2007). The parameterization as it is presented in Zilitinkevich and Esau, 2007, requires iterative
solutions of similarity equations for local turbulence fluxes and thereafter iterative solutions for
surface fluxes and PBL height. A key demand for possible implementation in numerical weather
prediction models (NWP’s) is therefore fast convergence of the iterative solutions in the entire
parameter space. It is investigated to what extend fast convergence can be obtain with starting
iteration values of local turbulence fluxes obtained by estimates based on the bulk Richardson
number. Section 1 contains a brief review of the Monin-Obukhov similarity theory for the
horizontally homogeneous atmospheric surface layer. This is followed by a short presentation of a
recently developed generalization of the classical similarity theory for the neutral and stably
stratified PBL in section 2. In the latter section a possible extension of the equilibrium PBL height
equation to the equatorial region based on similarity arguments is outlined. In section 3 an iterative
solution method for local turbulence fluxes is described. A similar iterative solution method for
surface fluxes and PBL height is described in section 4. Both iteration methods show very fast
convergence in the entire parameter space. Finally, section 5 contains discussion and concluding
remarks. The discussion mainly deals with the problem concerning how to calculate the angle α(z)
between the stress ~τ (z) at height z and the surface stress ~τ∗. Knowledge of α(z) is needed in the
HIRLAM NWP model. A tentative equation for α(z) is suggested.

Classical Monin-Obukhov similarity
According to the hypothesis of Monin-Obukhov vertical gradients of wind, temperature and
moisture in the surface layer only depends on the height z above the surface, the buoyancy parameter
β = gθ−1

0 and the kinematic turbulent surface fluxes τ∗, Fθ∗ and Fq∗ of momentum, sensible heat and
moisture, respectively. In the buoyancy parameter g is gravity and θ0 a representative temperature in
the surface layer. The sensible heat and moisture flux can be combined into a buoyancy flux
Fb∗ ≈ β · Fθ∗ + 0.61 · g · Fq∗ by applying the equation for virtual potential temperature. Formally, it
then follows from the Buckingham Pi theorem that the relationship between the four dimensional
quantities can be reduced to a relationship between two non-dimensional quantities. If we take the
velocity gradient as an example the dimensional relationship φu(∂U/∂z, z, τ∗, Fb∗) = 0 is reduced to
an equation between two non-dimensional quantities, i.e.

Π1 = ΦU0(Π2) (1)

In a neutrally stratified boundary layer Fb∗ = 0 and therefore φu(∂U/∂z, z, τ∗) = 0 leading to
Π1 = z · τ∗−1/2∂U/∂z = km, where km is a non-dimensional constant equal to 1/k, where k = 0.4 is
the Von Karman constant. In the more general non-neutral surface layer the second non-dimensional
quantity is in principle obtained by normalizing one of the three quantities z, τ∗ and Fb∗ by the other
two. This procedure leads to Φ2τ = τ∗/(z · Fb∗)

2/3 = (z/Ls)
−2/3,Φ2b = Fb∗/(z

−1 · τ∗3/2) = z/Ls

and Φ2l = z/(τ∗
3/2 · F−1

b∗ ) = z/Ls. The length scale Ls = τ∗
3/2F−1

b∗ is the Monin-Obukhov stability
parameter. It appears most practical to apply Φ2b = Φ2l = z/Ls = ζs as parameter Π2. Thus we
obtain the flux-profile gradient relationship

kz

τ∗1/2

∂U

∂z
= ΦU (ζs) = kΦU0 (2)
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Similarly the flux-profile gradient relationships for potential temperature (θ) and specific humidity
(q) become

kθzτ∗
1/2

Fθ∗

∂θ

∂z
= ΦΘ(ζs) = kθΦΘ0, (3)

kqzτ∗
1/2

Fq∗

∂q

∂z
= ΦQ(ζs) = kqΦQ0. (4)

Note that the multiplication with k, kθ and kq in (2) (3) and (4), respectively, yields
ΦM(0) = ΦT (0) = ΦQ(0) = 1.

Generalized similarity for the neutral and stable boundary layer
The flux-profile gradient relations above are based on a number of assumptions, including the
assumption of constant turbulence fluxes equal to their surface values. In Numerical Weather
Prediction (NWP) models the lowest model level is typically a few tenths of meters above the
surface. The stable boundary layer (SBL) and not least its surface layer may therefore become
unresolved by NWP models if the stability, e.g. in terms of ζs, becomes sufficiently large. In such
situations the depth of the SBL becomes comparable to or even smaller than the depth of the lowest
model layer in most NWP models. Consequently, NWP models must be capable of parameterizing
turbulence fluxes that varies with height in the SBL. Equation (2) to (4) can be generalized to include
the effect of height dependent turbulence fluxes in the SBL as well as the neutral boundary layer
(NBL) by utilizing the local height dependent fluxes as scaling parameters in place of the surface
values τ∗ and Fb∗. Equation (2) to (4) then reads

kz

τ 1/2

∂U

∂z
= ΦU(ζ) (5)

kθzτ
1/2

Fθ

∂θ

∂z
= ΦΘ(ζ) (6)

kqzτ
1/2

Fq

∂q

∂z
= ΦQ(ζ) (7)

In these equations τ , Fθ and Fq are local (i.e. height dependent) turbulent fluxes of kinematic
momentum, heat and moisture, respectively. The local stability parameter is defined ζ = z/L, where
L = τ 3/2/Fb is the local Monin-Obukhov length scale. In cases with a shallow SBL wind at the
lowest level in NWP models may be in near gradient or geostrophic wind balance, which means that
the SBL including its surface layer is influenced by the rotation of the Earth as pointed out by e.g.
Zilitinkevich and Esau (2005). In the same paper they also showed that static stability in the air
above the SBL or NBL has a non-local effect on the turbulence in the boundary layer. A
generalization, taking into account the effect of the rotation of the Earth and the non-local effect of
the static stability in the atmospheric layer on top of the NBL/SBL adds two new quantities, the
Coriolis parameter f and the Brunt-Vaisala frequency N in the atmosphere on top of the planetary
boundary layer (PBL), to the list of dimensional parameters without adding new fundamental
dimensions and formally (5) to (7) become

kz

τ 1/2

∂U

∂z
= ΦU (ζ, ζf , ζN) (8)

kθzτ
1/2

Fθ

∂θ

∂z
= ΦΘ(ζ, ζf , ζN) (9)
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kqzτ
1/2

Fq

∂q

∂z
= ΦQ(ζ, ζf , ζN) (10)

In these equations ζf = z/(τ 1/2|f |−1) and ζN = z/(τ 1/2N−1).

It would be a considerable simplification if the three non-dimensional parameters in the Φ-functions
in equations (8) to (10) could be combined into one parameter. Work by Esau and Byrkjedal, (2006),
Esau and Zilitinkevich (2006) and Zilitinkevich and Esau (2007) indeed shows that it is possible
with reasonable accuracy to approximate the Φ-functions for momentum and sensible heat by the
relatively simple polynomials

ΦM = 1 + CU1ζ∗, Φθ = 1 + Cθ1ζ∗ + Cθ2ζ∗
2, (11)

where ζ∗ = z/L∗ and L∗ is obtained by a linear combination of the squared reciprocals of the three
length scales L, Lf and LN such that

1

L∗
=
[

( 1

L

)

2

+
(CN

LN

)

2

+
(Cf

Lf

)

2]1/2

(12)

In (12) CN = 0.4 and Cf = 1 are empirical constants. Fitting to field data from SHEBA (Uttal et al.,
2002) and to numerical data from Large Eddy Simulations (LES) collected in the LES
DATABASE64 (Beare et al., 2006; Esau and Zilitinkevich, 2006) resulted in the following estimates
of non-dimensional constants: CU1 = 2, Cθ1 = 1.6 and Cθ2 = 0.2. Zilitinkevich and Esau (2005)
and Esau and Byrkjedal (2006) also found quasi-universal dependencies of the fluxes of turbulence
normalized by their respective surface values on the hight z normalized by the PBL height h. They
found

τ

τ∗
= exp

[

− 8

3

(z

h

)2
]

,
Fb

Fb∗
= exp

[

− 2
(z

h

)2
]

, (13)

where Fb∗ is the buoyancy flux at the surface.

The equilibrium PBL height hE is mainly dependent on the parameters N , |f |, τ∗ and Fb∗. The latter
two are the surface boundary values of τ and Fb. The parameters can all be considered as external to
the PBL. It follows from the Buckingham Pi theorem that the functional relationship
φh(hE, τ∗, Fb∗, |f |, N) = 0 takes the form Π1 = Φh(Π2,Π3). One possible relationship is

hE

Lf

= Φh

(

Lf

LN

,
Lf

Ls

)

, (14)

where Lf = τ∗
1/2|f |−1, LN = τ∗

1/2N−1 and Ls = τ∗
3/2F−1

b∗ . Using a multi-limit h-model
(Zilitinkevich and Mironov 1996; Zilitinkevich and Baklanov, 2002) Zilitinkevichi, Esau and
Baklanov 2006, obtained

(

Lf

hE

)2

=
1

C2
R

+
1

C2
CN

Lf

LN

+
1

CNS

Lf

Ls

, (15)

where CR = 0.6, CCN = 1.36 and CNS = 0.51 are empirical dimensionless constants.
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Equatorial boundary layer height
Equation (15) clearly does not apply at the Equator. If the Coriolis term f · cotφ does not influence
the PBL structure in the Equatorial region the PBL height there (heq) might be expected only to be
determined by τ∗, Fb∗ and N , yielding

hEq

LN

= Φhq

(

LN

Ls

)

, (16)

or if an equation similar to (15) is assumed

(

LN

heq

)2

=
1

c2e1
+

1

c2e2

LN

Ls
or heq = ce1

τ
1/2
∗

N

(

1 +
c2e1Fb∗

c2e2Nτ∗

)−1/2

, (17)

where ce1 and ce2 are non-dimensional constants. In principle one could add for example
cosφ · L2

f · (LN/heq)
2 to the right hand side of (15). However, in view of the uncertainties about the

values of ce1 and ce2 and possible non-existence of an equilibrium height in the equatorial region we
take here a pragmatic and simpler solution by adding L2

f/h
2
T to the rhs. of (15) and assuming that hT

is constant.

Iterative solution for local fluxes
Vertical integration of (2) to (4) leads to

U(z) − U(z0) =
τ∗

1/2

k

[

ln
z

z0
+ ψU0

(
z

L0
,
z0
L0

)
]

(18)

θ(z) − θ(z0) =
Fθ∗

kθτ∗1/2

[

ln
z

z0
+ ψΘ0

(
z

L0
,
z0
L0

)
]

(19)

q(z) − q(z0) =
Fq∗

kqτ∗1/2

[

ln
z

z0
+ ψQ0

(
z

L0
,
z0
L0

)
]

(20)

These are mean profile functions valid in an atmospheric surface layer satisfying the assumptions
made in classical Monin-Obukhov similarity. The key assumption is that the kinematic turbulent
fluxes of momentum, heat and moisture in the surface layer can be treated as constants, equal to their
values at the surface. The Ψ-functions are obtained by vertical integration of the empirical
determined non-dimensional profile-gradient Φ-functions in (2) to (4). By definition U(z0) = 0,
where z0 is the roughness length for momentum. In general θ(z0) and q(z0) deviate from their
surface values θs and qs. They are related by

θs(z0θ) = θ(z0) +
Fθ∗

kθτ∗1/2
ln

z0
z0θ

(21)

qs(z0q) = q(z0) +
Fq∗

kqτ∗1/2
ln
z0
z0q

, (22)

where z0θ and z0q are roughness lengths for temperature and moisture, respectively. Ψ-functions
similar to those in (18) to (20) can in principle be obtained from (8) to (10) in combination with (12).
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However, due to their complexity such functions have been determined from the LES
DATABASE64. It turned out that the functions could be reasonably accurately approximated by the
simple power laws (Zilitinkevich and Esau, 2007):

ΨU = CUζ∗
5/6 (23)

ΨΘ = Cθζ∗
4/5 (24)

ΨQ = ΨΘ (25)

with dimensionless constants CU = 3.0 and Cθ = 2.5. Using (23) to (25) in (18) to (20) gives

kU

τ 1/2
= ln

z

z0
+ CU

(

z

L

)5/6
[

1 +
(

L

Le

)4/5
]5/12

(26)

kθτ

−Fθ
(θ(z) − θ0) = ln

z

z0
+ CΘ

(

z

L

)4/5
[

1 +
(

L

Le

)2
]2/5

(27)

kqτ

−Fq

(q(z) − q0) = ln
z

z0
+ CQ

(

z

L

)4/5
[

1 +
(

L

Le

)2
]2/5

, (28)

where L2
e = τ

(CN N)2+(Cf f)2
, θ0 = θ(z0) and q0 = q(z0). If CQ = CΘ and kq = kθ the last two

equations can be combined to

kθτ

−Fb
(b− b0) = ln

z

z0
+ CΘ

(

z

L

)4/5
[

1 +
(

L

Le

)2
]2/5

, (29)

where b = βθv is the buoyancy acceleration and Fb = βFθ + 0.61gFq is the buoyancy flux.

For given values of f and N equation (26) and (29) must be solved iteratively for the local stress
τ(z) and the local buoyancy flux Fb(z). Thereafter the sensible and latent heat flux are obtained from

Fθ = Fb

(

β + 061g
q − q0
θ − θ0

)−1

(30)

Fq = Fθ
q − q0
θ − θ0

(31)

The iterative solution of (26) and (29) is obtained by relatively few iterations for neutral and weakly
to moderately stable boundary layers, but for large stability (z/L > 1) the convergence becomes
increasingly slow. To obtain fast convergence over the entire range z/L ≥ 0 the first guess on τ and
Fb is based on asymptotic values of these fluxes multiplied by functions depending on the bulk
Richardson number Ri defined by Ri = z b−b0

U2 , where b and U are values of buoyancy acceleration
and wind speed at the lowest model level. For large z/L (26) and (29) can be approximated by

kU

τ 1/2
≈ cU

(

z

L

)5/6

(32)

www.dmi.dk/dmi/sr07-08 page 8 of 14



Danish Meteorological Institute
Scientific Report 07-08

and

kθτ
1/2 (b− b0)

Fb
≈ cθ

(

z

L

)4/5

(33)

From the latter two equations follow

z/Llim ≈
(

C2
Ukθ

Cθk2
Ri

)15/2

(34)

The asymptotic z/Llim are used in (26) and (29) to calculate corresponding asymptotic values τlim

and Fblim. The first guess values in the iteration is then τ = Γτ (Ri)τlim and Fb = ΓFb(Ri)Fblim,
where Γτ = Γτ1 + Γτ2 and ΓFb = ΓFb1 + ΓFb2 are empirical functions of Ri determined by

Γτ1 = max{Ca(1 − Ri

Ric
)2(1 − Ri

Ri1
), Cb} (35)

Γτ2 = min{max{Cc

(

Ri− Ri1
Ric −Ri1

)

exp−1(Ric − Ri), 0}, 1} (36)

ΓFb1
= max{Γτ1(1 −

√
2Ri)−1, Cd} (37)

ΓFb2
= Γτ2 (38)

The constants have the values Ric = 0.25, Ri1 = 0.4Ric, Ca = 0.95, Cb = 0.1793, Cc = 0.96 and
Cd = 0.2. The first guess values calculated by the procedure described above give very fast
convergence in the entire parameter space. The result after only 1 iteration is practically identical
with the result after 50 iterations. The convergence in the second iteration method involving surface
fluxes and PBL height is a little slower. This method is described in the next section.

Iterative solution for boundary layer height and surface fluxes
Once the local fluxes have been calculated the surface fluxes and equilibrium PBL height are
calculated iteratively from (13) and (15), the latter modified to

(

Lf

hE

)2

=
1

C2
R

+
1

C2
CN

Lf

LN
+

1

CNS

Lf

Ls
+ w(φ)

(

Lf

hT

)2

, (39)

to avoid an infinite PBL height at the Equator. Influence of the tropical PBL height at mid- and high
latitudes can be eliminated by multiplying the last term on the rhs. of (39) by a weighting function,
for example w(φ) = max(0, 1 − f/f0), where f0 = 10−4 s−1.

The iteration begins with calculation of a preliminary PBL height hini from (39) with LN , Ls and Lf

replaced by their local values, i.e. LNl = τ 1/2N−1, Lsl = τ 3/2F−1
b and Lfl = τ 1/2|f |−1 with the

local τ and Fb obtained from the iteration described in the previous section. A preliminary surface
stress τ∗ini is next calculated from (13), i.e. τ∗ini = τ · [exp (−8/3 · (z/hini))]

−1. It follows from (13)
and (39) that if τ∗ini was the correct surface stress we would have
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G = K2
N +Kf ·

Fb∗ini

τ∗ini

+ w(φ)
τ∗ini

h2
T

− 3

8
z−2τ∗ini ln

τ∗ini

τ
= 0, (40)

where KN = (f 2 · C−2
R +N |f |C−2

CN)1/2 and Kf = |f |C−2
NS. The square frequency function G is only

a function of τ∗ since it follows from (13) that

|Fb∗| = |Fb|
(

τ∗
τ

)3/4

(41)

Therefore (40) can be written

G(τ∗) = K2
N +Kf

|Fb|
τ

(

τ

τ∗

)1/4

+ w(φ)
τ∗
h2

T

− 3

8
z−2τ∗ ln

τ∗
τ
. (42)

In the iteration a new value τ∗ = τ∗ + δτ∗ is determined such that Gl(τ∗) = 0, where Gl is a
linearization of G. As long as δτ∗/τ∗ << 1 we have

G ≈ Gl = G(τ∗) +

(

1

4
Kf

|Fb|
τ

(

τ

τ∗

)1/4 1

τ∗
+ w(φ)

τ∗
h2

T

+
3

8
z−2τ∗(1 + ln

τ∗
τ

)

)

δτ∗ = 0 (43)

or

δτ∗ =
G(τ∗)

(

1
4
Kf

|Fb|
τ

(

τ
τ∗

)1/4
1
τ∗

+ w(φ) τ∗
h2

T

+ 3
8
z−2(1 + ln τ∗

τ
)
) . (44)

In the first iteration τ∗ = τ∗ini. In a very stable (and shallow) PBL the ratio τ/τ∗ may become very
small. In such cases the first guess values hini and τ∗ini deviate considerably from their final values.
To obtain fast convergence in these cases τ∗ini in (40) is replaced by
τ∗ini = kU(1 + 10Ri)3(ln z/z0)

−1.

Once τ∗ has been calculated by iteration from (43) and (44), Fb∗ and hE are obtained from

|Fb∗| = |Fb|
(

τ∗
τ

)3/4

(45)

and

hE =







τ∗

K2
N +Kf

|Fb∗|
τ∗

+ w(φ) τ∗
h2

T







1/2

(46)

Figure 1 and 2 show that rapid convergence is obtained in the tested parameter space including the
mid-latitude and equatorial neutral and stably stratified PBL both over a rough and smooth surface
and with a large and small free flow static stability. The result after two iterations is practically
identical with that obtained after fifty iterations.
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PBL height as function of Ri
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Figure 1: Iterative solution for the equilibrium PBL height at mid-latitudes as function of the bulk
Richardson number Ri, calculated from wind and temperature at 10 m height (zm = 10m). Upper
row is for a weak free flow static stability (N = 1.e−8 s−1) and from left to right for a smooth
(z0 = 1.e−4) and rough surface (z0 = 1.0), respectively. Lower row is like the top row, but with a
strong free flow static stability (N = 0.1 s−1). Number of iterations applied is given by it.
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PBL height as function of Ri
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Figure 2: Iterative solution for the equilibrium PBL height in the equatorial PBL as function of the
bulk Richardson number Rib, calculated from wind and temperature at 10 m height (zm = 10m).
Upper row is for a weak free flow static stability (N = 1.e−8 s−1) and from left to right for a smooth
(z0 = 1.e−4) and rough surface (z0 = 1.0), respectively. Lower row is like the top row, but with a
strong free flow static stability (N = 0.1 s−1). Number of iterations applied is given by it.

Comments and concluding remarks
In NWP models like HIRLAM the angle α(z) between the stress ~τ (z) and the surface stress ~τ∗ must
be calculated. An equation for the surface cross isobar angle α∗ is presented in Zilitinkevich and
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Esau, 2007. However, it appears as if the latter equation does not work properly in some cases. It is
suggested here to use a slightly modified form of equation (10) in Esau and Zilitinkevich, 2006. The
modified form reads

sinα(z) =
(

τ

τ∗
− 1

)

Cαk(lnRom +C∗m)−1
(

CN3µN
3/4 + 1

)

·
(

(CS3µs)
3 · (1 + µN · w(φ))−1 + 1

)

.

(47)

In (47) Rom = Vh · (fz0)−1 + 1 is a kind of modified surface Rossby number, Vh is the wind speed at
the top of the PBL, C∗m = C∗

(

1 − [(0.4 · lnRom)3 + 1]
−1
)

, C∗ = −4.2, Cα = 4, CN3 = 0.03,

CS3 = 0.0012, µN = N · f−1 and µs = (Fb∗(f
3z0)

−1)
1/3. The modifications have been done to

obtain a formula that works at low latitudes, at low surface Rossby numbers and gives the angle
between the the stress vector at hight z and the surface stress vector, i.e. an angle varying with height,
by definition identical zero at the surface and equal to the surface cross isobar angle for z = hE .

The pilot study presented in the present report shows that from a computational economy point of
view it is feasible to implement the generalized similarity parameterization for the neutral and stable
PBL in the HIRLAM model. The pilot study applies an equilibrium PBL height hE . In the
implementation in the HIRLAM model it might turn out to be an advantage to replace hE with a
PBL height determined by a prognostic equation for this quantity. In the latter case the
implementation in the HIRLAM NWP model becomes considerably more involving. Therefore it is
suggested as the next step to implement the scheme in its simplest form, as it is presented in the
present pilot study, into a column version of HIRLAM. If the column tests turns out to be satisfactory
the scheme is then ready for implementation and final tests in the HIRLAM NWP model.
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