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Abstract
A classification system for obtaining the sea ice concentration from satellite based single-polarized
SAR data is presented. The method is based on a supervised neural network classification of
second-order grey level statistics features. Learning Vector Quantization is used for describing the
boundaries between the surface classes. Five RADARSAT ScanSAR Wide images of the sea ice off
of the East and West coast of Greenland were classified with resulting classification accuracies from
80 to 98 percent. The algorithm is robust to the selection of training data which was measured by
classifying the same dataset twice using multiple experts for selecting training data. Thus, the
precision by which sea ice and open water was assessed to be approximately two percent. The
classification accuracy is dependent on the sea state, especially the degree to which the water is
roughened by wind. The current classification system is not able to distinguish between high
backscatter sea ice and high backscatter ocean areas and therefore areas of wind roughened sea water
are masked out after classification.
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1. Introduction
The presented work is part of the IOMASA project1(IOMASA, 2002a) in which a main goal is to
achieve improved remote sensing of sea ice with more accurate determination of sea ice
concentration of the Arctic Seas. In the IOMASA project, passive microwave ice concentration
algorithms are employed, and for the validation of these algorithms, high resolution ice
concentration measures are necessary (IOMASA, 2002b). This report describes a new method based
on texture measures and neural networks for obtaining high resolution sea ice concentration from
single-polarized wide swath SAR data from the RADARSAT and ENVISAT satellites.

Currently, ice concentration is available for selected areas of the Arctic Sea on an operational basis
from navigational ice charts. However, the ice concentration from ice charts are only accurate within
an interval of 10-20% and are based on subjective judgements and generalizing of the ice
concentration. Optical sensors in the visible or infrared range of the electromagnetic spectrum are of
little use in the Arctic due to poor or little sunlight in the winter months and due to the extensive
cloud cover of the region. To validate the global coverage of today’s passive microwave radiometers
and scatterometers, the only feasible source of data is swath SAR data (typical swath widths of 500
km).

In this report an accurate and objective method for obtaining a high resolution and independent ice
concentration measure is presented. The method is semi-automatic and requires user interaction in
the selection of training areas and fine-tuning of the classification result.

Firstly, the SAR data is pre-processed and manual selection of training data is carried out by ice
charting experts. Then the SAR image is classified using the Learning Vector Quantization (LVQ)
algorithm as described by Kohonen (2001) and Hastie et al. (2001). The algorithm is a fast and
flexible neural network-like algorithm. Second-order grey level statistics (calculated using
Grey-Level Cooccurence Matrices) are used as features and the LVQ algorithm uses the training data
to classify the SAR image into a number of relevant classes (e.g. calm water, rough water, high and
low backscatter sea ice). The classification framework is based on extensions to software by Lars
Kaleschke of the University of Bremen, who used LVQ for sea ice classification using ERS-2 SAR
images (Kern et al., 2003). Finally, post-processing is carried out to produce a classification mask to
indicate areas of successful classification.

2. Data
For the development and testing of the classification system five representative RADARSAT
ScanSAR Wide images are classified. The images display varying conditions of sea ice and
meteorological conditions; from very simple to more difficult to interpret. The ScanSAR Wide
images (listed in table 3.1) have an original pixel size of 50x50 m and a swath width of 500 km.

The following section will give a short description of each data set. The figures showing the images
are shown in Appendix A.

Scene 1 (Figure A.1): RADARSAT image from West Coast of Greenland. The image is easy to
interpret due to the good weather conditions (little wind). There are few different surface types: First
year ice, fast ice and open water (calm and turbulent). From visual inspection the surface types

1IOMASA (Integrated Observation and Modeling of Arctic Sea ice and Atmosphere), a ’Research and Technological
Development’-project of the European Commission under contract EVK3-CT-2002-00067
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RADARSAT ScanSAR Wide CHH data
no date orbit area
1 2000-05-24 23765 Disko Bay, West Coast of Greenland
2 2000-07-22 24607 Scoresby Sund, East Coast of Greenland
3 2001-12-16 31932 Disko Bay, West Coast of Greenland
4 2001-12-22 32018 Disko Bay, West Coast of Greenland
5 2001-12-26 32075 Disko Bay, West Coast of Greenland

Table 3.1: Image data

appears to be well separated.

Scene 2 (Figures A.2 and A.3): RADARSAT image from East Coast of Greenland. The image is
more complex vdue to many different surface classes: First and multi-year ice floes of varying
concentrations as well as regions of calm and turbulent water. The surface types are mixed.

Scene 3 (Figure A.4): RADARSAT image from West Coast of Greenland. Moderately complex
image due to turbulence in the water regions and over areas of the first year ice floes. The image
show poor contrast of the sea ice areas in the far range of the image.

Scene 4 (Figure A.5): RADARSAT image from West Coast of Greenland. Less turbulence over the
ice covered areas makes this image fairly easy to interpret. Large tonal variance from the near to the
far range of the image.

Scene 5 (Figure A.6): RADARSAT image from West Coast of Greenland. Moderate amount of
turbulence, similar to scene 4. Some areas of thin ice (dark).

No ground truth data was available to support the interpretation of the images, however, trained ice
experts from the Danish Meteorological Institute (DMI) assisted in the interpretation of the SAR
images and in the selection of training data.

3. Method
Classifying sea ice from SAR images is not a trivial task. Selection and extraction of features,
selection of training data, and the choice of classification method, all influence the outcome and
accuracy of the classification. Furthermore, the interplay between the radar system parameters
(wavelength, polarization, incidence angle, number of looks, etc.) and the surface properties, i.e.
how the ice and water surfaces reflect the signal, is an important consideration in designing a robust
and successful classification scheme.

It is difficult to dessign a universally valid sea ice concentration algorithm operating on
single-polarized SAR data. This is due to the large variabilities in the environment in which sea ice
occur and the mode of operation of the SAR sensor. Often classification schemes are limited to
operate on images from a particular sensor, in a particular season of the year, over a particular
geographical area. At worst, the classification method will be limited to providing useful results on a
single image only.

In this work the goal was to design a method for obtaining accurate ice concentration from a range of
different images and areas. Therefore the selection of features and training data as well as the
parameters of the neural network were not based on a single reference image only.
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Figure 4.1: The neural network classification scheme.

The classification scheme was designed to allow for fine-tuning to accommodate to the individual
challenges of each image. The manual fine-tuning is carried out by an ice expert, and allows for
changing the number of surface classes as well as selecting different training areas. A flow chart of
the classification scheme is shown in Figure 4.1.

Preprocessing
RADARSAT data, having a spatial resolution of 100 m, but a pixel size of 50 m, was pre-processed
by a simple downsampling to a pixel size of 100 m. This decreases the computation time as well as
suppresses some of the speckle noise inherent to SAR imagery. ENVISAT ASAR data was not
downsampled prior to feature extraction due to a lower original pixelsize of 75 m which is
comparable to the downsampled 100 m RADARSAT resolution.

SAR imagery, and especially wide swath SAR imagery, often display a tonal variation in the range
direction of the image (see Figure 4.2, left). This is due to the varying incidence angle between radar
rays and the Earth’s surface as well as the changing distance from the radar to the target. These
effects can partially be corrected for by absolute calibration of the SAR image. However, for this
work a pragmatic solution to range correction was applied: The average variation of backscatter
across range for sea ice was modelled by an exponential curve and subsequently applied to the SAR
images to correct for this effect. This correction is not used for RADARSAT images but only
ENVISAT images, due to the fact that ENVISAT displays a more pronounced range-brightness
variation due to it’s wider range of incidence angle. In Figure 4.2 the effect of the range correction
can be seen.

Feature selection and extraction
Due to speckle inherent in SAR data it is not possible to accurately classify SAR data using the
amplitude or the normalized backscattering cross section only. Therefore an important issue to
consider is the extraction of reasonable features from the data.
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Figure 4.2: Left: Uncorrected ENVISAT WSM scene. Right: Corrected ENVISAT WSM scene.

Many different features and their combinations have been investigated in the field of sea ice
classification, but no universal features, invariant to data resolution, seasonal or weather conditions,
has been formulated. A common approach is to use region based features, i.e. to calculate a measure
of a local region around each pixel. Examples of this approach is the use of second-order grey level
statistics, distribution matching and adaptive thresholding methods.

Texture patterns from second-order grey level statistics have been shown to provide valuable, but not
always unambiguous, information about the surface classes. Several studies present successful
results in discriminating sea ice in the texture feature space, e.g. Shokr (1991), Barber and LeDrew
(1991) and Kaleschke and Kern (2002). It was chosen to elaborate on these methods by using
second-order grey level statistics derived from the Grey-Level Co-occurrence Matrix (GLCM) as
defined originally by Haralick et al. (1973).

The texture features were computed using the Grey Level Co-occurrence Linked List, which makes
fast computation of second-order grey level textures possible. The algorithm was described by
Clausi and Jernigan (1998) and later used for sea ice classification by Kaleschke and Kern (2002).
This implementation allows for the computation of eight second-order statistics as listed in table 4.1,
where Cij is the probability for the cell ij in the GLCM, σx is the standard deviation of row i, σy is
the standard deviation of column j, µx is the mean of row i, µy is the mean of column j, G is the
number of grey levels.

The different texture measures reflect the degree of smoothness and the homogeneity of the surface
and is normally grouped into three groups as indicated in table 4.1. Within the smoothness and the
homogeneity groups the texture measures tend to be correlated. Therefore, a common approach in
selecting texture features for classification is to choose only one or a few features from each group.

There are a number of parameters to consider before calculating the GLCM for the SAR images:
quantization of the input data, size of the GLCM and the direction in which the GLCM is calculated.

For this project, after some initial tests, it was chosen to quantize the original 256 grey level (8 bit)
images to 64 levels (6 bit). This vgives a considerable faster computation of the grey-level
co-occurrence matrices without loss of information. Clausi (2002) reported that a too high or too low
quantization resulted in decreased classification accuracies.
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Homogeneity texture measures

ASM Angular Second Moment (or En-
ergy)

ASM =
G−1∑

i,j=0

C2

ij

ENT Entropy ENT = −
G−1∑

i,j=0

CijlogCij

Smoothness texture measures

CON Contrast CON =
G−1∑

i,j=0

Cij(i − j)2

DIS Dissimilarity DIS =
G−1∑

i,j=0

Cij |i − j|

HOM Homogeneity HOM =
G−1∑

i,j=0

Cij

1 + (i − j)2

INV Inverse Difference Moment INV =
G−1∑

i,j=0

Cij

1 + |i − j|

Other texture measures

COR Correlation COR =
G−1∑

i,j=0

(i − µx)(j − µu)Cij

σxσy

MU Mean MU =
G−1∑

i,j=0

iCij

Table 4.1: The eight Grey Level Co-occurrence Texture Measures.

The window size of the GLCM has been discussed by for example Shokr (1991) and an appropriate
box size of 9x9 pixels was chosen after some trails using larger and small window sizes. The spatial
scale of the textures, as well as the spatial resolution of the RADARSAT ScanSar Wide images were
also taken into account. Too large a window causes blurring of the image, especially coming into
effect at the boundaries between ice and water, whereas too small a window size does not allow the
detection of the desired textures. A smaller window size is preferable if computation time of the
GLCM is of importance.

The GLCM can be calculated for a range of different directions, allowing the detection of textures
that are aligned at specific directions. Barber and LeDrew (1991) concludes that a GLCM calculated
with an orientation parallel to the look direction gives maximum discrimination of sea ice, however
for this work this statement has not been investigated and it was chosen to use an averaging of
directions by making the GLCM rotationally invariant.

Number of features
From the body of research into classification of sea ice using second-order statistics it is, as
mentioned ealier, not possible to conclude which feature measures are the best. Clausi (2002) uses
second order statistics on RADARSAT ScanSAR images and concludes that if only three features
are to be used, the contrast (CON), the entropy (ENT), and the correlation (COR) measures are
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preferred. Kaleschke and Kern (2002) uses quite similar features on ERS-2 SAR data,
recommending the use of the entropy (ENT), mean (MU), contrast (CON) as well as a lee-filtered
image (speckle reducing filter).

However, the optimal choice of features might be suspected to be quite closely connected to the
specific data set used. On this background it was decided, for the development of this method, to
investigate the optimal combination and number of features over a range of typical images.

Using the full set of texture features in one single classification is not expected to provide good
results, i.e. a high classification accuracy. This is because using all of the features will make it
difficult for the training samples to model the full feature space. Furthermore, many of the GLCM
texture features are correlated and will therefore not improve on the clustering of the data but only
make the feature space more noisy. The investigation on the topic of optimal feature selection and its
results is presented in the later chapter 5, Results and Discussion.

Examples of the texture images can be seen in Figure B.1 in Appendix B where all nine features for
scene 2 is shown.

Training data
Selection of training areas for the classification has to be carried out with special care to ensure a
good statistical data material for the neural network training and classification. Campbell (1996)
mentions studies showing that the selection of training data is equally important to the classification
accuracy as the choice of the classification algorithm and its parameters itself.

In the selection of training data it was assured that homogeneous areas, containing only one surface
class were selected. Furthermore, areas were selected evenly distributed over the entire image (if
possible). This ensures that all the variations within the class is represented within the training data.

In the Figures A.1 to A.6 the distribution of the training areas for each RADARSAT scene can be
seen as colored rectangles.

The method is not dependent on the ability to select equal number of training pixels to be selected for
each class. After the manual selection of training areas, an equal amount of training data is extracted
randomly from the manual selected areas. For scene 1, 2a, 2b, 3 and 4, a total of 2000 training pixels
per class were extracted, whereas for scene 5 only 1300 pixels per class were extracted.

For the validation of the classification, the training data is divided randomly into two subsets of data.
One for training the neural network and one for testing the accuracy of the classification by
calculating how well the neural network classifies the data. This is described in section 4,
Classification Accuracy.

Traning data selection software

Selecting training data from remote sensing images requires the experience of a trained image
analyst. For this method development, ice charting experts carried out the work.

A software extension for the Erdas Imagine image analysis system was developed (see Figure 4.3).
The ice experts are used to working in Erdas Imagine for ice charting which was the reason this
software was chosen. The GUI-based extension enables the user to load a SAR image and annotate it
with a number of training classes. The training classes are displayed with different colors and are
assigned a class name. The annotated image is eventually exported into a file format readable to the
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Figure 4.3: Training data selection. An extension to Erdas Imagine. Top left: File management. Top
middle: Annotation tools. Top right: Training class management. Bottom: SAR image with training
data overlay.

classification software.

Number of classes
For the purpose of sea ice concentration retrieval the number of surface classes can be kept relatively
small, as it is not necessary to be able to discriminate between different ice types, e.g. first-year ice
and multi-year ice. However, for the clustering of the data in the feature space it is often valuable to
have individual classes for each ice type. Later these are combined into one ice class for achieving
sea ice concentration.

The choice of classes for the five images analyzed in this study typically consist of two sea ice
classes and one or two open water classes. The sea ice classes are: 1) smooth, low backscattering
ice, and 2) rough, high backscattering ice. The water regions were either chosen to consist of calm
water and turbulent water as separate classes, or in the cases of scene 3, 4, and 5 to only include one
water class and ignore the turbulent water class. This is done because of a frequent overlap between
turbulent open water and the rough ice classes was found. This is discussed in the Results and
Discussion, chapter 5.
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Classification method
The choice of classification algorithm is, like the choice of features, not trivial either. This method
uses a supervised classification scheme by the means of an artificial neural network. Many statistical
models for classification, suffer from the assumption that the data follows a certain probability
distribution (Benediktsson and Sveinsson, 1997). Neural networks allows for model-free
classification that are both fast and flexible. However, there is a trade-off in that the method works
much like a black box where the relations between the features and the class is not easily deductible.
Neural networks are also known to perform well on data sets of noisy and poorly defined data
(Silipo, 1999), which makes it reasonable to use the neural network on SAR data.

A widely applied neural network in the fields of statistical pattern recognition and classification is
the Learning Vector Quantization (LVQ) as formulated by Kohonen (2001). Hastie et al. (2001)
groups LVQ together with K-means Clustering calling them Prototype Methods. The training data is
represented by a set of points in the feature space, and the classification is based on a distance
measure (often the Euclidean distance).

Remote Sensing applications of LVQ have found the algorithm to be accurate and flexible as
reported by for example Kaleschke and Kern (2002). For this project the LVQ_PAK implementation
Kohonen et al. (1996) of Learning Vector Quantization was used.

The LVQ algorithm is based on the description of the classes by so called codebook vectors, which
are essentially training pixels viewed as vectors (see Figure 4.4).

Figure 4.4: Four features and the codebook vector.

LVQ - neural network training
The codebook of vectors is constructed through a learning or training phase in which the feature
vectors are adjusted and positioned in an optimal way, so that they do not intermingle and cause
overlapping class boundaries.

For the actual training of the LVQ a total of 10 % of the number of training samples per class were
chosen as the number of codebook vectors. Thus, the number of codebook vectors was 200 for scene
1-4, but only 130 for scene 5. After initialization of the codebook, the learning phase adjusts the
position of the codebook vectors on the basis of input vectors fed from the training data. If the class
of the input vector agrees with the class of the closest codebook vector, then the codebook vector is
moved towards the input vector. This training stage is repeated a predefined number of steps and the
distance by with the codebook vectors are moved is decreased simultaneously as specified by the
learning rate. Ideally, this iterative process reaches stability.
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The codebook which is the result of the learning phase can be illustrated by the Voronoi tessellation
in which the boundaries between the Voronoi cells constitute the class boundaries. This is shown in
Figure 4.5. However, this is the 2D case. In the normal case the boundaries between classes are
hyperplanes.

Figure 4.5: The Voronoi tessellation. Dots are optimized codebook vectors, lines are boundaries
between classes.

A common phenomenon in the field of neural networks is over-learning. Over-learning is what
happens when the neural network becomes fine-tuned to the training data and thus will not be able to
generalize to new data (Silipo, 1999). However, by using the LVQ3 variant of the LVQ algorithm,
over-learning is not of concern. LVQ3 is self-stabilizing as described in Kohonen et al. (1996),
meaning that the optimal placement of the codebook vectors do not change with extended learning.
The number of learning steps was therefore set to a high value of 500.000, the learning rate set to a
low value of 0.03, the relative learning rate parameter to 0.1 and the window width parameter to 0.3.
The optimization of these parameters for the classification accuracy has so far not been investigated
fully in the work of this project.

Classification and its accuracy
After the training by Learning Vector Quantization, the final codebook can be used to classify
unlabeled feature vectors. An unlabeled feature vector is assigned the class of the closest codebook
vector given by the Euclidean distance between them. This is used to compute the final classified
image product which is used for ice concentration calculation.

Assessment of the classification accuracy was done by establishing the confusion matrix of the
training and the validation vectors. From this an overall accuracy for each classification was
computed. In Appendix C the confusion matrices for each classified RADARSAT image can be seen.

A visual way to evaluate on the classification’s ability to classify the data, is to make Sammon plots
(Kohonen et al., 1996). A Sammon plot is a method for mapping high dimensional data onto a lower
dimensional space, usually 2-D. By plotting the trained codebooks and their labels in this way, it can
be evaluated whether the clusters of classes are overlapping or not. Figure 4.6 shows a Sammon plot
of the trained codebook vectors of scene 1. Four well-separable classes are seen, which corresponds
well with the high recognition accuracy of that specific classification.
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Figure 4.6: Sammon plot for scene 1. The four classes are well-clustered and non-overlapping

Assessment of classification and fine-tuning
After the classification phase, the classified image is assessed by an ice expert by comparing the
classified image with the original image and the texture images. If the classification is erroneous, the
operator can choose to fine-tune the number and placement of training areas as illustrated in the
classification flowchart, Figure (4.1). Signs of the classification being in error can be the overlapping
of classes, e.g. poor discrimination between for example high backscattering ice and turbulent water.
This is a common problem for sea ice classification from single-polarized SAR data as also reported
by Gill (2002).

Choosing different combinations of features, adding or removing training areas, changing the
number of surface classes can improve the classification. After the fine-tuning the classification is
performed again.

Classification mask
The final step in the classification procedure is to make a classification mask. The mask separates
areas of well classified areas from misclassified areas and is based on manual image interpretation.
Obvious misclassified areas such as areas of wind roughened water confused with high backscatter
sea ice and very calm water confused with low backscatter ice are the main target for the masking.
Furthermore, land areas are also masked out, producing an image showing only well classified areas
of sea ice and water.

In Figure 4.7 and example of the masking procedure is shown.
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Figure 4.7: Left: Original SAR scene. Middle: Classification result. Right: Masking out
misclassified areas.

4. Results and Discussion
This chapter reports on the results of the six different classifications, but firstly the investigations of
the choice of texture features and their impact on the classification accuracy is vdescribed.

Selecting optimal number of features and their combinations
One of the experiments in the development of this method was to investigate the effect of the number
of texture features and their combinations on the classification accuracy. The experiment was carried
out by training the neural network for all possible combinations of the nine features: Angular
Second Moment (ASM), Entropy (ENT), Contrast (CON), Dissimilarity (DIS), Homogeneity
(HOM), Inverse Difference Moment (IDM), Correlation (COR), Mean (MU) and Lee. This equals
512 different feature combinations for which the recognition accuracy was computed for each class
as well as for the average over all the classes. The average over all classes can be considered a good
measure for the ability of the individual feature combination to classify the image.

To get an overview of the classification results, the classification accuracy was plotted for each
feature (Figure 5.1). A distinct and similar pattern can be seen for each different image. There are
two groups of classification accuracies for each image. One group showing a high accuracy and one
group showing a lower accuracy. Surprisingly these groups consist of the same combinations of
features for all classifications. This means that certain combinations of features consistently yield
high accuracies while some combinations consistently yield lower accuracies.

The figure 5.1 also shows that as the number of features increases, the maximum classification
accuracy decreases. This support the recommendations of Clausi (2002) to limit the number of
texture features in sea ice classification. On this basis it was chosen to analyse the feature
combinations of four or less features belonging to the group of high classification accuracies. This
group is indicated in Figure 5.1 as the areas in the top left dotted box. These areas each contain the
same 153 combinations of features. Thus, the optimal feature combination for the five classified
images should on this background be chosen from those groups.

Assigning a score to each combination, by weighing it with the classification accuracy from each
image, it was possible to make a list of the top 20 best feature combinations for all five images
(Figure 5.1). In Appendix D the top 20 accuracy scores are listed for each individual classification.
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Figure 5.1: Classification accuracy for classifications using different number and combinations of
features.

From Appendix D (Table D.1 to D.7) to it can be seen how the contrast (CON), angular second
moment (ASM), entropy (ENT) and the lee filtered image (LEE) are consistently useful for
classifying the SAR data. Occasionally, the inverse difference moment (INV) and the correlation
(COR) features are useful.

Classification and sea ice concentration results
To illustrate the sea ice classification capabilities of the described classification system, this section
presents the results of the classification of each of the five RADARSAT scenes. The classified
images can be seen in Appendix E, figures E.1 to E.6, where the classes have been merged into only
two classes, water (blue) and ice (white), to make the result easier to interpret.

The images were classified with the combination of features which gave the highest recognition
score as listed in the top 20 scores for each image in Appendix D.

Image 1. The image was accurately classified with an average accuracy of almost 98%. The four
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MU
LEE INV HOM ENT DIS COR CON ASM ACCURACY

0 1 0 0 1 1 0 1 1 92.09
0 0 0 1 1 1 0 1 1 92.02
0 1 0 0 1 0 1 1 1 91.97
1 1 0 0 1 0 0 1 1 91.80
0 1 0 0 1 0 0 1 1 91.76
1 0 0 0 0 0 0 1 1 91.74
0 0 0 0 1 0 0 1 1 91.72
1 0 0 0 1 0 0 1 1 91.70
0 0 0 1 1 0 1 1 1 91.68
1 0 0 1 1 0 0 1 1 91.57
1 1 0 0 0 0 1 1 1 91.54
1 1 0 0 0 1 0 1 1 91.51
0 0 0 0 1 1 1 1 1 91.51
0 0 0 1 0 1 0 1 1 91.51
1 0 0 1 0 1 0 1 1 91.48
0 1 0 1 1 0 0 1 1 91.48
0 1 0 0 0 0 1 1 1 91.48
1 0 0 0 1 0 1 1 1 91.46
0 0 0 0 1 0 1 1 1 91.44
0 1 0 1 0 0 1 1 1 91.44

Table 5.1: Top 20 averaged accuracy scores and their feature combinations. 1 indicates that the
feature was used, 0 indicated that it was omitted.

surface classes chosen for the classification (two ice classes and two water classes) proved to be able
to classify the image successfully. There were no problems with overlapping classes and very few
areas seem to be misclassified.

Image 2a. The image was classified twice with different training areas (see Figure A.2 and A.3) to
illustrate the fine tuning capabilities of the classification scheme. The first classification (scene 2a)
used training samples from the entire image and as can be seen, this resulted in poor recognition of
vboth sea ice and the open water in between the ice floes. The reason for this is probably overlapping
of the rough ice and turbulent water classes. The sea ice areas are underestimated and therefore the
sea ice concentration would not be representative for the area.

Image 2b. In the second attempt to classify the image, the wind roughened water area in the west of
the image was ignored from the classification and no training pixels were selected in this area.
Furthermore, additional training areas for the low concentration sea ice were added to strengthen the
recognition of this class. This resulted in an improved recognition of the sea ice class (Figure E.3),
and the recognition accuracy was increased from 90.55% of the scene 2a to 98.38% for the scene 2b
classification.

Image 3, 4 and 5. These three images were classified with the purpose of retrieving good ice
concentration measures from the ice covered areas of the images. Therefore the classification result
over the open water regions were not considered to be of importance to the success of the
classifications. The result for scene 3 (Figure E.4) suffered from very low contrast in the far range of
the image, but still gave a high recognition accuracy of 98%. Scene 4 (Figure E.5) shows trouble in
classifying the sea ice correctly in the far range (left hand side) of the image due to similar low
contrast of intensity values. However, for most of the ice covered area of the image a good estimate
of the sea ice concentration is achieved. The recognition accuracy was 89%. Scene 5 gave a low
recognition accuracy (80%) because of misclassified areas of turbulent open water. This should be
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corrected in a fine-tuning of the classification, but still the classification result is satisfying over the
ice covered areas.

Robustness of classification
A SAR scene was classified twice to test the robustness and precision of the classification algorithm
in regards to the selection of training areas. It is important that the ice concentration retrieval method
is not dependent on the subjective selection of training areas.

The RADARSAT ScanSAR Wide scene from June 21st 2004 was classified twice by two different
ice experts. The difficulty of the scene was medium, i.e. no wind-roughened water and high ice
concentration. Three classes were used: calm water (class 1), low backscatter ice (class 3), and high
backscatter ice (class 4). The comparison of the two classifications can be seen from the error matrix
in table 5.2.

Table 5.2: Error matrix, two classifications. Number of pixels for classes 1-4.

1 3 4 Totals
1 8375543 29206 2 8404749
3 354177 10639648 277474 11271299
4 267422 682735 10131684 11081843
Totals 8997142 11351589 10409160 30757891

From the error matrix the inter-classification precision can be computed:

ice/water confusion: (354177+267422+29206+2)/30757891 = 2.1%

The results show that the algorithm is very robust towards the choice of training data in that the ice
and water classes are classified with a precision of 2.1%.

5. Conclusion
The classification system described in this report allows for retrieval of high accuracy sea ice
concentration for at least parts of single-polarized RADARSAT ScanSAR Wide scenes.

Second-order grey-level statistics are used as features in a supervised classification scheme based on
learning vector quantization. Training data is selected manually by expert ice analysts using a
custom training selection tool. After optional fine-tuning of the training data a binary mask is
produced to mask out areas of misclassified pixels.

A special investigation into the classification accuracy for a wide range of texture feature
combinations was carried out. Certain features consistently yield high classification accuracies,
namely the contrast, the angular second moment, the entropy, and the lee filtered image. Other
features occasionally proved useful: the inverse difference moment and the correlation. Using too
many features gave rise to lower recognition accuracies.

From the classification of the five RADARSAT images it was shown that special care has to be taken
in the selection of training data. The image analyst must be aware of the limitations of the data, that
is, know which classes are ambiguous in the feature space. In particular the rough sea ice class and
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the turbulent water classes, but also thin ice and calm water classes, constitute potential class pairs of
confusion.

A recommended solution is to ignore areas of turbulent water and concentrate the classification on
the areas of sea ice and not too wind roughened water. Subsequently, high resolved sea ice
concentration can be retrieved from these subsets of the image.
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Appendix
A. Images and training areas

Figure A.1: Scene 1. Amplitude image with training areas. Red = calm water, green = turbulent
water, yellow = sea ice smooth, blue = sea ice rough.
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Figure A.2: Scene 2a. Amplitude image with training areas. Red = calm water, green = turbulent
water, yellow = sea ice low concentration blue = sea ice high concentration.
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Figure A.3: Scene 2b. Amplitude image with training areas. Red = calm water, green = turbulent
water, yellow = sea ice low concentration blue = sea ice high concentration.
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Figure A.4: Scene 3. Amplitude image with training areas. Red = water (turbulent), green = sea ice.
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Figure A.5: Scene 4. Amplitude image with training areas. Red = calm water, green = sea ice rough,
blue = sea ice smooth.
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Figure A.6: Scene 5. Amplitude image with training areas. Red = calm water, green = sea ice high
backscatter, blue = sea ice low backscatter.
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B. Samples of texture images

Figure B.1: Feature images for scene 2. Top row from left to right: MU, LEE, INV. Middle row:
HOM, ENT DIS. Bottom row: COR, CON, ASM
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C. Classification accuracies

SCENE 1
1: 1000 entries 100.00 %
2: 1000 entries 98.30 %
3: 1000 entries 93.90 %
4: 1000 entries 99.60 %

Total accuracy: 4000 entries 97.95 %

-----------------------------------------------------------

SCENE 2a
1: 1000 entries 100.00 %
2: 1000 entries 80.60 %
3: 1000 entries 97.60 %
4: 1000 entries 84.00 %

Total accuracy: 4000 entries 90.55 %

------------------------------------------------------------
SCENE 2b

1: 1000 entries 100.00 %
2: 1000 entries 99.20 %
3: 1000 entries 98.20 %
4: 1000 entries 96.10 %

Total accuracy: 4000 entries 98.38 %

------------------------------------------------------------
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SCENE 3
1: 1000 entries 96.50 %
2: 1000 entries 99.50 %

Total accuracy: 2000 entries 98.00 %

------------------------------------------------------------

SCENE 4
1: 1000 entries 99.20 %
2: 1000 entries 86.80 %
3: 1000 entries 81.10 %

Total accuracy: 3000 entries 89.03 %

------------------------------------------------------------

SCENE 5
1: 650 entries 67.69 %
2: 650 entries 99.69 %
3: 650 entries 73.08 %

Total accuracy: 1950 entries 80.15 %

------------------------------------------------------------
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D. Top 20 accuracy and feature combinations scores
Table D.1: Top 20 averaged accuracy scores and their feature combinations. 1 indicates that the
feature was used, 0 indicated that it was omitted.
ALL
MU LEE INV HOM ENT DIS COR CON ASM ACCURACY
0 1 0 0 1 1 0 1 1 92.09
0 0 0 1 1 1 0 1 1 92.01
0 1 0 0 1 0 1 1 1 91.97
1 1 0 0 1 0 0 1 1 91.80
0 1 0 0 1 0 0 1 1 91.76
1 0 0 0 0 0 0 1 1 91.74
0 0 0 0 1 0 0 1 1 91.71
1 0 0 0 1 0 0 1 1 91.70
0 0 0 1 1 0 1 1 1 91.68
1 0 0 1 1 0 0 1 1 91.57
1 1 0 0 0 0 1 1 1 91.54
1 1 0 0 0 1 0 1 1 91.51
0 0 0 0 1 1 1 1 1 91.51
0 0 0 1 0 1 0 1 1 91.51
1 0 0 1 0 1 0 1 1 91.48
0 1 0 1 1 0 0 1 1 91.48
0 1 0 0 0 0 1 1 1 91.48
1 0 0 0 1 0 1 1 1 91.46
0 0 0 0 1 0 1 1 1 91.45
0 1 0 1 0 0 1 1 1 91.44

Table D.2: Top 20 accuracy scores and their feature combinations. 1 indicates that the feature was
used, 0 indicated that it was omitted.
Scene 1
MU LEE INV HOM ENT DIS COR CON ASM ACCURACY
0 1 1 1 0 0 0 1 1 98.90
0 1 0 0 1 0 0 1 1 98.88
0 0 1 1 0 0 0 1 1 98.88
0 0 1 0 1 0 0 1 1 98.88
0 1 0 1 1 0 0 1 1 98.85
0 0 0 1 1 0 0 1 1 98.85
0 0 0 0 1 0 0 1 1 98.83
0 1 1 0 1 0 0 1 1 98.80
0 0 0 1 1 1 0 1 1 98.80
1 1 0 0 1 0 0 1 1 98.78
1 0 0 1 0 1 0 1 1 98.78
1 0 0 0 1 0 0 1 1 98.78
0 0 1 1 1 0 0 1 1 98.78
1 1 0 0 0 1 0 1 1 98.75
1 0 1 0 0 0 0 1 1 98.75
0 0 0 0 1 1 0 1 1 98.75
1 0 0 0 0 1 1 1 1 98.72
0 1 0 0 1 1 0 1 1 98.72
0 0 1 0 0 0 1 1 1 98.72
0 0 0 1 1 0 0 1 0 98.72
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Table D.3: Top 20 accuracy scores and their feature combinations. 1 indicates that the feature was
used, 0 indicated that it was omitted.
Scene 2a
MU LEE INV HOM ENT DIS COR CON ASM ACCURACY
0 1 0 0 1 1 0 1 1 91.23
0 1 0 0 1 0 1 1 1 90.77
0 0 0 1 1 1 0 1 1 90.77
0 0 0 0 0 1 1 1 1 90.77
1 1 0 0 0 0 1 1 1 90.53
0 0 0 1 1 0 1 1 1 90.53
0 0 0 0 0 0 1 1 1 90.53
1 0 0 0 0 1 1 1 1 90.50
0 1 0 0 1 0 0 1 1 90.47
1 1 0 0 1 0 0 1 1 90.43
1 0 0 1 1 0 0 1 1 90.43
1 0 0 0 1 0 0 1 1 90.43
0 0 0 1 0 0 1 1 1 90.37
0 0 0 0 1 0 0 1 1 90.37
0 0 0 0 0 1 0 1 1 90.30
1 0 0 1 0 1 0 1 1 90.27
1 0 0 1 0 0 1 1 1 90.27
1 0 0 1 0 0 0 1 1 90.27
0 1 0 0 0 0 1 1 1 90.27
1 0 0 0 0 0 1 1 1 90.23

Table D.4: Top 20 accuracy scores and their feature combinations. 1 indicates that the feature was
used, 0 indicated that it was omitted.
Scene 2b
MU LEE INV HOM ENT DIS COR CON ASM ACCURACY
0 1 0 1 1 0 0 1 1 91.35
0 0 0 1 1 0 1 1 1 91.35
0 0 0 1 1 1 0 1 1 91.33
0 0 0 1 0 0 1 1 1 91.33
0 1 0 1 0 0 1 1 1 91.30
1 0 0 0 1 0 0 1 1 91.25
0 1 0 0 1 1 0 1 1 91.20
1 0 0 1 1 0 0 1 1 91.17
0 1 0 0 1 0 0 1 1 91.12
1 0 0 1 0 1 0 1 1 91.08
0 0 0 0 1 1 1 1 1 91.08
1 0 0 0 0 0 0 1 1 91.05
0 0 0 0 1 1 0 1 1 91.05
0 0 0 0 1 0 0 1 1 91.03
1 0 0 0 1 1 0 1 1 91.00
1 0 0 1 1 0 0 1 0 90.97
1 0 0 1 0 0 0 1 1 90.95
0 1 0 0 1 0 1 1 1 90.95
1 1 0 0 0 0 0 1 1 90.92
0 1 0 1 0 1 0 1 1 90.92
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Table D.5: Top 20 accuracy scores and their feature combinations. 1 indicates that the feature was
used, 0 indicated that it was omitted.
Scene 3
MU LEE INV HOM ENT DIS COR CON ASM ACCURACY
0 1 1 0 0 0 1 1 1 98.30
0 0 1 0 1 1 0 1 1 98.25
0 1 1 0 0 0 0 1 1 98.15
0 1 1 1 0 0 0 1 1 98.10
0 1 1 0 0 1 0 1 1 98.10
0 0 1 0 0 1 1 1 1 98.10
1 1 1 0 0 0 0 1 1 98.05
1 0 1 0 0 0 1 1 1 98.05
0 0 1 1 0 0 1 1 1 98.05
0 1 1 1 0 0 0 1 0 97.95
0 0 1 0 0 0 1 1 1 97.95
0 0 1 0 0 0 1 1 0 97.95
0 0 0 0 1 1 1 1 1 97.95
1 0 1 1 0 0 0 1 1 97.90
1 0 1 1 0 0 0 1 0 97.90
1 0 0 0 1 0 1 1 1 97.90
0 0 1 1 0 1 0 1 1 97.90
0 0 1 1 0 0 0 1 1 97.90
0 0 0 0 1 0 1 1 1 97.90
1 0 1 0 0 1 0 1 0 97.85

Table D.6: Top 20 accuracy scores and their feature combinations. 1 indicates that the feature was
used, 0 indicated that it was omitted.
Scene 4
MU LEE INV HOM ENT DIS COR CON ASM ACCURACY
0 1 0 0 1 0 1 1 1 91.83
1 1 0 0 1 0 0 1 1 91.47
0 1 0 0 1 1 0 1 1 91.43
0 0 0 1 1 1 0 1 1 91.40
0 1 0 0 1 0 0 1 1 91.27
1 0 0 1 1 0 0 1 1 91.23
1 1 0 0 0 0 1 1 1 91.03
0 0 0 1 1 0 1 1 1 91.00
0 1 0 1 0 0 1 1 1 90.93
0 0 0 0 1 0 0 1 1 90.87
0 1 0 0 0 0 1 1 1 90.83
0 0 0 1 1 0 0 1 1 90.80
1 0 0 1 0 0 1 1 1 90.73
1 0 0 0 1 0 0 1 1 90.67
1 1 0 1 0 0 0 1 1 90.63
0 0 0 0 1 1 0 1 1 90.63
0 0 0 1 0 0 1 1 1 90.60
0 1 0 0 0 1 1 1 1 90.57
0 0 0 0 1 0 1 1 1 90.57
0 1 1 0 1 0 0 1 1 90.53

www.dmi.dk/dmi/sr05-04 page 31 of 39



Danish Meteorological Institute
Scientific Report 05-04

Table D.7: Top 20 accuracy scores and their feature combinations. 1 indicates that the feature was
used, 0 indicated that it was omitted.
Scene 5
MU LEE INV HOM ENT DIS COR CON ASM ACCURACY
0 1 0 0 1 1 0 1 1 82.56
0 0 0 1 1 1 0 1 1 82.51
0 0 0 1 0 1 0 1 1 82.36
1 0 0 0 0 0 0 1 1 82.05
1 1 0 0 0 1 0 1 1 81.90
0 1 0 0 1 1 0 1 0 81.74
0 1 0 0 1 0 1 1 1 81.74
0 1 0 0 0 1 0 1 1 81.74
1 1 0 0 1 0 0 1 1 81.69
0 0 0 1 0 1 1 1 1 81.69
0 0 0 0 1 0 0 1 1 81.69
0 1 0 0 0 1 0 1 0 81.64
0 0 0 1 1 1 0 1 0 81.64
1 0 0 0 1 0 0 1 1 81.59
0 0 0 0 1 1 1 1 1 81.59
1 0 0 0 1 1 0 1 1 81.54
1 0 0 0 0 0 1 1 1 81.49
0 0 0 0 0 1 1 1 1 81.49
1 0 0 1 0 1 0 1 1 81.44
0 0 0 0 1 1 0 1 1 81.33
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E. Classified images

Figure E.1: Scene 1. Final classification. Blue = water, white = sea ice.
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Figure E.2: Scene 2a. Final classification. Blue = water, white = sea ice.
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Figure E.3: Scene 2b. Final classification. Blue = water, white = sea ice.
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Figure E.4: Scene 3. Final classification. Blue = water, white = sea ice.
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Figure E.5: Scene 4. Final classification. Blue = water, white = sea ice.
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Figure E.6: Scene 5. Final classification. Blue = water, white = sea ice.
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Previous reports
Previous reports from the Danish Meteorological Institute can be found on:
http://www.dmi.dk/dmi/dmi-publikationer.htm
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