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Geometrical Optics Phase Matching of Radio Occultation Signals 
 
Abstract 
 
A. S. Jensen (1), M. S. Lohmann (1), H.-H. Benzon (1),  
A. S. Nielsen (1). 
  
Remote measurements of the state of the atmosphere can be done by radio occultation 
between satellite links, a GPS satellite transmitting a radio signal to a receiving low earth 
orbit satellite (LEO), or between a LEO-LEO satellite constellation. The bending angle of 
the traversing optical ray can be measured by detecting the Doppler shift of radio signals. 
The bending angle is an integrated measure of the refractive index in the atmosphere 
traversed by the optical ray. With a time series of the bending angle, it is possible to 
perform an inversion to reveal the refractive index. Various techniques for the retrieval of 
the bending does already exist. The most recent methods have solved the problem of 
multipath, i.e., when the atmosphere allows several rays to exist simultaneously. In this 
report, a new phase matching technique of radio occultation signals will be presented. 
  
 

Introduction 
In general terms, the radio occultation technique is based on the bending of radio waves 
caused by refractive index gradients in a planetary atmosphere [e.g. Kursinski et al., 
1997, 2000]. In Global Navigation Satellite System (GNSS) radio occultations, the 
bending is measured as radio waves traversing the Earth’s atmosphere from a GNSS 
satellite to a Low Earth Orbit (LEO) satellite. Traditionally this is done by measuring the 
Doppler shift of the radio wave from which the impact parameter can be retrieved and 
subsequently the bending angle with the knowledge of the positions and the velocities of 
the satellites. The retrieved pairs of bending angle and impact parameter can be inverted 
through the Abel transform to yield the index of refractivity as function of height [Fjeldbo et 
al., 1971]. 
 
The propagating radio waves can be described as rays according to geometrical optics 
when diffraction effects in the refractive media can be neglected. This excludes media 
where optical turbulence is present, areas with very strong gradient in the refractive index, 
and areas near surfaces. In general the geometrical optical description will be adequate 
when the disturbances in the media are much smaller than the wavelength.  
 
A receiver can detect one or more rays emerging from a transmitter. In single ray regions, 
the computation of bending angles is straightforward as they are unambiguously related 
to the instantaneous frequency of the received signal. Therefore, radio occultation 
measurements have conventionally been based on the instantaneous frequency. 
However, radio signals propagating through the lower troposphere may have a very 
complex structure due to multipath effects caused mainly by water vapour structures 
[Gorbunov et al., 1996; Gorbunov and Gurvich, 1998; Gorbunov et al., 2000; Sokolovskiy, 
2001]. In regions that exhibit multipath, the bending angles cannot be derived directly 
from the instantaneous frequency of the measured signal because the instantaneous 
frequency will be related, not to a single pair of bending angle and impact parameter, but 
to two or more pairs. Another drawback of retrieving the bending angle directly from the 



instantaneous frequency is that the vertical resolution is limited by the size of the Fresnel 
zone. Thus, there has been much effort in developing techniques with high vertical 
resolution that are capable of correctly retrieving the bending angle profile in multipath 
regions [Gorbunov, 2001]. So far, five high resolution methods have been proposed for 
processing of radio occultation signals in multipath regions: (1) back-propagation 
[Gorbunov et al., 1996; Hinson et al., 1997, 1998; Gorbunov and Gurvich, 1998], (2) 
radio-optics, [Lindal et. al., 1987; Pavelyev, 1998; Hocke et al., 1999; Sokolovskiy, 2001; 
Gorbunov, 2001], (3) Fresnel diffraction theory [Marouf et al., 1986; Mortensen and Høeg, 
1998; Meincke, 1999],  (4) canonical transform [Gorbunov, 2001], and (5) the Full 
Spectrum Inversion (FSI) method  [Jensen et al., 2003]. 
 
This report presents a new high-resolution radio-holographic method, which shortly can 
be described as a phase matching or a transform of the occultation signal. The method 
can be described in general terms, but the use of the method can only be done with an 
explicit matching phase function. Here two explicit or special forms of the phase function 
are considered. In the first form, the method is identical to the FSI method [Jensen et al., 
2003], and the second form is a model derived from the geometrical optical phase in 
vacuum. It will be shown, that this model of the phase transform has the same high-
resolution properties as the FSI method, but solves some minor problems related to 
defocusing.  
 
The outline for the report is as follows: First, the general phase matching method is 
presented, and a special case is analysed in a spherical symmetric atmosphere.  
 

The Phase Matching  
In the following, the general theory for the phase matching will be established. The main 
point here is to use the stationary phase method [Born and Wolf, 1999] to evaluate the 
resulting phase transform. There are two main constrains for using the stationary phase 
method in this context: (1) The amplitude of the integrant must be slowly varying 
compared to the second order derivative of the phase of the integrant, and (2) one and 
only one stationary point must be present. Given a complex (radio occultation) 
signal, ∑= )()()( ti

i
ietAtf ψ , we can define a phase transform as follows: 
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where the phase ),( tc0ψ  is a function of time t , the parameter c defines the transform 
space. The parameter c  can in principle take all values. Eq.1 can be generalized by 
considering the parameter c  as a vector. In addition, associated with the phase, an 
(slowly varying) amplitude factor could be used; this will be done later.  The occultation 
signals are in general a sum of signals, which accounts for multipath. In the following, the 
summation will be omitted and the signal used should be perceived as one of the signals 
in the sum. The phase matched function )(cu  can be brought on an explicit form if the 
signal fulfill the constrains given in (1) and (2), as stated above. It yields 
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All derivatives here are with respect to time. The condition ),()( 11 tct oψψ && =  determines the 
stationary point(s) from which )( 1tcc =  can be found. It is assumed that only one solution 
exist according to condition (2) above. The phase in Eq.2, ),()( 11 tct oψψ − , is a function of 
the transforming space parameterc , and by differentiation of the phase with respect to c , 
an auxiliary function on parametrical form can be found:  
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which express a relation between the transform space parameter and the partial 
derivative of the matching phase. 

 
 

 
Figure 1: Occultation Geometry 

The figure has been sketched with the use of Eq.4, which can be considered as an approximation 
to the geometrical optics ray path. α  is the bending angle, LG ψψ ,  the angels between the ray 
path and the radius vector at the GPS and LEO positions, θ  is the angle between the LEO and 
GPS, LG rr ,  the distance to the Earth center from the GPS and LEO and a  is the impact 
parameter, respectively. As noticed, the angels are connected by the relation: GL ψψθα −+= . 
 



The formulas derive here can be used to design some wanted properties of the match, by 
knowing the structure of the signal phase. This will not be done here systematically, but 
instead some examples of this will be elaborated. A special case is here the FSI method, 
where the transforming phase is given by cttco =),(ψ , i.e., the phase matching becomes 
the Fourier transform, and the auxiliary function [ ]1tc −,  (Eq.3) gives the Doppler frequency 
as function of time. Another special case is to let the auxiliary function take the 
form [ ]βkc −, . Here c is the impact parameter, β  is the bending angle and k is the 
wavenumber. The matching phase yields in this case for a spherical symmetric 
atmosphere:  
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where Gr  and Lr are the radii of the GPS and LEO satellites, respectively. It is seen that 
the auxiliary function [ ]βkc −,  can be found by using Eq.3. The bending angle β  is related 
to the parameter c and the mutual angle θ  between the GPS and the LEO satellites by 
the standard relation: 
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The notation for the impact parameter and the bending angle ),( βc  is used in order to 
distinguish these forced parameters from the real quantities ),( αa , which allover in this 
report are associated to the real occultation signals.  
 
The phase in Eq.4 is actually an approximation to the optical ray path. The idea to the 
form (Eq.4) comes from an analysis of the occultation phase with a spherical symmetric 
refraction profile: The optical phase can in this case be expressed as:  
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where a  is the impact parameter and α the bending angle. By setting 1=n , ca =  and 

βα =  the expression above turns formally into Eq.4.  
 
The stationary point determined by ),()( 11 tct oψψ && =  can explicitly be expressed by: 
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The solution of this is simply, ac =  which verifies that with the phase given in Eq.4 the 
result of the phase match gives the bending angle as function of impact parameter. Using 
Eqs.4 and 6 to compute the phase difference at the stationary point yields;   
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Differentiating the difference phase with respect to the parameter c then gives the 
bending angle multiplied by the wavenumber, as predicted above. 
 
Now, to finish the interpretation of this phase matching technique, the equivalent 
matching amplitude has to be calculated. This is done in Appendix I, together with an 
analysis of the benefits of using amplitude in the phase matching. The result from 
Appendix I, shows that the use of the phase in Eq.4 cancels the defocusing factor perfect, 
which together with the amplitude function makes the output amplitude of the phase 
transform )(cu a constant in the absence of absorption in the atmosphere. This last 
property is the main advantage of the method compared to the FSI method.  
 
The phase matching method related to the Fourier Integral Operators (FIO) method used 
in the canonical transform method developed by [Gorbunov et al, 2002] and classified as 
canonical transform without back propagation. In this, the differential equations for the 
specialized case mentioned above, has been stated, but no solutions has been given. 
The connection between the method described here and the method of [Gorbunov et al, 
2002] has been discovered in a private communication. Both methods rely on the 
synthetic antenna concept and the method of the stationary phase used in the FSI 
method.    
 
Now, this interpretation of the geometrical optic phase matching technique has been 
rather lengthy, so a short recap of the practical use of the method is appropriate.    
 

1: The phase matching is performed on the occultation signal: 
 

,

)(,)()(

),()(

)2/),()(((

0

),()(

11

11

tct

tcti
G

T
tcti

o

o

o

eP

dtetCetAcu

ψψ

πψψ

ψψ

&& =

+−

−

≅

= ∫
 

 
2: The phase is differentiated with respect to c  giving the bending angle.  
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3: The result [ ]β,c  is Abel transformed giving the refractive index. 

 
The number of c values used, will depend on the magnitude of the bending angle in that 
respect that the phase variation should be sufficiently small so the differentiation is 
correct. 
 
 
      



Conclusion 
The technique of geometrical optical phase matching introduced here is a specialization 
of the previous developed FSI method taking the form of the optical phase into account. 
Both methods utilize the synthetic aperture formed by the moving LEO satellite to give a 
high resolution of the measured impact parameter and both rely on the method of 
stationary phase. Initial simulations of the phase matching technique show no advantage 
compared to the FSI method, which is to be expected, as long as the task is to determine 
the bending angle as function of the impact parameter. However, if absorption can be 
measured, as proposed by [Lohmann et al., 2003], the phase matching technique will 
have a clear advantage. In the practical use of the methods, i.e., with respect to 
computation time, the phase matching method is much slower than the FSI method. The 
FSI method uses a FFT for the computation of the spectrum, which not is possible with 
the phase matching case.  
 
 



Appendix I: Calculation of the amplitude factor in the 
geometrical optics phase match. 
 
The amplitude factor in the phase matching method can partly be defined arbitrarily as 
long as it is slowly varying. However, it is convenient to use an amplitude factor, which 
makes the amplitude of the phase match constant.  Using Eq.2 and the geometric optical 
intensity [Leroy, 2001], [Jensen et al., 2003]. The intensity yields:    
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where GP  is the intensity at the transmitting GPS satellite and Ldad )( θ  the defocusing 
factor at the receiving LEO satellite. The defocusing factor can be approximated  to yield 

adad L &&θθ ≈)( .  
 
The second time derivative of the phase in Eq. 1 can be expressed as: 
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In Eq.AI.2 it is seen that the defocusing factor ( adad L &&θθ ≈)( ) is a multiplicative factor, 
which means that the defocusing is perfectly canceled out in the phase transform. This 
property is the main advantage of the geometrical optics phase match method compared 
with the FSI method, where a perfect cancellation only is present when the radial 
velocities are zero. Since other variations in the amplitude are slow, it is then possible to 
assign an amplitude factor to the phase match, which gives constant amplitude in the 
transformed space. Besides the beauty of this, it has the function that it can reveal and 
detected absorptions along the ray path [Lohmann et al., 2003]. 
 
By defining the matching amplitude as follows     
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this purpose is realized. 
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