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Abstract 
 
In this report we present documentation and a specification of the algorithms defining 
a wave optics simulator tool as well as source code examples of the wave optic 
propagator. These project tasks and objectives are fully described in the ESTEC 
contract No. 15946/02/NL/SF.  
We give a general description of radio wave propagation in the atmosphere and a 
specific description of a wave propagator developed by M.E. Gorbunov.  
The forward wave optics propagator (WOP) is capable of including model 
atmospheric data and also real data from NWP analysis as a basis for the simulations. 
The document is organised into 7 chapters: the first one contains the introduction, and 
the following chapter is a description of the wave propagator and a description of 
coordinate systems and transformations. We also discuss the atmospheric model 
(MSIS90), how to determine physical parameters and describe the equation behind 
ray tracing in the neutral atmosphere.  
In chapter three we present simulation results of phase and amplitude from a wave 
propagator using an ECHAM GRIB file. The validation of the wave propagator is 
performed in chapter four while chapter five contains conclusion of the results under 
consideration. 
Besides, the document is prolonged by a number of appendixes in chapter 6 that in 
more detail describe the algorithms used in the wave propagator. 
Finally, the document is completed in chapter 7 with a list of references that has been 
used in this document. 
 

1 Introduction 
Ray Tracing is a very popular technique in computer graphics used for creating 
realistic pictures of scenes that have a defined 3-D structure. A multitude of imaginary 
rays are sent from the viewer through the screen and into the 3-D geometry. If a 
particular ray hits some object, the "imprint" of that object will appear on the screen at 
the place where the ray intersected it. 
 
The atmospheric ray tracers based on geometrical optics give very realistic results in 
many cases. An atmospheric ray tracer is based on the geometrical optic 
approximation – the limiting form of Maxwell’s equations when 0→λ , which is 
only valid when the signal frequency is high and the density of the medium is low, 
and when we consider a reasonable smooth atmosphere. Furthermore, most ray tracers 
are based on an assumption of single ray propagation, i.e., multipath propagation is 
not taken into account. Multipath propagation occurs in the transition zone where the 
geometrical optics approximation is valid to non-validity of this approximation.  
 
The atmosphere of the Earth can produce large gradients – both vertical and 
horizontal – that cause multipath propagation and also even total failure of the 
geometrical optics approximation. Large gradients most often occur in the lower 
troposphere in connection with inversion layers and water vapour. Water vapour is 
highly variable both vertically and horizontally whereas inversion layers primarily 
have large vertical gradients. Large vertical gradients can also occur around the 
tropopause. Extra information can be gained from the use of an atmospheric forward 
wave propagator based directly on the solution of the wave equation for 
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electromagnetic fields. The current propagator presented in this document is based on 
a two-dimensional wave propagation description, which is able to handle multipath 
situations. 
 
Wave propagation in the atmosphere is based on the solution of the Helmholtz wave 
equation. In practice this can be done by solving the parabolic equation approximation 
of the Helmholtz wave equation. This approach applies a full wave, forward scatter 
model that is capable of predicting propagation of arbitrary atmospheric refractivities. 
The primary limitations of this technique are that it neglects the backscattered field, 
and accurate calculations are restricted to near-horizontal propagation directions. 
 
In the following, the wave propagation will be described in detail. First, the 
theoretical derivation of the method will be given together with the theoretical 
limitations of the method. After this the algorithm description follows. These 
descriptions show how the methods can be implemented. Also some comments are 
given on where improvements/changes might be necessary depending on the context 
of application of the algorithms. 
 

2 An Atmospheric Wave Propagator 
The propagator makes use of a ray tracer in order to locate the area in which the field 
will propagate. The wave propagation in the troposphere/stratosphere is based on the 
waves propagating from a set of thin screens.  
 
The forward wave propagation between the screens is based on the expansion of the 
field in a set of plane waves. This can be implemented using the fast Fourier 
transform (FFT) and thus significantly increasing the execution speed of the 
propagator. Spatial frequencies are used in the Fourier transform calculations. The 
wave propagator can, however, be improved in some areas. The split-step Fourier 
solution can be extended from the current 2-D version to a 3-D version. Furthermore, 
the standard parabolic equation used here can be substituted with a parabolic equation 
that is valid in a wider-angle span around the horizon.  
 
Slower, but more accurate methods, such as the finite-difference method, can be used 
to propagate the electromagnetic wave between the screens in the neutral atmosphere. 
An alternative approach is to approximate the neutral atmosphere with (a leaky) 
wave-guide. The wave propagation in the neutral atmosphere can then be found from 
the electromagnetic mode theory. 
 
The propagation of the wave from the last screen to the LEO orbit is performed using 
the 1-D version of the Fresnel diffraction integral. This is nearly the same integral 
used in the back propagation algorithm (Meincke 1998). The only difference is a 
change of the sign in the complex exponent. This will make the wave propagate in the 
opposite direction compared to the back propagation case. Figure 2.1 below 
summarises the different calculation steps performed by the atmospheric wave 
propagator. The following sections describe the equations needed to perform the 
calculations listed in the flowchart.  
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GPS and LEO orbit parameters

Wave propagation between the screens using the 2D
Fourier transform in the thin screen approximation

Determination of occultation geometry  and
coordinate transformations

Wave propagation from the last screen to the
LEO orbit using the Fresnel integral

Spherical/dipole wave propagationfrom the
GPS orbit to the 1. screen

Determination of the neutral atmosphere
propagation area

Initialisation of the model/GRIB refractivity
fields

 
 
 
Figure 2-1: The large box shows the different calculation steps performed by the atmospheric 
wave propagator. 

 

  

2.1 Coordinate Systems 
Figure 2.2 below shows a schematic drawing of the occultation geometry (GPS and 
LEO orbits) and the positions of the thin screens, aligned with the Y-axis, in the 
neutral atmosphere. A spherical wave is assumed to propagate from the GPS to the 1. 
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thin screen and the wave propagation in the neutral atmosphere are determined by the 
well-known thin screen approximation (Meincke 1999). The propagation of the wave 
from the last screen to the LEO orbit is performed using the 1-D version of the 
Fresnel diffraction integral. The (X,Y) coordinate system depicted in Figure 2.2 is 
used for these calculations. The satellite orbits must all be transformed to this 
coordinate system. The equations used for these transformations are summarised in 
the following sections.  
 
Figure 2.3 presents a 3-D view of the occultation geometry and the coordinate 
systems. The blue plane in the figure represents the occultation plane defined by the 
positions of the LEO and GPS satellites and the curvature centre of the occultation 
point. 
 

 

Figure 2-2: The geometry of the occultation and the coordinate system used for the 
wave propagator. 
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Figure 2-3: A 3-D view of the occultation geometry and the coordinate system used 
in the wave propagator. The LEO satellite is seen right above the surface boundary of 
the Earth and the GPS satellite is located to the right. 

 
The following pages give, in a summarised form, a description of all the coordinate 
systems used in the wave propagator and the corresponding transformations. The goal 
is to get a 2-D coordinate system where the GPS satellite has zero velocity. This 
coordinate system describes the plane in which the occultation takes place.  
 
We start out by listing all the used coordinate systems and describe how they are 
defined (see Appendix B for further details). 
 

2.1.1 The J2000 Coordinate System 
A Cartesian coordinate system fixed to the stars. Satellite positions are given relative 
to this coordinate system. The Z-axis coincidences with the Earth’s rotation axis, 
which is not perpendicular to the Earth’s orbit. Instead, the Earth’s axis is tilted 23.5 
degrees away from the perpendicular. The Earth constantly maintains this tilted 
orientation as it orbits the Sun. The Origin is situated at the Earth’s centre so that the 
X- and Y-axis span the equatorial plane. 

2.1.2 The Earth Frame 
A Cartesian coordinate system fixed to the centre of the Earth (see Figure 2.4). The Z-
axis coincidences with the Earth’s rotation axis. The X-axis goes through the 
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Greenwich meridian and the Y-axis through 90 degrees east. The origin is situated at 
the Earth’s centre so that the X- and Y-axis span the equatorial plane. 
 

2.1.3 Geodetic Coordinates 
A Geodetic Reference System is used (see Figure 2.4). The coordinates are geodetic 
latitude (angle between equatorial plane and reference ellipsoid surface normal at the 
point), longitude (angle between Greenwich meridional plane and meridional plane 
through the point) and height above reference ellipsoid (reckoned along the reference 
ellipsoid surface normal). 
 

 
Figure 2-4: Cartesian fixed Earth frame and geodetic coordinates. 

 

2.1.4 Moving Occultation Plane Systems 
The two-dimensional occultation plane coordinate systems are based on a defined 
“occultation point” that is determined by the following procedure:  
Assuming spherical symmetry of the Earth and zero refraction angle, then the ray 
perigees for each set of simultaneous satellite positions during an occultation is 
determined (that is the points closest to the centre of a spherical Earth of the straight 
lines between the GPS and LEO satellites). Note that since we approximate the ray 
paths by straight lines the perigee can be beneath the Earth surface (see Figure 2.5).   
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Figure 2-5: Occultation geometry. 

 
Then the coordinates of all the points are transformed to geodetic coordinates and the 
point with smallest height above the reference ellipsoid (reckoned along the reference 
ellipsoid surface normal) is chosen. Again note that this height might be negative. The 
height of this point is set to zero and the new point is the occultation point (see Figure 
2.6).  
The whole problem is discretizised by the sampling rate. Let us call the time index i 
and let it have the value iocc at the time of smallest geodetic height. 
 
 

 
Figure 2-6: Nearest points of rays, perigees, and corresponding occultation point. Both 
the spherical Earth approximation and the reference ellipsoid are drawn. 
 
The moving occultation plane contains the GPS and LEO satellites and the local 
curvature centre for the reference ellipsoid at the fixed occultation point. Since the 
satellites are moving the orientation of the plane relative to other coordinate systems 
changes during an occultation event. The moving occultation plane coordinate 
systems are orthogonal two-dimensional coordinate systems. Their origins are at the 
fixed local curvature centre.  
 
The X-axis is approximately directed along the instantaneous GPS-occultation point 
line and is shown in Figure 2.7 as the AX vector. The Y-axis is directed approximately 
normal to the ellipsoid and is shown in Figure 2.7 as the AY vector. 
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Figure 2-7: Two-dimensional occultation-plane coordinate system. 

 

2.1.5 Occultation Plane System 
The occultation plane coordinate system is the moving occultation plane system at the 
time i = iocc (see section 2.1.4). 
 

2.1.6 Unmoving GPS System 
Compared to the occultation plane system the zero of the Y-axis in the unmoving GPS 
coordinate system is translated by Rc, the local radius of curvature. The GPS satellite 
X-coordinate is set to the value it has at the time i = iocc, i.e., when the ray traverses 
deepest into the atmosphere. The LEO X-coordinate is transformed in a way so that 
the total bending angle remains the same for a given impact parameter. The unmoving 
GPS system is sketched in Figure 2.8. The Ex basis vector is nearly parallel to the 
GPS-occultation point connection line which is nearly tangential to the ellipsoidal 
Earth. Ey is normal to Ex and directed outwards from the Earth and thereby nearly 
parallel to the local curvature radius vector. The only difference between (Ax,Ay) and 
(Ex,Ey) is a translation. 
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Occultation point

GPS
Curvature center

Ex
Ey

 
Figure 2-8: Unmoving GPS coordinate system. Ex is not exactly parallel to the tangent 
of the ellipsoid point. 

2.2 Coordinate Transformations 
The following sections explain the transformation matrices between the coordinate 
systems. 
 

2.2.1 J2000 to Earth Frame 
Since the Z-axis is common to both systems the transformation is a rotation about this 
axis. The rotation angle is found by converting Greenwich Apparent Sidereal Time 
(GAST) to an angle γ by the conversion factor 2π/86400 [rad/s]. Sidereal time is 
based on the rotation of the Earth relative to space (the fixed stars) and is therefore 
equivalent to an angle. We anticipate in the context that GAST is approximately equal 
to Greenwich Mean Sidereal Time (GMST). 
First, the Julian day (JD) number, which is the number of days elapsed since noon 
January 1, 4713 B.C in the Julian calendar, has to be calculated. This date is the same 
as –4712 January 1 since the chronology is 2BC, 1BC, 1AD, 2AD and –2, -1, 0, 1, 2 
.The following algorithm works for dates later than 1582 AD when Pope Gregory 
reformed the Julian calendar and introduced the Gregorian calendar. The operator int[ 
] takes the integer part of the real number in the brackets. A date in the Gregorian 
calendar is represented as Y, M and DM corresponding to year, month and day-of-
month number respectively. The first day in a month is day 1. If M<3 then Y1=Y-1 
and M1=M+12. If M≥3 then Y1=Y and M1=M. 
 
 





=
100

1int YA  (2-1) 

 
 





+−=

4
int2 AAB  (2-2) 
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 [ ]125.365int YC ⋅=  (2-3) 

 
 ( )[ ]116001.30int +⋅= MD  (2-4) 

 
 5.1720994++++= DMDCBJD  (2-5) 
 
The parameter B is due to the rule of the Gregorian calendar that says that although 
divisible by 4, years divisible by 100 is not leap years unless they are also divisible by 
400. The +2 constant in B corrects for the calendar revision in 1582 where 10 days 
were omitted and the above leap year rule was introduced. 
 
The factor 30.6001 is an appropriate number that makes D exactly 63 bigger than the 
number of days from Y1 January day 1.5 to Y1 M1 day 1.5 where M1=3,4,…,14. 
 
The constant 1720994.5 comes from the 1721058 days from –4712 January 1 noon to 
year 0 January 1 noon, minus 63 days that is counted too much in D, minus 1 day due 
to the convention that the first day in a month is designated 1 not zero, plus 1 day due 
to that the leap day in year 0 is not included in D, and at last –0.5 is due to the 
convention that JD is counted up to Greenwich noon, but we count up to the midnight 
before. 
 
Then we can form the following parameter  
 

 
36525

0.2451545−= JDTu  (2-6) 

 
where the numerator is the number of days elapsed since JD 2451545, which 
corresponds to 2000 January 1, 12 hr UT1, and the denominator is the number of days 
in a century. Tu is then Julian centuries elapsed since 2000 January 1 noon. 
 
Then GMST of 0h UT1 of the given day is given by the formula 
 
              

362 102.6093104.0
812866.864018454841.241101h UT 0 of GMST

TuTu
Tu

⋅⋅−⋅+
⋅+=

−
 (2-7) 

 
which is counted in seconds. Then we have to add the contribution according to the 
time of day (tod) namely 
 
 secseconds60minute3600hour)1tod(UT D++⋅+⋅=  (2-8) 

 
where Dsec is the time elapsed since the start of the occultation, and hour, minute and 
seconds denote the starting time of the occultation. 
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Universal time UT1 is approximately related to sidereal time by a constant conversion 
factor 1.0027379093 so that 
 

 931.00273790tod(UT1)al)tod(sidere ⋅=  (2-9) 

 
and since one mean sidereal day is defined as 24 sidereal hours (86400 seconds) 
GMST can be obtained as  
 
 al),86400)tod(sidereh UT1 0 of mod(GMSTGMST +=  (2-10) 

 
Finally, GMST is converted into an angle 
 
 [ ]s/rad

86400
2GMST πγ ⋅=  (2-11) 

  
The transformation can be summarised in matrix notation as  
 
 

.
100
0cossin
0sincos

2000

2000

2000
































−=

















z
y
x

z
y
x

E

E

E

γγ
γγ

 (2-12) 

 
 

2.2.2 Earth frame to J2000 
 
The transformation from the Earth frame to J2000 is given by the inverse of Eq. 2-12 
and can be written as 
 
 































 −
=

















e

e

e

z
y
x

z
y
x

100
0cosγsinγ
0sinγcosγ

2000

2000

2000

 (2-13) 

 

2.2.3 Geodetic to Earth Frame 
The “radius of curvature in the prime vertical” rcp is given by 
 
 

( ) ϕ2sin21 ff
arcp

−−
=  (2-14) 

 
where f is the reference ellipsoid flatness, a is the major semi axis and ϕ is geodetic 
latitude. If λ is geodetic longitude and h is geodetic height the Earth frame coordinates 
are given by  
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 ( )hrcpxE +⋅⋅= λϕ coscos  (2-15) 

 
 ( )hrcpyE +⋅⋅= λϕ sincos  (2-16) 

 
 ( )( )hfrcpzE +−⋅⋅= 21sinϕ  (2-17) 

 
Since this is a non-linear relationship it cannot be written in matrix form. 
 

2.2.4 Earth Frame to Geodetic Coordinate System 

There is no closed form of this transformation. ϕ , λ  and h all have to be determined 
either by iteration or approximate formulas. We give an approximation method here. 
The longitude is given by 
 
 









=

E

E

x
y

arctanλ  (2-18) 

 
We define some convenient parameters. 
 
 22

EE yxRxy +=  (2-19) 

 
 









⋅

⋅=Θ
bRxy

azEarctan  (2-20) 

 
then the latitude is 
 
 









Θ⋅⋅−

Θ⋅⋅+
= 3

3

cos
sin

arctan
aeRxy
bezEϕ  (2-21) 

 
and with 
 
 ( ) ( ) ϕϕϕϕ sincos2sincosarg 222222

EE zRxyRxyazb ⋅+−+−=  (2-22) 

 
the height above the reference ellipsoid becomes (Gorbunov, private communication) 
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 ( )
ϕϕ

ϕϕ
2222

22

sincos
argsincos

ab
abzaRxyb

h E

+
+−−−

=  (2-23) 

 

2.2.5 J2000 to Occultation Plane 
The coordinates in the occultation plane are approximated by the coordinates in the 
moving occultation plane coordinate system. 
Since the moving occultation plane coordinate system do change its position and 
orientation relative to the J2000 coordinate system continuously during an occultation, 
the following transformation scheme has to be carried out for each set of data during 
the occultation. Figure 2.9 illustrates the geometry and notation. 
 
 

 
Figure 2-9: Geometry considered in the transformation between J2000 and occultation 
plane coordinate systems. 

First, a unit vector NG in the direction from the curvature centre of the occultation 
point (that is determined by the lowest perigee and thereby remain constant during the 
whole occultation) to the GPS (which is moving) is determined by 
 
 

RLCRGPS

RLCRGPS
NG

−

−
=  (2-24) 

 
where RGPS and RLC denote the GPS and curvature centre position vectors, 
respectively. The double bars denote the L2 norm, i.e., the length of the vector. 
Secondly, a unit vector NL perpendicular to NG and situated in the GPS-LEO-
curvature centre plane is created by appropriate use of subtraction, dot products and 
normalization. 
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 ( )( )
( )( ) NGNGRLCRLEORLCRLEO

NGNGRLCRLEORLCRLEONL
∗∗−−−

∗∗−−−=  (2-25) 

 
where RLEO defines the LEO position vector. The local radius of curvature is given 
by 
 
 

rcprcm

Rc αα 22 sincos
1

+
=  

(2-26) 

 
 
where α is the angle between geographic north and the occultation plane intersection 
with the local horizontal plane, and rcp and rcm are the parallel and meridian radii of 
curvature, respectively. 
 
 

2/122 )sin1( ϕe
arcp

−
=  (2-27) 

 
 

2322

2

)sin1(
)1(

/e
earcm
ϕ−

−=  (2-28) 

 
Here a is the major semi axis of the Earth, e is the eccentricity of the Earth and ϕ is 
the geodetic latitude. Now an approximation of the geometry in the problem has to be 
done, in order to create vectors AX parallel to the straight line from the GPS to the 
occultation point, and vectors AY perpendicular to AX and nearly parallel to the 
curvature radius. We now assume that the angle between the NG vector and the 
curvature radius can approximately be determined by  
 
 

RLCRGPS

Rc

−
=)cos(β  (2-29) 

 
which is a good approximation since the curvature radius is perpendicular to the 
reference ellipsoid tangent that is nearly parallel to the straight line between the GPS 
and the occultation point. We then have that 
 
 ( )ββ 2cos1)sin( −=  (2-30) 

 
and by trigonometry it can be derived that 
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 ( ) ( ) NGNLAX ⋅−⋅= ββ sincos  (2-31) 

 
is the wanted X-axis unit vector. Similarly the Y-axis unit vector is given by 
 
 ( ) ( ) NGNLAY ⋅+⋅= ββ cossin  (2-32) 

 
The coordinates of the satellites in the moving occultation planes are determined 
simply by forming the dot products between the J2000 position vectors and these 
basis vectors. In these coordinate systems the GPS Y-coordinate is nearly constant. 
 
The coordinates in the moving occultation coordinate systems are used as 
approximate values of the coordinates in the (fixed) occultation plane coordinate 
system, i.e., the rotation of the Earth is neglected during the occultation. 
 

2.2.6 Occultation Plane to Unmoving GPS System 
First the Y coordinates are translated 
 
 cRiYLEOiYLEO −= )()(unmov  (2-33) 

 
 
 cRiYGPSiYGPS −= )()(unmov  (2-34) 

 
We want the GPS to be fixed at its coordinates at the time when the ray penetrates 
deepest into the atmosphere. The Y-coordinate is constant in the occultation plane 
system, but the X-coordinate needs to be transformed in the following way. In order 
not to change the Doppler shift, i.e., total bending angle, we first form F(i) 
(Gorbunov, Gurvich & Bengtsson 1996) 
 

 ( ) ( ) ( )
( ) ( )iXGPSiXLEO

iXGPSiXLEOiF
−
⋅=  (2-35) 

 
for each set of satellite positions. XLEO and XGPS are the LEO and GPS occultation 
plane X-coordinates respectively. Then the new LEO X-coordinates are given by  
 
 ( ) ( ) ( )

( ) ( )ioccXGPSiF
ioccXGPSiFiXLEO

−
⋅=unmov  (2-36) 

 
and the GPS position can be fixed, i.e., XGPSunmov(i)=XGPS(iocc) for all values of i. 
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2.3 Initialisation of the Atmosphere Model/GRIB File 
The refractivity field used by the wave propagator can be determined from two 
different models such as:  
 
1) a MSIS90 model which is an empirical model describing the climatologically 
features of the atmosphere. It is based on temperature, density and composition data 
from a comprehensive summary of rocket flights, satellites and incoherent scatter 
radar, including data from high solar activity. The original version of the model was 
introduced in 1977 and has been improved and revised regularly since then. The latest 
version of MSIS (MSIS90) now extends into the mesosphere and lower atmosphere in 
order to provide a single analytic model for calculating temperature and density 
profiles, representative of the climatologically average for various geophysical 
conditions. It includes a longitudinal variability linked to the planetary waves activity, 
and time dependence from the solar activity. While month-to-month details are not 
completely represented, lower atmosphere temperature data are fit to an overall 
standard deviation of 3 K and pressure to 2 %. Comparisons with measured data 
indicate that the model represents reasonably well current knowledge of the 
climatologically average. 
 
2) a Numerical Weather Prediction model (NWP). In this case the data is contained in 
a so-called GRIB file.  
GRIB is the World Meteorological Organization (WMO) format for GRIdded Binary 
data. It is widely used in the international meteorological community, for the 
interchange of gridded weather data fields. GRIB data is also self-describing, meaning 
that the information needed to read the file is present within the file. Each GRIB file is 
composed of a series of GRIB records. One GRIB record holds the gridded data for 
one parameter at one time and at one level. Each GRIB record is composed of 6 
sections. Section 4 contains the data itself. The other sections give the information 
required to read the GRIB record, and information on the meteorological parameter 
contained in the record, the level the record refers to and the type of grid the 
parameter is on. Section 1, known as the product definition section, and section 2, 
known as the grid definition section, are the information sections most frequently 
referred to by users of GRIB data. The product definition section (section 1) contains 
information about the parameter, level type, level and date of the record. The grid 
definition section (section 2) contains information on the grid, for instance whether 
the grid is regular, and the resolution of the grid. 
Normally the refractivity is not directly found in the GRIB file, but can be calculated 
from the temperature, pressure and humidity fields found in the file. The refractivity 
fields must be known with a high resolution in the area of the occultation. 
Interpolation is needed in order to get the high resolution of the field (see Appendix C 
for details). 
 

2.4 Atmospheric Refractivity 
The atmospheric profiling technique provides measurements of the Doppler shift of 
the probing GPS signals that have passed through the limb of the atmosphere. The 
magnitude of the shift is related to the atmosphere’s refractivity gradients along the 
path of the signal. These in turn are related to the atmosphere’s temperature, pressure 
and humidity fields. 
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Provided that the signal has sufficiently high quality (i.e., signal-to-noise) and that 
other variables of the experiment (e.g. the positions of the transmitter and receiver) 
are known to sufficient accuracy, information on the temperature and humidity fields 
can be retrieved. More specifically, from series of measurements obtained during the 
occultation event, the profiles of temperature and humidity close to the tangent point 
of the signal path can be estimated. 
 
The occultation technique is defined by geometry, where the transmitter and the 
receiver are positioned relative to the Earth in such an arrangement, that the radio 
wave signal traverses the atmosphere from the ionosphere to the limb of the Earth and 
back again to the LEO satellite. The propagation path of the GPS electromagnetic 
wave through the atmosphere will be influenced by the dispersive character istics of 
the medium, due to ionised and neutral parts of the gas in the atmosphere. The results 
are bending and change in the phase and amplitude of the transmitted signals. 
Refractivity index generally decreases with radius in the neutral atmosphere, which 
causes a ray to bend by an angle α  towards the planet. 
In order to derive atmospheric properties from retrieved profiles of the real 
component of the atmospheric refractive index, n, it is necessary to know how these 
properties influence n. In this context we only consider microwave wavelengths in the 
Earth’s atmosphere, and n contains contributions from four main sources. These are, 
in order of importance, the dry atmosphere (dry term), water vapour (wet term), free 
electrons in the ionosphere (ionospheric term), and liquid water (scattering term). 
Their effects are given to first order by the following equation 
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where N is refractivity, P is atmospheric pressure in mbar. T is atmospheric 
temperature in Kelvin, Pw  is water vapour partial pressure mbar, ne  is electron density 
per cubic meter, f is transmitter frequency in Hertz, and W is liquid water content in 
grams per cubic meter. The GPS satellites continuously radiate signals at two different 
frequencies in order for the users to separate the frequency dependent propagation 
delays due to ionospheric refractivity from other effects like the temperature and 
moisture of the neutral atmosphere. 
 
The dry refractivity term is due to polarisability of molecules in the atmosphere, i.e., 
the ability of an incident electric field to induce an electric dipole in the molecules. 
Dry refractivity is proportional to the molecular number density and is dominant 
below 60-90 km. The moist refractivity term is due primarily to the large permanent 
dipole moment of water vapour and becomes significant in the lower troposphere.  
 
The ionospheric term in Eq. (2-37), which is a first order approximation to the 
Appleton-Hartree equation, is mainly due to free electrons in the ionosphere and 
becomes important above 60-90 km. The scattering term in Eq. (2-37) is due to liquid 
water droplets suspended in the atmosphere. This term is small compared to the others 
and is accordingly neglected.  
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2.5 Determination of the Neutral Atmosphere Propagation Area 
Figure 2.10 below shows the wave propagation area in the neutral atmosphere. The 
area limits are defined by the four parameters Xmin, Xmax, Ymin and Ymax.  
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Figure 2-10: The upper figure depicts the Earth spherical approximation used for 
determination of Xmin. The lower figure is a more realistic description of the 
occultation geometry where the Earth flattening is taken into account. The 

r
 vector 

defines the values Xmax and Ymin. 
NX

The height of the atmosphere and the maximum height of the neutral atmosphere 
occultations are represented by the two parameters Hatm and Hmax. The local 
curvature radius of the Earth is denoted by Rc, and the geometric mean radius of the 
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Earth is denoted by Re. The two parameters Xmin and Ymax are defined as the X-value 
where the field enters the atmosphere and the maximum Y-value of the occultation, 
respectively. The parameters are given by 
 
 
 22atm)(min ee RHRX −+−=  (2-38)

 
 DyaHY += maxmax  (2-39)

 
where Hmax is the selected upper boundary of the screens, and Dya is the extent 
apodization zone (see section 2.8). 
    
It can be seen from geometrical considerations (Figure 2.10 and 2.11) and from ray 
tracing that the area limiting parameters Xmax and Ymin are given by 
 
 )(*max CERLNXxEX

rrr
−=  (2-40)

 
 DyaRCERLNXyEY c −−−= )(*min

rrr
 (2-41)

 
 
The  vector can be found from the following procedure: determine by ray tracing 
the point at the top of the atmosphere with the largest X and the smallest Y-value, 
which rays can reach without intersecting the Earth. That means that the

r
 vector 

ranges from the centre of the Earth to the (Ymin, Xmax) point. The latter can be 
defined by the ray that leaves the atmosphere having the smallest Y-value (Ymin) and 
the largest X-value (Xmax) at the atmospheric edge. 

NX
r

NX
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Figure 2-11: The figure depicts the propagation area in the neutral atmosphere 
together with the first and last rays propagating between the GPS and LEO satellites. 
A short red line, on the right side of the figure, shows the trajectory of the LEO 
satellite during the occultation. 

2.6 Ray Tracing in the Neutral Atmosphere 
It is known from geometrical optics that the propagation of rays are determined by the 
eikonal equation given by 
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where the gradient of S gives the direction of the ray. The function S is often called 
the eikonal, and Eq. (2-42) is the basic equation of geometrical optics. The equation, 
as described in Eq. (2-42) is valid for the two-dimensional cases, but can easily be 
extended to three dimensions. n represents the index of refraction of the medium in 
which the rays propagate and (X,Y) are the coordinates in the Cartesian coordinate 
system. By rewriting this equation in a new ray based coordinate system we obtain the 
following equation  
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where s denotes the ray path. Under the assumption that 
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 the equation above can be given by the following two 

coupled differential equations  
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These coupled differential equations, that determine the ray propagation in a medium 
where the index of refraction as a function of position rr  is given by, )(rn r , can for 
example be solved using the Runge-Kutta technique. 

2.7 Wave Propagation from the GPS Satellite to the 1. Screen 
The wave propagating from the GPS satellite to the 1. screen can either be 
approximated by a spherical wave or by the field from a vertical magnetic dipole. The 
field from the spherical wave is determined by the following equation 
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r
R  is the radius vector from the GPS satellite to the point on the 1. screen where the 
field is evaluated. The wave emitted from the GPS satellite corresponds to the 
solution of the Helmholtz equation with a source located at the position of the GPS 
satellite. Since the WOP is a two-dimensional wave propagation model we need the 
solution of the two-dimensional Helmholtz equation. This is the reason for the square 
root in the denominator of Eq. 2-45. E0 and  is a scaling constant and the free space 
wave number, respectively (see Appendix E for details). The harmonic time 
dependence of the signal has here been suppressed. The equation below can be used if 
a vertical magnetic dipole is used as the electromagnetic source  

Tk

 
 

|R|

|R|ikERE T
r

r
r )sin()exp()( 0

θ=Φ  

)(1)( RERH
rr

Φ=
ηθ  

(2-46)

 
where η≅120π and the constant, E0, can be found from the current and diameter of the 
loop that generates the vertical magnetic dipole. The electric and magnetic field 
components are expressed in a spherical coordinate system. The electric and magnetic 
field components, not described in the equation above, can all be set equal to zero. 
The two equations for the Eφ and Hθ components are only valid in the far field where 
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terms proportional with r –2 and r-3 have neglected. The electric field from the dipole 
is depicted in the Figure 2.12. 
 

 
Figure 2-12: The Figure shows the field from the vertical magnetic dipole in the 
horizontal plane. 

2.8 Wave Propagation between the Screens in the Neutral Atmosphere 
The wave propagation between the screens in the neutral atmosphere will be 
described in this section. The solution of the external boundary problem for the 
Helmholtz equation in the form of the Fresnel integral is especially simple when the 
electromagnetic field is propagating between two parallel lines. The FFT technique 
can in this case be used to speed up the computations.  
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Figure 2-13: The screens and the refractivity in the neutral atmosphere. The dotted red 
lines denote the screens. The refractivity profile is calculated with the use of the 
ECHAM model and expressed in the local (X,Y) coordinate system. The white area in 
the figure represents the Earth. Multipath is expected to appear in the region from –
700 km to –1000 km, where the refractivity symmetry is broken. The colour bar 
denotes the logarithm of the refractivity. 

 
The field component, ψ , of the electromagnetic wave can in the normal Cartesian 
coordinate system be expressed by the following 2-D scalar wave equation 
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where k and n represent wave number and index of refraction. In general, the 
refractive index varies with range X and height Y and therefore Eq. 2.47 is not exact. It 
is however a good approximation provided the variations of n remain slow on the 
scale of a wavelength. 
It is now common practice to use the reduced function u given by 
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The reduced function will be slowly varying along the X-axis for propagation angles 
close to the paraxial direction (the horizontal direction), which gives it convenient 
numerical properties. The wave equation for the reduced function must be given by 
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This equation can be formally factored as 
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The square root term in this equation represents an operator acting on the reduced 
function u. Some of the solutions to this differential equation can be found by solving 
the differential equations corresponding to each of the two factors in the equation 
above. We must therefore solve the following pseudo-differential equations 
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The solutions to the first of these equations correspond to waves travelling along the 
positive X-direction (forward propagation) while solutions to the last equation 
correspond to waves travelling along the negative X-direction (backward 
propagation). The two differential equations are therefore called the outgoing and 
incoming parabolic wave equations, respectively. Adding the solutions of the two 
parabolic equations give us the solution to the original equation. However, in the 
following we will restrict ourselves to the solutions of the outgoing parabolic equation 
that solve for energy propagating in a paraxial cone centred on the positive X-
direction.  
 
Approximating the square root operator by a 1. order Taylor expansion 
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equation (SPE)  
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The equation is valid for propagation angles close to the horizon (the paraxial 
approximation). More refined approximations to the square root operator result in 
equations valid for wider propagation angles. The SPE can be solved using a number 
of different techniques. One of them is the split-step/sine transform solution, which 
gives an efficient and fast solution to the SPE. The split-step/sine transform solution 
to SPE is given by (Levy 2000): 
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S and S-1 represent here the sine and inverse sine transformations, respectively. The 
sine transform of the function u(x,y) with respect to height is given by the following 
equation 
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The transformed variable, p, can be thought of as the wave numbers for the plane 
waves in which the field is expanded.  
 
Another approximation to the square root operator is given by the following equation 
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This operator is valid for a wider span of propagation angles. The corresponding split-
step/sine transform solution for this wider angle parabolic equation (WPE) is given by 
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This equation will be used in the wave propagator because it is valid for a broader 
range of propagation angles compared to SPE. 
 
The split-step/sine transform solution can be thought of as a field propagating through 
a number of phase screens. The distance between the screens is . The field 
propagates along the positive X-axis and the screens are all orthogonal to the X-axis. 
The expression within the inverse sine transform operator propagates the field a 
distance , while the first exponential in the equation (Eq. 2-54) give us the impact 
on the field of the phase screen. This solution decouples the diffractive effects, 
included in the operations performed by the sine transform operator, from the 
refractive effects performed by the first exponential in the equation. This decoupling 
results in a small error. 
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The electromagnetic field must satisfy the electromagnetic boundary conditions on the 
screens in the neutral atmosphere. We therefore define an apodization zone where the 
electromagnetic field falls off following an exponential function. The apodization 
zone is found on the top and bottom of all of the screens in the neutral atmosphere and 
the field here is given by 
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and 
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where Y gives us the position on the screen and Ymax and Ymin are the Y-coordinate for 
the largest and smallest positions on the screen. Dya is the size of the apodization area 
on the top and bottom of the screen. The value of this parameter should be around 5 
km. Unew(Y) and Uold(Y) is the value of the complex field before and after the 
apodization of the field. 
 
The resolution, i.e., the distance between the points on the screen, is determined from 
the following equation 
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where εmax is the maximum propagation angle from the horizon to be represented 
without distortion. For the spherical wave this opening angle can be calculated as  
 
 ))/Xabs(Y,/Xmax(abs(Y GPSminGPSmaxmax =ε  (2-61)
 
The minimum number of point on the screen is 
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There is also an upper limit for the number of points on the screen given by: 
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where αmax is the maximum bending angle found from ray-tracing. If the Doppler 
phase is greater than π/2 and the current number is less than Nmax, then it is necessary 
to double the number of points on the next screen. 
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The equations above are correct under the assumption of a wave propagating along 
the X-axis in a Cartesian coordinate system. In our case the wave is travelling along 
the spherical Earth with heights measured along radials passing through the Earth’s 
centre. It will be shown that the equations are still valid when the so-called Earth 
flattening transformation (Levy 2000) is used (see Figure 2.14 below). However, in 
the current WOP implementation this transformation has not been included. 
 

 
Figure 2-14: The figure shows the so-called Earth flattening transformation where 
concentric shells representing ranges and heights are mapped to parallel planes. 

 

 

Figure 2-15: The (X,Y) coordinate system 

 
We have to use Maxwell’s equations expressed in a spherical coordinate system, 
given by (r,θ,φ), as a starting point. We end up having a particular simple form of the 
wave equation under the assumptions of a: 
 
1. vertical magnetic dipole as the radiating source, in which case the components Er, 
Eθ, Hφ are all zero  
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or a 
 
2. vertical electric dipole as the radiating source, in which case the components Hr, Hθ, 
Eφ are all zero. 
 
The wave equation gets the same form, when expressed in terms of the function ψ , in 
these two cases if we use the following equations in the case of a vertical magnetic 
dipole and a vertical electric dipole, respectively. 
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The wave equation in a 2-D Cartesian coordinate system (X,Y), for the function ψ , 
will now in both of these cases take the well-known form 
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We now have to define a transformation that maps concentric circles on to straight 
lines. The points (X,Y) are now understood to be points in the complex plane. The X 
and Y-coordinates can be expressed with the use of the height h above the surface and 
the angle θ , where the distance travelled along the surface of the Earth is 
approximately given by eRθ  (see Figure 2.15).  The radius of the Earth is again 
denoted by Re. 
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The following conformal transformation transform the complex points (X,Y) into a 
new set of complex points (x,y)  
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From these equations we obtain 
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The wave equation now has to be expressed in the new coordinate system. Using the 
properties of the conformal transformation it can be shown that the wave equation is 
given by  
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where 
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Under the assumption that y is approximately equal to h we immediately obtain the 
following equation 
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where m is the modified index of refraction given by 
 
 

eRhhxnhxm /),(),( +=  (2-72)

 
The above equation can, with the appropriate boundary conditions, be solved using 
the Fourier split-step algorithm. This approach to perform modelling of 
electromagnetic wave propagation in the troposphere has the advantages of being a 
full-forward-wave calculation that requires relatively few approximations and 
accommodates lateral as well as vertical in-homogeneities in the refractive conditions 
(Kuttler & Dockery 1991). 
 

2.9 Wave Propagation from a Screen to the LEO Orbit 
In this section we will explain the equations that determine the propagation of the 
field from the last phase screen to the LEO orbit (for details we refer to Appendix G). 
The split-step Fourier transform approach cannot be used in this case because the 
phase screens and the LEO orbits are not parallel.  
 
If the electric field, , is known all over a distant line , 0E S )(xE r  can be found at a 
given point . This is the two dimensional solution for the external boundary problem 
for the Helmholtz equation (Chew 1995, sect. 8.1) 

xr
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The solution (2-73) is the free space solution for a straight line . In (2-73) S Tk  is the 
free space wave number, xyϕ  is the angle between the normal ny

r  to  and the vector 
. The harmonic time dependence of the signal has been suppressed. The 

atmosphere is sufficiently tenuous to justify the use of the scalar version of the wave 
equation (Tatarski 1967). Because the scalar version of the wave equation applies, the 
same equation applies to the magnetic field, and thus it is only necessary to consider 
the electric field in the following. The solution is an approximation that can be used 
under the assumption that the line, S , is distant from the measurement point, i.e., y-
points on  must fulfil the relation 

S
yx rr −

S 1|| >>− yxkT
rr . It has been assumed that the 

necessary corrections of the signal for receiver effects and relativistic effects have 
been performed to give the total measured phase of the signal. This solution can be 
used to describe the field measured at the LEO if the field is known on the last phase 
screen, .  S
 
The integral (2-73) can be evaluated using a standard numerical integration routine. 
The integration is performed over a certain part of the last screen determined by the 
stationary phase technique. For every point, (xL,yL) on the  
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Figure 2-16: The sketch shows the concept of the stationary phase method. The red 
curve shows the accumulated phase along the last screen (thick line). The green line 
(LEO orbit) is the rightmost line. The geometric rays (blue) are indicated by an index 
j. For a point (x,y) on the LEO orbit the distance of the point on the screen is 
calculated and used in the calculation of the virtual phase. The position on the screen 
with the smallest virtual phase represents the stationary phase point for an individual 
point (x,y) on the LEO orbit. 
 
LEO orbit the virtual phases (VP’s) are calculated on the last phase screen using the 
following equation:  
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 VP(i)=ki*((x-xS(i))2+(y-yS(i))2)1/2 + PS(i) (2-74)
 
where PS is the calculated phase on every point (xS,yS) on the last screen. The index, i, 
corresponds to samples on the last screen. The stationary phase is then the smallest 
value of the virtual phase given by SP=min(VP). 
 
The (2-73) integral must be solved for every point along the LEO orbit. If the 
computation time is an important concern the Fresnel integral can be solved using the 
stationary phase technique. The standard unwrapping routine, given by the equation 
below, must be used to calculate the accumulated phase from the phase of the 
complex signal. 
 
 Phase(i)=Phase(i-1)+modulo(Phase(i)- Phase(i-1)+π, 2*π)- π (2-75)
 
This must be performed for all the samples i in the phase array.  
 
The integration limits are deduced by the stationary phase point plus/minus the 
distances corresponding to phase changes of 10*π (see Appendix G).  
If the stationary phase point is above or below the last screen, i.e., ySP>ymax or 
ySP<ymin the point on the LEO orbit in consideration, it is discarded. If the stationary 
phase point is within the range of the screen, but one of the integration limits, as 
described above, extends outside the screen, then the phase is extrapolated linearly 
and the amplitude is considered constant (see Appendix G). 
 
The boundary problem of the Helmholtz equation, which leads to the solution (2-73) 
for the measured electric field, in general have two solutions. The solution, which 
describes the propagation of the electric field (2-73), propagates outwards from the 
line, . The other solution propagates inwards, and can be considered to be the 
inverse solution to the boundary problem of the Helmholtz equation. This inverse 
solution is given by 
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where SL  denotes the LEO orbit. 
 
Due to the similarity with the solution that describes the propagation of the signal, the 
inverse solution is denoted as the back-propagation solution. This solution can be 
used to derive the field, , at the line, , if the field, 0E S E , at the LEO satellite is 
known. The back propagation algorithm has been described in the rapport “Analysis 
and Definition of Algorithms for Atmospheric Diffraction Effects” by Meincke 
(2000). 
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3 Simulation Results 
We will in this section present the results of simulations performed with the wave 
propagator. The propagator is used on a meteorological ECHAM GRIB file. The 
numerical ECHAM model is based on the weather forecast model of the European 
Centre for Medium Range Weather Forecasts (ECMWF). Numerous modifications 
have been applied to this model at the Max Planck Institute for Meteorology and the 
German Climate Computing Centre (DKRZ) to make it suitable for climate forecasts 
and it is now a model of the fourth generation. A detailed description of the ECHAM4 
model can be found in Roeckner et al. (1995). 
 
The occultations have been selected so the wave propagating from the GPS satellite to 
the LEO satellite will enter areas in the neutral atmosphere where there are strong 
variations in the index of refraction, which results in diffraction/multipath. Two 
different wave propagation simulations have been selected and presented in the 
following 8 figures. The simulated amplitude and phase signals for the L1 and L2 
waves, measured on board the LEO satellite, are shown in the figures below. 
Especially the amplitude signals exhibit strong signs of multipath effects. The 
variation in the amplitudes and phases of the electromagnetic field, in the neutral 
atmosphere, are shown with a colour code in separate plots. Again we see strong signs 
of multipath in the amplitude plots. The amplitude and unwrapped phase variation 
along phase screen no. 70 have also been plotted in two of the figures below. Phase 
screen no. 70 is placed on the local x-axis at an x-value of 447.96 km.  
 

 
Figure 3-1: Amplitude and phases simulated with the use of a wave propagator. The 
L1 and L2 waves have traversed a region with strong variations in the atmospheric 
refractivity structure. The GPS and LEO orbits used in this simulation are identical to 
the orbits found in GPS/MET occultation no. 62 from February 2, 1997.   
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Figure 3-2: The colour code shows the variation of the amplitude over the screens 
simulated with the use of a wave propagator. The white area of the figure represents 
the Earth. The plot is based on the same data as the plots in the above figure. The 
colour bar denotes the variation in the field amplitude found in the plot. 

 
Figure 3-3: The colour code shows the variation of the unwrapped phase over the 
screens simulated with the use of a wave propagator. The white area in the figure 
represents the Earth. The plot is based on same data as the plots in the above figure. 
The colour bar denotes the unwrapped phase of the electromagnetic field. 
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Figure 3-4: The two figures show the amplitude and phase of the electromagnetic field 
as a function of the position along phase screen no. 70. There are a total of 112 phase 
screens in the simulation. 
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Figure 3-5: Amplitude and phases simulated with the use of a wave propagator. The 
L1 and L2 waves have traversed a region with strong variations in the atmospheric 
refractivity structure. The GPS and LEO orbits used in this simulation are identical to 
the orbits found in GPS/MET occultation no. 681 from the February 2, 1997. 
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Figure 3-6: The colour code shows the variation of the amplitude over the screens 
simulated with the use of a wave propagator. The white area of the figure represents 
the Earth. The plot is based on same data as the plots in the above figure. The colour 
bar denotes the variation in the field amplitude found in the plot. 
 
 

 
Figure 3-7: The colour code shows the variation of the unwrapped phase over the 
screens simulated with the use of a wave propagator. The white area in the figure 
represents the Earth. The plot is based on same data as the plots in the above figure. 
The colour bar denotes the unwrapped phase of the electromagnetic field. 
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Figure 3-8: The two figures show the amplitude and phase of the electromagnetic field 
as a function of the position along phase screen no. 70. There are a total of 112 phase 
screens in the simulation. 
 

4 Validation of the Wave Propagator 
The wave propagator described above will be validated in this section. We have 
chosen to validate the WOP using a known phantom refractivity profile. The phantom 
refractivity profile N is given as function of the height h by the following equation 
  
 kmBHhhkm eBehN 05.0/)(136.0 21

315)( −−− +=
−

 (4-1)

 
where BH  is the height position of the bump in the refractivity and B is the size of 
this bump. The first part of Eq. (4-1) is the refractivity of the reference atmosphere 
defined by the International Telecommunications Union [ITU, 1981]. The second part 
of the equation determines the strength and position of the refractivity bump. It is this 
bump that can generate multipath effects. 
The multipath level is determined by the value of the B parameter. The wave 
propagator can be validated by comparing the bending angle calculated from the 
model refractivity profile (using an inverse Abel transform) with the bending angle 
versus impact parameter profile calculated with use of the wave propagator. The 
inverse Abel transform calculations on the model refractivity profiles have been 
performed in collaboration with Dr. Stig Syndergaard from the Institute of 
Atmospheric Physics at The University of Arizona. 
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The wave propagator is used on the phantom profile with some arbitrarily chosen GPS 
and LEO orbits. From L1 and L2 amplitude and phase output we calculate bending 
angle as function of impact parameter using either the standard bending angle 
algorithm or the back propagation algorithm. The former algorithm uses only phases 
of the occultation signals, whereas the latter algorithm makes use of phase as well as 
amplitude of the occultation signal. The back propagation algorithm is used when we 
have a high degree of multipath. The standard bending angle algorithm is used in all 
validation cases. The different steps needed in the wave propagator validation are 
summarised in Figure 4.1 below. 
 
In the following pages results of simulations are presented. Simulations of four 
different values of the B parameters (B=0, B=5, B=10 and B=20) have been 
performed for a bump placed at a height of 5 km (see Fig. 4.2). The chosen B 
parameters range from no multipath up to a very high multipath level. Up to four 
figures are shown for each of the B parameter values. The measured amplitude at the 
LEO orbit and the bending angle vs. impact parameter (calculated using one or two or 
three algorithms) are shown as the first and second plot. The calculated bending 
angles based on the WOP occultation signals are compared to the calculated model 
bending angles in the second plot. In the cases of strong multipath (for B=10 and 
B=20) there will be a plot of the bending angle versus impact parameter calculated 
using the Radio Holographic technique and the back propagation algorithm together 
with the calculated model bending angle profile. Bending angle vs. impact parameter 
is calculated for the entire spectrum (Fourier spectrogram) of the occultation signal. 
The Fourier spectrogram is calculated with the use of the Short-Time Fourier 
Transformation. Finally, as the last plot, we present a 2-D colour plot that depicts the 
amplitude of the electromagnetic field in the neutral atmosphere. The effects of 
multipath can also be seen in these plots. The number of screens has been set to 1200 
in the 4 simulations. 
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Figure 4-1: The figure depicts the method used in the validation of the WOP based on 
the phantom refractivity profile. 
 
 
 
 
 
 
 
 
 
 

43 
 

 



  
 
  
 
 
 

 
 
 
Figure 4-2: The plot shows the refractivity profile for the following values of B (B=0 
B=5 B=10 B=20). 
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Figure 4-3: Simulation parameters B=0 and BH=5 km. The upper plot shows the 
simulated amplitude and the lower plot shows the calculated bending angle (red 
curve) as a function of impact parameter together with the model bending angle 
profile (blue curve). 
 
 
 
 
 
 

45 
 

 



  
 
  
 
 
 

 

 
 

 
Figure 4-4: Simulation parameters B=0 and BH=5 km. The plot shows a colour plot of 
the field in the neutral atmosphere. There are no signs of multipath in this plot. The 
blue colour shows the geometric shadow zone. 
 
 
No multipath (B=0) 
In the amplitude versus time plot we see an abrupt exponential drop in the curve at 
approximately 36 seconds. The limb of the Earth can explain this drop. The smaller 
fluctuations also seen in the plot are due to boundary effects. Approximations for the 
boundary conditions are used in the WOP.  
 
We notice from the bending angle versus impact parameter plot that there is a very 
good agreement between the model bending angle profile and the profile calculated 
using the occultation signal from the WOP. This bending angle profile (standard 
algorithm) is calculated using the occultation signal phases and the GPS and LEO 
satellite positions and velocities.  
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Figure 4-5: Simulation parameters B=5 and BH=5 km. The upper plot shows the 
simulated amplitude and the lower plot shows the calculated bending angle (red 
curve) as a function of impact parameter together with the model bending angle 
profile (blue curve). 
 

47 
 

 



  
 
  

 
 
Figure 4-6: Simulation parameters B=5 and BH=5 km. The plot shows a colour plot of 
the field in the neutral atmosphere. Signs of multipath are noticed in this plot. The 
blue colour shows the geometric shadow zone. 
 
Low multipath level (B=5) 
We notice from the bending angle versus impact parameter plot that there is a relative 
good agreement between the model bending angle profile and the profile calculated 
using the occultation signal from the WOP. The S signature in the model bending 
angle profile is a sign of multipath. This S signature can however (as expected) not be 
resolved when we use the standard bending angle algorithm. The plot of the absolute 
value of the complex field in the neutral atmosphere shows also clear signs of the 
multipath effects present in the occultation signal. 
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Figure 4-7: Simulation parameters B=10 and BH=5 km. The upper plot shows the 
simulated amplitude and the lower plot shows the calculated bending as a function of 
impact parameter. The bending angle is calculated using the following algorithms: the 
standard algorithm, the back propagation algorithm, the radio holographic algorithm 
and finally the model bending angle profile.  
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Figure 4-8: Simulation parameters B=10 and BH=5 km. The upper plot shows the 
bending angle profile calculated using 3 different algorithms. Also shown is the 
bending angle versus impact parameter calculated for the entire spectrum of the 
occultation signal. The lower plot shows a colour plot of the field in the neutral 
atmosphere. There are strong signs of multipath in this plot. The blue colour shows 
the geometric shadow zone. 
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Medium multipath level (B=10) 
We notice from the bending angle versus impact parameter plot that the agreement 
between the model bending angle profile and the bending angle profile calculated 
using the standard algorithm is not so good close to the S signature. The agreement 
between the model and the radio holographic bending angle profiles are however 
excellent in this case. The bending angle profile calculated with the use of the back 
propagation algorithm also indicate the position of the peak in the bending angle but 
gives in general a less precise result compared to the Radio Holographic technique. 
The back propagation plane is placed at a distance of 100 km from the occultation 
point. A different position of the back propagation plane could lead to a bending angle 
profile where the S signature could be better result. Difference plots and relative 
difference plots between the bending angle model and bending angles calculated using 
the Radio Holographic/Back propagation methods can be found in Appendix H. 
 
The plot of the absolute value of the complex field in the neutral atmosphere shows 
also clear signs of the multipath effects present in the occultation signal. 
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Figure 4-9: Simulation parameters B=20 and BH=5 km. The upper plot shows the 
simulated amplitude and the lower plot shows the calculated bending as a function of 
impact parameter. The bending angle is calculated using the following algorithms: the 
standard algorithm, the back propagation algorithm, the radio holographic algorithm 
and finally the model bending angle profile.  
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Figure 4-10: Simulation parameters B=20 and BH=5 km. The upper plot shows the 
bending angle profile calculated using 3 different algorithms. Also shown is the 
bending angle versus impact parameter calculated for the entire spectrum of the 
occultation signal. The lower plot shows a colour plot of the field in the neutral 
atmosphere. There are strong signs of multipath in this plot. The blue colour shows 
the geometric shadow zone. 
 
High multipath level (B=20) 
We notice from the bending angle versus impact parameter plot that the agreement 
between the model bending angle profile and the bending angle profile calculated 
using the standard algorithm is not so good close to the S signature. The agreement 
between the model and the radio holographic bending angle profiles are not so good 
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for B=20 as for B=10. The radio holographic technique gives however a better result 
than the back propagation technique.  
 
The back propagation plane is in these simulations placed at a distance of 100 km 
from the occultation point. A different position of the back propagation plane could 
lead to a bending angle profile where the S signature could be resolved more properly. 
The very large peak in the bending angle over a very small distance in the impact 
parameter is the reason for the weaker performance of the radio holographic technique 
in its present implementation. A wider bump would increase the precision of the 
bending angle profile calculated using the radio holographic algorithm. Difference 
plots and relative difference plots between the bending angle model and bending 
angles calculated using the Radio Holographic/Back propagation methods can be 
found in Appendix H. 
 
The plot of the absolute value of the complex field in the neutral atmosphere also 
exhibits clear sign of the multipath effects present in the occultation signal. 
 
The simulations discussed above shows that there is a good agreement between the 
model bending angle profiles and the profiles calculated from the phases and 
amplitudes found from WOP simulations.  
 
This leads to the conclusion that the implementations of the wave propagator, the 
back propagation algorithm, and the standard bending angle algorithm etc. all are 
consistent with each other and give the expected results. 
 

 
 
Figure 4-11: Simulation parameters B=20 and BH=5 km.  The plot shows the bending 
angle vs. impact parameter calculated using canonical transform (blue dots). The 
model is shown as the solid black line. 
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Canonical transform result: (B=20 and BH=5 km) 
As part of the validation we have included a plot showing the preliminary results of 
the canonical transformation compared to the model bending angle (Figure 4.11). In 
this case the result from the canonical transformation is not better than the one 
obtained using radio holographic method. However, we will expect that canonical 
transformation, when fully implemented, should be able to produce superior results 
compared to the other retrieval methods presented in this document.  
 
Full Spectrum Inversion 
Full Spectrum Inversion (FSI) is a new and very promising inversion technique 
(Jensen et al. 2002) that gives very accurate results when used on a phantom 
refractivity profile. This method gives more accurate results than the back propagation 
and the radio holographic method. It can therefore be use to estimate the errors of the 
wave propagator. The method is applied to the following phantom refractivity profile 
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km 0.05
km7tan205.01)()(

)km8/exp(400)(

1 hhNhN

hhN

BB

A

π
 (4-2)

 
The figure below shows the bending angles calculated directly from the phantom 
refractivity profile and from a wave propagation simulation. We notice that there is a 
very nice agreement between the two curves and that FSI is able to re-create the very 
narrow S-signature. The GPS and LEO orbits are the same as in the previous 
examples.   
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Figure 4-12: The plot shows the bending angle vs. impact parameter calculated using 
the FSI method (blue curve) together with the model (red curve). 
 
The deviation in percent between the two curves is shown in the plot below and is 
seen to be very small indicating that the combined error of the wave propagator and 
the retrieval method must be small. The high peak found at an impact parameter of 
approximately 6376.3 km can be removed if a moving average scheme is applied to 
the FSI algorithm. The combined relative error is seen to increase with the impact 
parameter. 
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Figure 4-13: The relative difference between the model and the Full Spectrum 
Inversion (FSI) bending angle profiles. 
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5 Conclusion 
This report has described the electromagnetic theory and mathematical algorithms 
needed to make a software implementation of a wave propagator to be used in the 
neutral atmosphere. The limitations and approximations used in the wave propagator 
have also been discussed in detail. 
 
From the simulations and the validation method described it seems likely that the 
implementations of the wave propagator, the radio holographic method and the 
standard bending angle algorithm etc. all are consistent with each other and give the 
expected results. We also show that the newly developed Full spectrum Inversion 
(FSI) method performs very well with respect to resolve multipath structures in WOP 
simulations. 
 

5.1 Acknowledgement 
 
We are very grateful to M.E. Gorbunov for providing us with his wave optics 
propagator tool and for useful discussions during the development of this report. 

58 
 

 



  
 
  
 

6 Appendices 
The important sections of the program will, in the following appendices (A-G), be 
described in more detail. The order of which the appendices appear reflects the 
algorithm flow in the wave propagator, as depicted in Figure A.0-1 below. 
 

Appendix A: Wave Propagation Flow Chart 

The flow chart below gives a detailed view of the computational flow of the wave 
propagator. 
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Figure A.0-1: A flow chart representing the computational flow in a Wave Propagator. 
The algorithms and the input/output for each of the boxes in the diagram are described 
in the following appendices. 
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Appendix B: Coordinate Transformations 

 
Transformation from J2000 to Earth Frame Coordinates 
 
Objectives: To transform from J2000 to Earth Frame Coordinates. 
 
Input parameters: 
 

        1. Year of occultation, Y. 
        2. Month of occultation, M. 
        3. Day of month of occultation, DM. 
        4. Coordinates in the J2000 system, (x2000, y2000, z2000) 
        5. Hour (starting time of occultation) 
        6. Minute (starting time of occultation) 
        7. Seconds (starting time of occultation) 

                    8. Dsec (time elapsed since the start of the occultation) 
 

 
Output parameters: 
 
                   1. Coordinates in the Earth Frame, (xE, yE, zE) 
 
 
Constants: 
 

1. Constant term in JD determination, 1720994.5 days. 
2. 36525 days per century. 
3. JD of January 1, 2000, namely 2451545.0. 
4. The conversion factor 1.0027379093 between sidereal and universal 

time. 
5. 86400 seconds per day. 
6. The numerical constants 24110.54841, 8640184.812866, 0.093104 

and 0.0000062 in the formula that determines GMST of 0h UT1. 
 
  
The Julian day number, JD, is determined as follows. The operator int[ ] takes the 
integer part of the real number in the brackets. The first day in a month is day 1.  
 
For each occultation 
 
If M<3  

then Y1=Y-1 and M1=M+12 
elseif M≥3  

then Y1=Y and M1=M. 
endif 
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



=
100

1int YA  (B-1) 

 
 





+−=

4
int2 AAB  (B-2) 

 
 [ ]125.365int YC ⋅=  (B-3) 

 
 ( )[ ]116001.30int +⋅= MD  (B-4) 

 
 5.1720994++++= DMDCBJD  (B-5) 
 
Form the parameter  
 
 

36525
0.2451545−= JDTu  (B-6) 

 
then GMST of 0h UT1 of the given day, is given by the formula 
 
              

362 10260931040
8128668640184548412411010h UT of GMST

Tu.Tu.
Tu..

⋅⋅−⋅+

⋅+=
−

 (B-7) 

 
which is counted in seconds. The contribution according to the time of day (tod) is 
 
 secseconds60minute3600hour)1tod(UT D++⋅+⋅=  (B-8) 

 
In sidereal time tod is 
 

 0027379093.1)1tod(UTal)tod(sidere ⋅=  (B-9) 

 
GMST is then obtained as  
 
 )86400al)tod(sidere0h UT1 of mod(GMSTGMST ,+=  (B-10) 

 
Finally, GMST is converted into an angle 
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 [ ]s/rad
86400

2GMST πγ ⋅=  (B-11) 

 
end for each occultation. 
 
For each sample 
Do the following transformation  
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 (B-12) 

 
end for each sample. 
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Transformation from Geodetic to Earth Frame Coordinates 
 
Objectives: To transform from Geodetic to Earth Frame coordinates 
 
Input parameters: 
 

1. Geodetic coordinates (ϕ, λ, h)  
 
Output parameters: 
 

1. Coordinates in the Earth Frame, (xE, yE, zE)  
 
Constants: 
 

1. The Earth’s semi major axis, a=6378137 meter. 
2. The Earth’s flattening, f=1/298.2572. 
 
 

Algorithm 
 
For each sample: 

First calculate 
 
 

( ) ϕ2sin21 ff
arcp

−−
=  (B-13) 

 
then 

 
 ( )hrcpxE +⋅⋅= λϕ coscos  (B-14) 

 
 ( )hrcpyE +⋅⋅= λϕ sincos  (B-15) 

 
 ( )( )hfrcpzE +−⋅⋅= 21sinϕ  (B-16) 

 
end for each sample. 
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Transformation from Earth Frame to Geodetic Coordinates 
 
Objectives: To transform from Earth Frame to Geodetic coordinates 
 
Input parameters: 
 

1. Coordinates in the Earth Frame, (xE, yE, zE) 
 
Output parameters: 

1.  Geodetic coordinates (ϕ, λ, h) 
 

 
Constants: 
 
The following constants are used in the program: 

1. The Earth’s eccentricity squared e = ε2 = 0.006694380 
2. The Earth’s major semi axis a=6378137 meters. 
3. The Earth’s minor semi axis b=6356752,3 meters. 
 

All constants are in according to the Geodetic Reference System 1980. 
 
 
Algorithm 
 
This is an approximate method.  
 
For each sample 

The longitude is given by 
 
 









=

E

E

x
y

arctanλ  (B-17) 

 
Define some convenient parameters. 

 
 22

EE yxRxy +=  (B-18) 

 
 









⋅

⋅=Θ
bRxy

azEarctan  (B-19) 

 
then the latitude is 

 
 









Θ⋅⋅−

Θ⋅⋅+
= 3

3

cos
sinarctan

aeRxy
bezEϕ  (B-20) 

 

65 
 

 



  
 
  

and with 
 
 ( ) ( ) ϕϕϕϕ sincos2sincosarg 222222

EE zRxyRxyazb ⋅+−+−=  (B-21) 

 
the height above the reference ellipsoid become 

 
 ( )

ϕϕ
ϕϕ
2222

22

sincos
argsincos

ab
abzaRxyb

h E

+
+−−−

=  (B-22) 

 
end for each sample. 
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Transformation from J2000 to Occultation Plane Coordinates 
 
Objectives: To transform from J2000 to Occultation Plane coordinates. 
 
Input parameters: 

 
1. GPS and LEO position vectors in J2000, RGPS and RLEO. 
2. The Earth’s semi major axis, a. 
3. The Earth’s eccentricity, e. 
4. The geodetic latitude, ϕ, of the occultation point. 

 
Output parameters: 
 

1. Basis vectors, AX and AY, for the moving occultation plane coordinate 
systems. 

2. GPS and LEO positions, both represented here as (xmov, ymov), in moving 
occultation plane coordinates. 

 
Constants: 
 
No constants are used in the program. 
 
 
Algorithm: 
 
For each sample 

The unit vectors NG and NL is determined 
 
 

RLCRGPS

RLCRGPSNG
−

−=  (B-23) 

 
and 

  
 ( )( )

( )( ) NGNGRLCRLEORLCRLEO
NGNGRLCRLEORLCRLEONL

∗∗−−−
∗∗−−−=  (B-24) 

 
The local radius of curvature is given by 
 
 

rcprcm

Rc αα 22 sincos
1

+
=  

(B-25) 

 
where 
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2122 )1( /sine

arcp
ϕ−

=  (B-26) 

 
 

2322

2

)1(
)1(

/sine
earcm

ϕ−
−=  (B-27) 

 
The angle between the NG vector and the curvature radii can be determined 
approximately by 

 
 

RLCRGPS

Rc

−
=)cos(β  (B-28) 

 
then 

 
 ( ).cos1)sin( 2 ββ −=  (B-29) 

 
The Moving Occultation Plane Systems basis vectors are 

 
 ( ) ( ) NGNLAX ⋅−⋅= ββ sincos  (B-30) 

 
and 

 
 ( ) ( ) .cossin NGNLAY ⋅+⋅= ββ  (B-31) 

 
The coordinates of the GPS or LEO satellite in the Moving Occultation Planes 
are given by 

 
 ( ) ( ) (( )RLCRLCRLC zz,yy,xx*AXx −−−= 200020002000mov )  (B-32) 

 
and 

 
 ( ) ( ) (( )RLCRLCRLC zz,yy,xx*AYy −−−= 200020002000mov )  (B-33) 

 
where (x2000, y2000, z2000) and (xmov, ymov) are the position of either the LEO or 
the GPS satellite. 

 
end for each sample. 
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The coordinates in the moving occultation coordinate systems are used as 
approximate values of the coordinates in the (fixed) occultation plane coordinate 
system. 
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Transformation from Occultation Plane to Unmoving GPS System 
Coordinates 
 
Objectives: To transform from Occultation Plane to unmoving GPS System 
coordinates 
 
Input parameters: 
 

1. Coordinates of LEO and GPS satellites in Occultation Plane system, 
(XLEO,YLEO) and (XGPS,YGPS). 

2. Time index of ray of lowest height, iocc. 
 
Output parameters: 
 

1. LEO and GPS coordinates in Unmoving GPS system, 
(XLEOunmov,YLEOunmov) and (XGPSunmov,YGPSunmov), respectively. 

 
 
Constants: 
 
No constants are used in the program. 
 
 
 
Algorithm: 
 
For each sample 
 

Form the function F(i) 
 
 

)()(
)()()(
iXGPSiXLEO
iXGPSiXLEOiF

−
⋅=  (B-34) 

 
where i is the time index. Then the new LEO coordinates are given by  

 
 ( ) ( ) ( )

( ) ( )ioccXGPSiF
ioccXGPSiFiXLEO

−
⋅=unmov  (B-35) 

 
 and 
 
 ( ) cRiYLEOiYLEO −= )(unmov  (B-36) 

 
The GPS coordinates for each sample is set to  

 
 ( ) )(unmov ioccXGPSiXGPS =  (B-37) 
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and 
 
 ( ) cunmov RioccYGPSiYGPS −= )(  (B-38) 

 
end for each sample. 
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Appendix C: GRIB Files 
GRIB is a WMO format for gridded data. GRIB is used by the operational 
meteorological centres for storage and the exchange of gridded fields. GRIB's major 
advantages are files are typically 1/2 to 1/3 of the size of normal binary files (floats), 
the fields are self-describing, and GRIB is an open, international standard. 
 
The World Meteorological Organization (WMO) Commission for Basic Systems 
(CBS) Extraordinary Meeting Number VIII (1985) approved a general purpose, bit-
oriented data exchange format, designated FM 92-VIII Ext. GRIB (GRIdded Binary). 
It is an efficient vehicle for transmitting large volumes of gridded data to automated 
centers over high-speed telecommunication lines using modern protocols. By packing 
information into the GRIB code, messages (or records - the terms are synonymous in 
this context) can be made more compact than character oriented bulletins, which will 
produce faster computer-to-computer transmissions. GRIB can equally well serve as a 
data storage format, generating the same efficiencies relative to information storage 
and retrieval devices.  
 
Changes and extensions to GRIB were approved at the regular meeting of the 
WMO/CBS in February 1988; additional changes were introduced at the 
CBS/WGDM/Sub-Group on Data Representation (SGDR) meetings in May 1989 and 
in October 1990. The 1990 changes were of such structural magnitude as to require a 
new Edition of GRIB, Edition 1, which this document describes. Further 
augmentations and interpretations were made by the SGDR in September 1993, with 
approval by the WGDM in February 1994. These changes did not result in a new 
Edition to GRIB, but did change some of the Tables, resulting a new Table Version 
number for them (2). The changes from Version 1 were mainly additions of new 
parameters or more precise definition of existing ones. Additional changes to the 
GRIB Tables were adopted at an Expert Meeting of the SGDR in September 1995, 
which now brings us to Table Version 3.  
 
It is not anticipated that there will be any large-scale structural changes to GRIB for at 
least four to five years, or more. The SGDR is undertaking a thorough review of the 
present and future requirements that GRIB is supposed to satisfy. The plan is to 
design a major revision of GRIB capable of accommodating these requirements and 
more, without "straining" the structure of the data representation form. Some things 
are getting a little strained even now.  
 
Note: the Edition number is placed in the same location, relative to the start of the 
GRIB message, for all Editions. Thus, decoding programs can detect which Edition 
was used to construct a particular GRIB message and behave accordingly. This is 
useful for archives of messages encoded in earlier Editions or during transition 
periods. Of course, this requires that data centers retain copies of older editions of the 
code, and older versions of the parameter tables.  
Each GRIB record intended for either transmission or storage contains a single 
parameter with values located at an array of grid points, or represented as a set of 
spectral coefficients, for a single level (or layer), encoded as a continuous bit stream. 
Logical divisions of the record are designated as "sections", each of which provides 
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control information and/or data. A GRIB record consists of six sections, two of which 
are optional: 
0) Indicator section 
1) Product Definition section (PDS) 
2) Grid Description section (GDS) - optional 
3) Bit Map section (BMS) - optional 
4) Binary Data section (BDS) 
5) '7777' (ASCII Characters) 
 
Although the Grid Description section is indicated as optional, it is highly desirable 
that it be included in all messages. That way there will be no question about just what 
is the "correct" geographical grid for a particular field. 
 
Most centers require bulletin headers to enable them to receive, identify, and switch 
messages; NCEP is no exception. In this documentation, certain symbols are used to 
clarify the contents of octets (groups of eight consecutive binary bits, "bytes" in 
American usage). If unadorned letters are used, they are symbolic and their meanings 
are described in the text; a decimal number is simply printed as is; a character or 
string of characters is represented inside single quote marks. International Alphabet 
No. 5, which is identical in its essential elements to the U.S. National Standard 7-bit 
ASCII, is used for character representation in the GRIB code. 
 
Octets are numbered consecutively from the start of each section; bits within an octet 
are also numbered from left (the most significant bit) to right (the least significant bit). 
Thus an octet with bit 8 set to the value 1 would have the integer value 1; bit 7 set to 
one would have a value of 2, etc. The numbering of Tables in the following text 
corresponds to the description of GRIB in the WMO Manual on Codes 1. Some 
additional tables not found in the WMO Manual are indicated by letters. These, 
generally, contain information unique to the NWS or NOAA. 
 
A caveat: The Official International Documentation for GRIB is the just referenced 
Manual on Codes. This document is, in part, intended to be a guide to the use of 
GRIB and may not include all of the features currently found in the Manual. It does, 
however, represent the full set of features used by the National Weather Service, in 
particular in the AWIPS project, and by the National Centers for Environmental 
Prediction. The features described here are intended to be a completely consistent sub-
set of the full WMO documentation; if there is any discrepancies the Manual on 
Codes is the final authority. 
 
DATA PACKING METHODS 
 
The code form represents numeric data as a series of binary digits (bits). Such data 
representation is independent of any particular machine representation; by convention 
data lengths are measured in octets. Data are coded as binary integers using the 
minimum number of bits required for the desired precision. Numeric values may first 
be scaled by a power of ten to achieve an appropriate decimal precision, a reference 
value is subtracted from them to reduce redundancy and eliminate negative values, 
and they may then be further scaled by a power of two to pack them into a pre-
selected word length. The two scaling operations are independent; which, or both, are 
used in any given case depends upon choices made as to the method of packing. 
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The representation of a single value is such that: 
 
Y * 10 D = R + (X * 2 E ) 
where 
Y = original or unpacked value; 
D = decimal scale factor, to achieve desired precision 
(sign bit, followed by a 15-bit integer); 
R = reference value (32 bits); 
X = internal value (No. of bits varies for each record); 
E = binary scale factor for variable bit word length packing 
(sign bit, followed by a 15-bit integer). 
The reference value (R) is the minimum value of the (possibly) decimally scaled data 
that is being encoded. 
R is placed in the Binary Data section in four octets as a single precision floating-
point number: 
sAAAAAAA BBBBBBBB BBBBBBBB BBBBBBBB 
where s = sign bit, encoded as 0 means positive 
1 means negative 
A...A = 7-bit binary integer, the characteristic 
B...B = 24-bit binary integer, the mantissa. 
The appropriate formula to recover the value of R is: 
R = (-1)s * 2 (-24) * B * 16 (A-64) 
 
This formula is the standard IBM representation for a single precision (real) floating 
point number. (Consideration is being given to using the IEEE floating point 
representation in the future, in a later Edition of GRIB.) 
 
If second order (or "complex") packing is used (see the description of that later on) 
the internal value, X, will be made up of two values, a "local minimum value", Xi, 
and a "second order packed value", Xj. There will be one Xj for each grid point and a 
variable number of Xi values. This will all come clear later on when we get to the 
description of second-order packing. 
 
What follows is a description, slightly simplified, of the process that one would go 
through to pack a (meteorological) field into a GRIB message, using "simple 
packing". It includes some explanations of why certain steps are taken, some of the 
consequences, and what choices have to be made. Some of the choices are 
interrelated; the relationships should be clear when the explanation is done. The 
additional features of complex or "second order" packing will be dealt with in a later 
section.  
 
Given that a full field is available, the first step, if necessary, is to convert the units of 
the parameter into those shown in Table 2, the SI standard units, also known as the 
MKS system. Some of the units may seem a little peculiar (kg/m 2, for example, for 
precipitation - 1 kg/m 2 is equivalent to a water depth of 1 mm); others may seem 
inappropriate (Pa for pressure, for example, implies 
substantially greater precision than is typical in meteorological usage; inverse seconds 
are not nearly precise enough for divergence and vorticity) but they are all self-
consistent. The precision of the parameters, as actually packed in a message, can be 
set to any desired degree through the appropriate use of the power-of-10 ("D") scaling 
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and the power-of-2 ("E") scaling. Just how this comes about will be described 
momentarily.  
 
At this point there is a choice to be made. If it is desired to use a pre-selected bit word 
length for the packed variables, then just proceed on to the next step. However, if a 
variable bit word length is to be used, where the word length is adjusted to 
accommodate the data values, then it is necessary to undertake the power-of-ten 
scaling. The D value should be selected such that, when the original data in the SI 
units is multiplied by 10 D, the integer part of the result will have enough precision to 
contain all the appropriate information of the variable.  
 
Anticipating things a little bit, the (scaled) value will be rounded to an integer as a 
part of the packing process; thus the "significant part" of the value of the variable has 
to be moved to the left of the decimal point prior to the rounding. Temperature might 
be scaled with D=1, thus changing the units to deci-degrees; pressure, on the other 
hand, might be scaled with D=-2, thus actually reducing the precision to hecto Pascals 
(mb), a more reasonable meteorological precision; vorticity would be scaled up by 
D=8, and so on. 
 
The second step in the packing operation is to scan through the field, which may or 
may not have been "D-scaled" at this point, find the minimum value of the parameter, 
and subtract that minimum - the reference value, R - from all the data points, leaving a 
residual of non-negative numbers. This step has two benefits. The first of these is 
convenience - making all the data points non-negative bypasses problems with 
different computer hardware that represent negatives in various ways: 1's 
complement, 2's complement, signed positive integers, whatever. 
 
The GRIB message is rendered just that much more machine independent by being 
non-negative throughout. The second benefit is more consequential: it can result in a 
substantial compression of the bulletin size without any loss of information content. If 
a field has an appreciable bias away from zero, the residuals formed by the minimum 
removal operation will all be much smaller numbers than otherwise. Thus they will 
need fewer bits to contain them when they are, eventually, packed as integers. 
 
The third step is simply to scan through the field of residuals and find the maximum 
value. At this point another choice must be made, similar to the one made previously. 
This time, if a variable bit word length is to be used, then it is necessary to calculate 
how many bits (per word or per data grid point) are going to be needed to contain that 
largest data value, when the latter has been rounded to an integer. Recall that at the 
previous decision point, the variables were power-of-ten ("D") scaled such that a 
rounding operation will preserve all the significant part of the information.  
Discovering how many bits are needed is a simple scan through a table of powers of 
two, of course. The power-of-two-scaling is not employed and E is set equal to 0. 
Then go on to the fourth step. 
 
If, alternatively, it is desired to use a pre-selected bit word length for the packed 
variables, the data must now be scaled, this time by a power of two (the "E" scaling), 
sufficient to either reduce the maximum value down to just fit into the available 
number of bits, or enlarge the value to just fit. This latter step takes care of the 
problem of small numbers where the precision is all in the fractional part of the 
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number. How much precision is retained, for the eventual rounding, is a function of 
the pre-selected bit word length and the "typical" range, or maximum value with the 
minimum removed, of the particular variable. 
 
The choice of bit word length, which is made ahead of time, must be made with full 
knowledge of the characteristics of the particular variable that is to be packed and a 
prior assumption of how much precision needs to be retained for the largest likely 
value. The fourth step is then to round all the values to integers, now that they have all 
been scaled to appropriate units, and pack them in the specified bit length words. 
 
The last step is then to set up the various identification fields and put the GRIB 
bulletin in proper form. We shall turn to this "proper form" in the next section. 
 
We have ended up with two alternate ways to construct a GRIB messages: a fixed bit 
word length method and a variable bit word length method. What are the relative 
advantages or disadvantages, or at least the differences, of one with respect to the 
other? 
 
Message length: the fixed word length bulletins are always the same length, for a 
given parameter; the variable word length bulletins are, naturally, variable. The 
variation is driven by the range of the value of the parameter over the field (or the 
maximum value), which can change from day to day. Whether variations in message 
length is a problem or not depends on the computer systems used to work with the 
GRIB records. 
 
Precision: The variable word length bulletins have a fixed and unchanging precision, 
determined by the "D" scaling. This assures that the same information content is 
available day after day. It is straightforward to change the precision in a familiar 
manner, that is, simply by orders of magnitude, just by altering the D value. This 
comes at a cost, of course; increasing the precision by a power of 10 adds about 3.3 
bits (average) to each data point in the message. The fixed word length bulletins show 
a variable precision which is case by case data driven and is determined by the "E" 
(power-of-two) scaling that was used to fit the numbers into the available space. This 
can happen even with the same data, on the same date, but at adjacent grid areas. If 
one area shows a low variability and the neighboring one a high variability such that a 
different power-of-two scaling is needed in the two areas, then, unfortunately, the 
values on a common boundary will not be exactly equal after they are unpacked. This 
can be disconcerting and a cause for confusion. It will not happen if D-scaling (only) 
is employed.  
 
On the other hand, the variable precision can be viewed as a strength: a data field with 
a low variability will be encoded at a higher precision, thus preserving the character of 
the field; a high variability field will be represented with less precision, but that is not 
a problem as the small, and possibly lost, variations will not matter in the presence of 
the large ones. The precision of the encoded field can be increased by adding bits to 
the fixed word length, but the degree of change (a power of 2 for each bit) may not be 
as easy to deal with (or explain to people) as the simple order of magnitude change 
afforded by the "D" scaling method. 
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No mater which packing method was employed, a proper GRIB decoding program, 
that took account of the transmitted values of both "D" and "E", would return the 
correct unpacked numbers, regardless of which packing method was employed. It 
would be transparent to the user except for the questions of precision outlined above. 
For further details we refer to a document located at the following web address: 
ftp://ftp.ncep.noaa.gov/pub/nws/nmc/docs/gribed1/. 
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Appendix D: Propagation Area in the Neutral Atmosphere 

Objectives: To determine the propagation area in the neutral atmosphere. 
 
Input Parameters: 
 

1. The radius of the Earth denoted by Re. 
2. The local curvature radius, Rc 
3. The apodization zone, Dya. 
4. The parameters Hatm and Hmax representing the height of the atmosphere 

and the maximum height for occultations in the neutral atmosphere. Good 
approximate values for Hatm and Hmax are 130 km and 60 km, 
respectively. 

 
Output Parameters: 
 

1. The propagation area in the neutral atmosphere limits defined by the four 
parameters Xmin, Xmax, Ymin and Ymax. 

 
 

Algorithm 
 
The four parameters Xmin, Xmax, Ymin and Ymax defining the propagation area are 
found using the following equations. The two parameters Xmin and Ymax are defined 
as the X-value of the field entering the atmosphere and the maximum Y-value of the 
occultation. The parameters are given by 
 
 
 22atm)(min ee RHRX −+−=  (D-1)

 
 DyaHxY += maxma  (D-2)

 
It can be seen from geometrical considerations (Figure 2.10) and ray tracing that the 
area limiting parameters Xmax and Ymin are given by 
 

 )(*max CERLNXxEX
rrr

−=  (D-3)

 
 DyaRCERLNXyEnY c −−−= )(*mi

rrr
 (D-4)

 
NX
r

 gives the direction towards the LEO satellite of the ray with the highest X-and 
smallest Y-values. This is found by ray tracing through the atmosphere.  
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Appendix E: Forward Propagation from the GPS Satellite to the 
First Screen 

Objectives: To forward propagate the complex field from the GPS satellite to the 
first screen. 
 
Input Parameters: 
 

1. R
r

 radius vector from the GPS satellite to a point on the 1. screen where the 
field is evaluated and a scaling factor E0. 

 
 

Output Parameters: 
 

1. The complex field for the two frequencies along the first screen. 
 
 
 

Algorithm 
 
Spherical Wave propagation in vacuum 
 
The wave propagation from the GPS satellite to the 1. screen is assumed to be given 
by a spherical wave of the form 
 
 

|R|

|R|ikERE T
r

r
r )exp()( 0=  (E-1)

 
where R

r
 is the radius vector from the GPS satellite to the point on the 1. screen at 

which the field is evaluated.  is the free space wave number for either of the two 
frequencies L1 and L2. E0 and is a scaling constant given by 

Tk

 
 E0 = (Xmin – XGPS)1/2 (E-2)
 
Xmin is discussed in Appendix D and XGPS is the last of the x-coordinates in the GPS 
orbit.  
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Appendix F: Forward Propagation from the First to the Last Screen 

 
Objectives: To forward propagate the complex field from the first to the last phase 
screen. 
 
Input Parameters: 
 
The complex field along the first screen is calculated using the following input: 
 
        1.  The complex field for the L1 and L2 frequencies at the first screen. 
 
Output Parameters: 
 

1. The complex field for the L1 and L2 frequencies at the last screen 
 
 
 

Algorithm 
 
Wave propagation in the neutral atmosphere using the thin screen 
approximation 
 
The fields on the screens are known as functions of distances along the screens. The 
number of points in which the field is known is N. By applying the Fourier transform 
to this signal one represents the signal in terms of spatial frequencies. If the length of 
the screens is L then the distance between two samples, called Delta, is given by 
Delta=L/N.  
 
The Fourier transform of the electromagnetic field, U, is calculated using the 
following equation 
 
 

∑
−

=

−==
1

0

)(/2)FFT()(~ N

l
i lUNiljeUpU π  (F-1)

 
The equation shows that we have N plane waves that propagate along the Y-axis. Let 
the distance between the screens be Dx. The expression for the field will be 
determined below. 
 
The number of plane waves NP is given by 
 
 

))
2

INT(
2

Min(
π
kL,NNP =  (F-2)
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The total number of plane waves is 2*NP. )
2

INT(
π
kL  is the number of waves along the 

screen with the length, L. In the following equations x0 denotes the position of the 
screen at which the field is known, whereas x1 indicates the position of the screen at 
which the field is calculated. 
 
For every spatial frequency the following temporary field is calculated  
 
 

),(~)2(
),(~

0

22

1tmp ii pxU
Dxi

L
kj

epxU

π−
=  (F-3)

 
Here i

L
pi

π2=  represents the spatial frequencies (wave vector) along the Y-axis. k is 

the total length of the wave vector in the medium. Therefore 22 )2( i
L

k π− must be 

the wave vector along the X-axis. Applying the inverse Fourier transform to field in 
the equation above and multiplying by an exponential factor yields the field along the 
next screen. 
 
 

)}(~{)Fourier(),( 1tmp
1)1(

1 ,pxUeyxU nDxjk −−⋅⋅=  (F-4)

 
The resolution, i.e., the distance between the points on the screen, is determined from 
the following equation 
  
 

)sin(4 maxε
λ≤∆y  (F-5)

 
where εmax is the maximum propagation angle from the horizon to be represented 
without distortion. For the spherical wave this opening angle can be calculated as  
 
 ))/Xabs(Y,/Xmax(abs(Y GPSminGPSmaxmax =ε  (F-6)
 
The minimum number of point on the screen is 
 
 

)sin(4
maxmin ε

λ
LN =  (F-7)

 
There is also an upper limit for the number of points on the screen given by: 
 
 

)sin(4
maxmax α

λ
LN =  (F-8)
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where αmax is the maximum bending angle found from ray-tracing. If the Doppler 
phase is greater than π/2 and the current number is less than Nmax, then it is necessary 
to double the number of points on the next screen. 
 
The electro-magnetic field in the equation above must be apodized in order to satisfy 
the electromagnetic boundary conditions on the screens. The apodization zone is 
found on the top and bottom of all of the screens in the neutral atmosphere and the 
field here is given by 
 
 

Dya0.75YYUY U eU
2Dya/3/Y-YU- −=>= maxold

))()((
new for  (F-9)

 
and 
 
 

Dya0.75YYDY U eU
2Dya/3/YD-Y- +=<= minold

))()((
new for  (F-10)

 
where Y gives us the position on the screen and Ymax and Ymin are the Y-coordinate for 
the largest and smallest position on the screen. Dya is the size of the apodization area 
on the top and button of the screen. The value of this parameter should be around 5 
km. Unew(Y) and Uold(Y) is the value of the complex field before and after the 
apodization of the field. 
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Appendix G: Algorithm for Propagation between Two Non-Parallel 
Lines  

Objectives: To forward propagate the complex field from the last screen to the LEO 
orbit. 
 
Input Parameters: 
 
The complex field along the LEO orbit is calculated using the following input: 
It has been assumed in the algorithm, that all data are organized as in a setting 
occultation, i.e., the first sample is the top most sample. 
 

1. The position vectors  of the LEO satellite orbit in the 
Unmoving GPS Coordinate System. 

xr ))(),(( tytx LL

2. The coordinate vectors yr  along the last screen ( . )SS y,x
3. The complex field E0 along the last screen. 
 

Output Parameters: 
 
          1. The complex field E along the LEO orbit. 

 
Constants: 
 

1. The GPS frequencies  and . 1f 2f
2. The wave number in free space 11 /2 λπ=k  and 22 /2 λπ=k . 

 
 
Algorithm 
 
Calculation of the Forward-Propagation Integral 
 
If the electric field, (0E yr ), is known all over the last screen , the electric field S

)(xE r  can then be found at a given point xr  along the LEO orbit using the following 
equation.  
 
 

∫ −
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In (G-1) Tk  is the vacuum wave number for one of the two frequencies L1 and L2. 

xyϕ  is the angle between the normal ny
r  to  and the vector S yx rr −  and is given by 
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where index L and S are the symbols used for the LEO position and the last screen. 
The integral (G-1) can be evaluated using a standard numerical integration routine. 
The integration is performed over a certain part of the last screen determined by the 
stationary phase technique. For every point, (xL,yL) on the LEO orbit the virtual phases 
(VP’s) are calculated on the last phase screen using the following equation  
 
 VP(i)=ki*((x-xS(i))2+(y-yS(i))2)1/2 + PS(i) (G-3)
 
where PS is the calculated phase on every point (xS,yS) on the last screen. The index, i, 
corresponds to samples on the last screen. The stationary phase is then the smallest 
value of the virtual phase given by SP=min(VP). 
 
The (G-1) integral must be solved for every point along the LEO orbit. If the 
computation time is an important concern then the Fresnel integral can be solved 
using the stationary phase technique. The standard unwrapping routine, given by the 
equations below, must be used to calculate the accumulated phase from the phase of 
the complex signal. 
 
 Phase(i)=Phase(i-1)+modulo(Phase(i)- Phase(i-1)+π, 2*π)- π (G-4)
 
This must be performed for all the samples, i, in the phase array.  
 
The integration limits are deduced by the stationary phase point plus/minus the 
distances corresponding to a phase change of 10*π (DyU and DyL). In general, DyU 
and DyL are not equal. The diffraction integral can therefore be written as 
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where ySP is the y-coordinate of the stationary phase point. 
   
If the stationary phase point is above or below the last screen, i.e., ySP>ymax or 
ySP<ymin the point on the LEO orbit in consideration, it is discarded. If the stationary 
phase point is within the range of the screen, but one of the integration limits, as 
described above, extends outside the screen, then the phase is extrapolated linearly 
and the amplitude is considered constant. 

84 
 

 



  
 
  

Appendix H: Difference and relative difference plots  

In this section difference plots and relative difference plots between the bending angle 
model and the bending angles calculated using the Radio Holographic/Back 
propagation methods are presented in the eight figures below. These plots show the 
combined error of the WOP and the respective retrieval routines. 
 
Medium multipath level (B=10) 
The four figures below show the difference/relative difference plots in case of a 
medium multipath level. 
 

 
Figure H.0-1: The plot shows (for B=10) the difference between the back propagation 
bending angle and the model bending angle as a function of impact parameter. 
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Figure H.0-2: The plot shows (for B=10) the relative difference between the back 
propagation bending angle and the model bending angle as a function of impact 
parameter. 

 
Figure H.0-3: The plot shows (for B=10) the difference between the radio holographic 
bending angle and the model bending angle as a function of impact parameter. 
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Figure H.0-4: The plot shows (for B=10) the relative difference between the radio 
holographic bending angle and the model bending angle as a function of impact 
parameter. 
 
High multipath level (B=20) 
The four figures below show the difference/relative difference plots in case of a high 
multipath level. 
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Figure H.0-5: The plot shows (for B=20) the difference between the back propagation 
bending angle and the model bending angle as a function of impact parameter. 
 

 
Figure H.0-6: The plot shows (for B=20) the relative difference between the back 
propagation bending angle and the model bending angle as a function of impact 
parameter. 
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Figure H.0-7: The plot shows (for B=20) the difference between the radio holographic 
bending angle and the model bending angle as a function of impact parameter. 
 

 
 
Figure H.0-8: The plot shows (for B=20) the relative difference between the radio 
holographic bending angle and the model bending angle as a function of impact 
parameter.  
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