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PREFACE 
 
A semi-automatic SAR sea ice classification algorithm is described. It is based on combining the info r-
mation in the original SAR data with those in the three ‘image’ products derived from it, namely Power-
to-Mean Ratio (PMR), the Gamma distribution and the second order texture parameter entropy, respec-
tively. The technique used to fuse the information in these products is based on a new method called 
Multi Experts – Multi Criteria Decision Making (ME-MCDM) fuzzy screening. The Multiple Experts in 
this case are the above four ‘image’ products. The two criteria used currently for making decisions are 
the Kolmogorov-Smirnov distribution matching and the statistical mean of the float values.  
 
The main advantage of using this image classification scheme is that, like neural networks, no prior 
knowledge is required of the statistical distribution of the different surface types. Furthermore, unlike the 
methods based on neural networks, no prior data sets are required to train the algorithm. All the informa-
tion needed for image classification by the method is contained in the individual SAR images and asso-
ciated products. 
 
The algorithm classifies an image into any number of predefined classes of sea ice and open water. The 
representative classes of these surface types are manually identified by the user. Further, as SAR signals 
from sea ice covered regions and open water are ambiguous, it was found that a minimum of 4 pre-
identified surface classes (calm and turbulent water and sea ice with low and high backscatter values) are 
required to accurately classify an image. Best results are obtained when a total of 8 surface classes (2 
each of sea ice and open water) in the near range and a similar number in the far range of the SAR image 
are used. 
 
Initial results illustrating the potential of this ice classification algorithm using the RADARSAT Scan-
SAR Wide data are presented and its possible extension to fuse the information in these data with the 
ENVISAT ASAR image products is also discussed. 
 
Keywords : SAR, KS Distribution Matching, Ice Cover Classification, Fuzzy Rule, Fuzzy Screening 
Method, ME-MCDM, RADARSAT, ENVISAT ASAR, Greenland. 
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1. Introduction 
In recent years satellite image classification and multi sensor data fusion based on neural networks (NN) 
and fuzzy set theory have received much attention in the open literature (Zadeh, 1965, Kohonen et. al., 
1995, Masselli et. al., 1995, Atkinson and Tatnall, 1997, Chanussot et. al., 1999, Solaiman et. al., 1999, 
Tupin et. al., 1999, Andrefouet et. al., 2000, pal et. al., 2000, Tupin et. al., Melgani et. al., 2000, Wu and 
Linders, 2000, Moore et. al., 2001, Zhang and Foody, 2001). One of the main reason why NN has gained 
popularity over the more traditional statistical approaches is that the former is distribution free i.e., no 
prior knowledge of the distribution(s) underlying the different surface classes are needed for classifica-
tion, only the actual data. There are several different types of NN and one thing they all have in common 
is that they all require the training of the network (Atkinson and Tatnell, 1997). The training can be su-
pervised or un-supervised. The supervised training algorithms include those based on Multi-Layer Per-
ceptron (MAL) using feed - forward concept and those using the feed – back neural network, for exam-
ple the so-called Hopfield network (Atkinson and Ta tnell, 1997). In these algorithms prior data sets of 
known classes are required. In the case of MAL, the training of the network involves the fine tuning of 
the weights of the connections, while in the case of the Hopfield network, the output from the nodes are 
fed back into the input. In the unsupervised training network no prior information is provided about the 
desired classification, the network learns itself so to speak. The Organising Topological Map is an ex-
ample of this type of unsupervised network (Atkinson and Tatnell, 1997). 
 
In the neural network approach a given unknown pixel or a region is classified into one of the pre-
defined classes. In other words, a given pixel is either a full member of a particular class or is not a 
member. This is one of the disadvantage with using a NN approach, as in many cases data are mixed i.e., 
an unknown pixel may partially belong to several classes as the boundary between them may not be 
sharp. Fuzzy set theory explore this concept. In the fuzzy classification schemes, a given pixel can par-
tially belong to several classes. In this case the contribution of each class in the pixel or a region must be 
estimated. Some of the most well known algorithms based on fuzzy theory are the hard and fuzzy-c 
means (HCM, FCM) clustering algorithms used for image segmentation (Pal et. al., 2000). Since its first 
introduction by Zadeh (1965), fuzzy set theory has invaded into many other fields beside fuzzy classifi-
cations, which include fuzzy control systems, fuzzy image processing (Melgani et. al., 2000). 
 
Recently, neuro-fuzzy techniques have been developed which make use of both neural networks and 
fuzzy concepts (Atkinson and Tatnell, 1997). 
 
All three of these fields have evolved much in the last two decades, the interested reader should refer to 
the above references for further details. 
 
This report concerns the evaluation of a new fuzzy classification scheme, called the fuzzy screening 
method, which is used in here to classify RADARSAT ScanSAR images of the waters around Greenland 
into sea ice and open water regions. In particular, the main goal was finding an optimal method to fuse 
the information in the original SAR image with that contained in the image products derived from it, 
namely, Power-to-Mean Ratio (PMR), Gamma probability distribution function (Gamma-pdf) and the 
second order texture parameters such as entropy (Gill, 2001, 2002, Gill and Valuer, 1999). All these 
derived products contain additional, complementary, information, which in many cases is helpful in dis-
criminating between the different surface cover types (Gill, 2001).  
 
The particular fuzzy screening method that has been used is called Multi Experts – Multi Criteria Deci-
sion Making (ME-MCDM). The method is originally due to Yager (1993) and “is useful in environments 
in which we must select, from a large class of alternatives, a small subset to be further investigated” . As 
far as known to the author this method has not been used for image classification before. It has been 
chosen because it is well suited for fusing the information from multiple sources such as mentioned 
above; amplitude, PMR, Gamma-pdf and entropy image products. In this scheme, and like neural ne t-
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works, no prior knowledge is required of the underlying statistical distribution of the different surface 
types. Furthermore, unlike the neural network approach, no prior data sets are required to train the algo-
rithm. All the information needed for image classification by the method is contained in the individual 
SAR images and associated products. The manual identification of the training surface classes is re-
quired. 
 
This article essentially consists of three sections. In the next section, the ME-MCDM method is outlined. 
In chapter 3 the adoption of the ME-MCDM scheme for SAR image classification scheme is described. 
Results of applying the method to classify the SAR images are given in chapter 4. Finally, chapter 5 
consist of discussion and conclusion. 
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2. ME-MCDM Fuzzy Screening Method 
This method is applicable to those situations in which one has some preliminary information about the 
possible solutions, called alternatives in fuzzy terminology, and one has multiple judges, called experts, 
which by applying multiple criteria can filter out the most likely solutions for further analysis or screen-
ing. These screening problems form part a ME-MCDM (Multiple Experts – Multi Criteria Decision 
Making) problem with minimal information. The latter complicates the fuzzy problems because it limits 
the operations which can be performed in the aggregation processes needed to combine the multi-experts 
as well as multi-criteria. The fuzzy screening procedure developed by Yager (1993) can be used in many 
different types of problems such as pattern recognition, medical diagnosis and financial decision mak-
ing. In this report it is applied to SAR image classification. 
 
Below the most important elements of this method that are relevant for the classification of the SAR 
images into different regions of sea ice and open waters are summarised. For further details the reader 
should refer to Yager (1993) and Fuller (1996). 
 
The fuzzy screening method developed by Yager is a 2 stage process.  
 

1. In the first stage, individual experts are asked to provide an evaluation of the alternatives. 
 
2. In the second stage, using fuzzy set theory rules, the individual experts evaluations are aggre-

gated to obtain an overall value for each alternative. 
 
The problem consists of 3 components. 
 
A. A collection of all alternative solutions, X 

 
X = {X1, X2, ……….., Xp}       (1) 

 
where p is the total number of possible solutions or alternatives. In the case of the problem be-
ing addressed in here this refers to the total number of possible classes of open water and sea 
ice types identified by the user in a SAR image and its associated products. 
 

B. A group of judges, or experts, A 
 

A= {A1, A2, ……….., Ar}        (2) 
 

where r is the total number of experts which in this present are 4: the amplitude SAR image 
and the 3 products derived from it: PMR, Gamma-pdf and entropy (ENT). 

 
C. The third component is a collection of criteria, C 
 

C= {C1, C2, ……….., Cn}        (3) 
 

where n is the total number of relevant criteria used by the experts to evaluate the alternatives. In 
the present case C is set at 2. The first criteria used is the Kolmogorov-Smirnov (KS) statistical test 
in which distributions of the unknown regions in the 4 image products are matched with those of 
the training classes determined manually. The second criteria employed is using the statistical 
means of the unknown and known classes and comparing their difference.  
 

Stage 1: Rating of each alternative by each of the expert 
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Thus for each alternative /solution an expert is asked to evaluate how well that alternative satisfies each 
of the criteria in the set C. These evaluation can be given in linguistic terms as illustrated in the table  
below: 
 
 

Outstanding (OU) S7 

Very High (VH) S6 
High (H) S5 
Medium (M) S4 
Low (L) S3 
Very Low (VL) S2 
None (N) S1 

 
 
Thus for each alternative an expert provides a collection of n values, one for each criterion 
 

P= {P1, P2, ……….., Pn}        (4) 
 
where Pj, is the rating of the alternative on the j-th criterion by the expert. Each Pj, is the element in the 
set of allowable scores, S. 
 
Independent of this evaluation of alternative satisfaction to each criterion, each expert must associate a 
measure of importance to each criterion using the same scale, S. 
 
The next step in the process is to find the overall valuation for an alternative by a given expert. To do 
this a negation of the importance of the criterion is required which is 
 

Neg(Si) = Sq-i+1         (5) 
 
where q is the highest score possible. Then the unit score for each alternative by each expert, denoted by 
Xik  is given as follows 
 

 Xik= Minj[Neg(Ii) `  Pj]         (6) 
 
where `  denotes a maximum operation and Ij denotes the importance of the j-th criterion. The above 
equation can be seen as a measure of the degree to which an alternative satisfies the proposition “all 
criteria are satisfied.” It can be seen as a generalization of a weighting averaging. Linguistically the 
formulation is saying that “if a criterion is important then an alternative must score well on it”. 
 
At the end of the first stage one has for each alternative a collection of evaluations 
 

{Xi1, Xi2……….., Xir}        (7) 
 
where Xik is the unit evaluation of the i-th alternative by the k-th expert. 
 
Stage 2: Combining experts ratings 
 
In this section the rating for each alternative by the different experts are combined to obtain an overall 
evaluation for each alternative. To do this the Ordered Weighted Averaging (OWA) operator is used. 
Further it is assumed that each of the expert have the same importance. In the present SAR image classi-
fication, this means all 4 products, AMP, PMR, GAMMA-pdf and ENT are independent of one another 
and are of equal importance. This assumption is not strictly valid as the 3 latter products (PMR, 
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GAMMA-pdf and ENT) are also derived from the original SAR and the reader should bear this in mind. 
However, this assumption will be satisfied in the future when the ENVISAT ASAR and RADARSAT 
data are used together for image classification. One of the reasons why the fuzzy screening method de-
scribed here has been considered for SAR image classification in the first place is because of its flexibil-
ity to fuse data from different sources or sensors. 
 
In this section an aggregated  function Q, which can be seen as a generalisation of the idea of how many 
experts it feels need to agree on an alternative before it is accepted to pass through the screening process. 
The value Q(i), where i=1 to r, is an indication of how satisfied i experts, out of a total of r, are in pass-
ing an alternative. The value Q(i) should be drawn from the scale S={S1, S2, S3, ………, Sn} described 
above. Q(i) has the following characteristics. 
 

1. As more experts agree the decision making confidence should increase. 
 
Q(i) = Q(j),  i > j. 
 

2. If all experts are satisfied then the confidence should be highest. 
 
Q(r) = perfect. 
 

The function Q can take different forms depending on the importance the user wish to assign to the 
number of experts that must first agree before the alternative is accepted. A function that emulates the 
average is denoted by QA and is defined for all i=0, 1, ….r as 
 

QA(k) = Sb(k)          (8) 
 

Where 
 

)]
1

.(1[)(
r

q
kIntkb

−
+=

        (9) 
 
where q is the number of points on the scale, S mentioned above, k=0, 1, …, r, and Int is an operator 
returning the integer value that is closest to the float number in the square bracket in the equation above. 
 
Having appropriately selected Q then one is in a position to use the OWA method for aggregating the 
expert opinions. 
 
The first step in the OWA procedure is to order the Xik’s in descending order which is denoted by Bj, 
which is j-th highest score amongst the experts for the i- th project. 
 
The overall evaluation for the i-th alternative is then calculated from the following equation 
 

 Xi= Maxj[Q(j) ´  Bj]       (10) 
 
Where ´  denotes the minimum. The Max operator plays a role similar to summation in the usual nu-
merical procedure. 
 
To appreciate the above formulation, Bj, can be seen as the worst of the j-th  top scores, Q(j) as an indi-
cation of how important the user feels about the support of at least j experts. The term Q(j) ´  Bj can be 
seen as a weighting of a alternative’s j best scores, Bj, and the decision maker feel that j experts have 
confidence in the alternative. 
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Finally, hard classification of a given unknown region in a SAR image is then deduced in the defuzzyfi-
cation step by taking the maximum of the alternatives given by equation (10). 
 
In the following chapter, it is described how the fuzzy screening method outlined above is adopted for 
SAR image classification.  
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3. ME-MCDM Applied to SAR Image Classification 
As outlined in the previous section, the three components of the ME-MCDM are the experts, possible 
solutions called alternatives and a set of criteria used by the experts to give ratings of each alternative. 
What each one of these three components are in relation to the classification of a SAR image into differ-
ent regions of open water and sea ice is outlined below. 
 

1. Experts: In the present case these are the following 4 image products (floats) which are obtained 
from the original RADARSAT ScanSAR Wide 8-bit, 100 m pixel size, 500 km wide swath width 
(approximately 100 Mbytes), amplitude data. 
 

• AMPLITUDE (AMP) product obtained by averaging window of size 4 × 4 pix-
els, and fixing the distance between two of these consecutive windows at 4 pixels 
in both directions. 

 
• GAMMA-pdf product computed using the following probability distribution for 

the average intensity of m pixels, I
−

(Gill, 2002): 
 

 

P I
mL I

mL
mLI

B

mL mL

B
γ µ µ
( )

( )
exp

( )

=








−
−1

Γ     (11) 
 

 
where L is the number of looks, Γ is the Gamma function and µB  is the mean 
intensity of the background. The size of window and inter window spacing 
used to compute GAMMA-pdf is same as for the AMP. 

 
 

• Power-to-Mean ratio (PMR) product computed using the following expression 
 

     
PMR

I
I

=
< >
< >

2

2                (12) 
 

where I is the intensity value, for window size of 20 × 20 pixels, with inter spac-
ing of two consecutive windows again fixed at 4 pixels in both directions. 
 

Finally, 
 

• ENTROPY (ENT) which is the second order texture parameter derived from the 
Grey-Level Co-occurrence Matrix (GLCM)  (see, for example Gill, 2001) com-
puted using the expression: 

 

ENT P Pij ij
ij

= −∑∑ log( )
    (13) 

where Pij is a square matrix which is the count of the number of occurrence of two 
neighbouring pixels, at two different locations within a square window of size W*W 
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which have grey values i and j. To compute ENT the 8 - bit SAR data was reduced to 
a 6-bit product and window sizes were same as for PMR. 
 

The averaging of windows is necessary to compute the products and to reduce the back-
ground speckle noise by smoothing the data. Further this has the advantage of reducing the 
data volume of each image product used in the evaluation and hence shorten the computa-
tion times. 
 

2. Alternatives refer to the number of different classes of water and sea ice into which the SAR im-
ages are to be classified. Obviously there is a minimum of 2 (one each for water and sea ice). In 
fact this is one of the parameters that is explored in this report, namely, the minimum number of 
classes of water and sea ice of different ice concentration needed to capture the essential info r-
mation in a SAR image to satisfy operational ice charting needs. Consideration also has to be 
given to the fact that the SAR signals of open water and of sea ice are ambiguous and further the 
grey tone values of the same surface class can be different in the near and far range of the image. 
In this report the number of classes are varied from a minimum of 2 to a maximum of 12 (6 each 
for open water and sea ice). For example if the total number of classes are eight, then the SAR 
image is classified into the following classes: 

 
a. Calm water (of the type) in the near range of the SAR image, 
b. Turbulent water in the near range, 
c. Calm water in the far range, 
d. Turbulent water in the far range, 
e. Sea ice of low concentration in the near range, 
f. Sea of high concentration in the near range, 
g. Sea ice of low concentration in the far range, 
h. Sea ice of high concentration in the far range. 

 
Then during the fuzzy screening each unknown region of a SAR image is classified into one of 
these 8 alternatives. The 2 classes of each surface type from the near and far range are then com-
bined together to give 4 final classes. Further discussion of the number of alternatives and their 
distribution are given in the next chapter. 
 
The way the training areas of the different classes are determined manually for the 4 products 
have been described previously (Gill, 2002). Very briefly it involves the following 2 steps. 
 
i) Training areas of different surface types (e.g., calm and turbulent water, sea ice of low and 
high concentration, multi- and first- year sea ice, and if appropriate sea ice in different stages of 
development, etc.) are generated by displaying the AMP product on a computer terminal (SILI-
CON GRAPHICS ERDAS IMAGINE work station). In particular, regions of size ˜ 20 × 20 pix-
els of different surface types are manually identified in the AMP image. This creates the mask 
file, example of which is shown in figure 2 which shows the mask file superimposed on top of 
the AMP image. In the figure a total of eight regions (4 each of water and ice) have been manu-
ally identified. In practice there is no limit to the number of different regions of open water or 
sea ice of different concentration or type that can be chosen for image classification. 
 
ii) The mask file generated above is then used to identify and store in a buffer the data points 
pertaining to different surface types from each of the four products: AMP, GAMMA-pdf, PMR 
and ENT. These are the data points within the colour boxes shown in figs. 2 - 5. 
 

3. Criteria. As mentioned in the last chapter currently 2 criteria are used for making decision by the 
experts. These are Kolmogorov – Smirnov (KS) distribution test in which the statistics of the un-
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known region of an image are compared with those of known classes determined manually as 
outlined above. The advantage in using the KS test is that a prior knowledge of the respective 
distribution of the known and unknown classes is not needed. The KS test simply determined 
whether the 2 data sets belong to same distribution or not (Gill, 2002). Thus the KS test is used to 
match the data points in each of the four experts to their respective data points pertaining to a dif-
ferent surface type to determine the probabilities of a match (perfect match: probabilities = 1.0, 
no match: probabilities = 0.0). To compute these probabilities a test window of size 4 × 4 pixels, 
which was determined by carrying out trials with windows of different sizes and was found to be 
both computationally optimal and statistically sufficient, is slid across the four products (Gill, 
2002). The pixels in these 4 × 4 test windows are compared with the pre-determined surface 
classes using the KS test to determine whether the two data sets belong to the same distribution. 

 
The second criterion is based on comparing the statistical means of the unknown and known 
classes. This is one of the parameters i.e., the grey tone values, used naturally by human opera-
tors to discriminate between the different surface types in an image. Other criteria can also be in-
cluded such as the second moment of the pdf (variances) and criteria based on geometrical fea-
tures of sea ice floes and so on. These are not reported in here. 
 
The above 2 criteria are used by the experts to give ratings i.e., scores, to each class of open wa-
ter and sea ice for a given test window on a scale of 1 -10. 

 

3.1 Why use fuzzy screening method for image classification. 

Finally a summary of the reasons why the ME-MCDM procedure has been adopted to classify SAR im-
ages are listed below. 
 

1. Possible to have multiple experts. This translates into fusing data and products from different 
sources, including sensors. 

 
2. Possible to classify an image into any number of different classes (alternatives). 
 
3. Possible for the user to define the multiple criteria in the decision making. 

 
4. Flexibility to associate importance to each criterion i.e., “if a criterion is important then an al-

ternative must score well on it.” 
 

5. Allows the user the flexibility to alter, if necessary, how many experts have to agree before an al-
ternative is accepted for further screening. 

 

3.2 Computational procedure. 

1. Compute the 4 float image product (AMP; GAMMA-pdf, PMR and ENT) as outlines above. 
 
2. Manually identify on a computer screen the number of classes of open water and of sea ice into 

which the SAR image is to be classified. Store the float values of these different classes. 
 
3. By using a 4 × 4 test window in each of the four products, compute the scores of each of the 

above class for each of the above 2 criteria. 
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4. Use the fuzzy screening rules to aggregate the scores for each class from each of the 4 products 
for the test window using equation (10). This will result in the overall scores for each class for 
the test window. 

 
5. Hard classify the overall scores for the test window by de-fuzzying the results. This is achieved 

for the time being by taking the class that has the maximum overall score. 
 
6. Steps 3 – 5 are repeated for the entire image by sliding the above 4 × 4 window across the image. 
 
The overall SAR image classification based on the fuzzy screening method described above is shown 
in figure 1 below. 

 

 
Figure 1. Shows the sketch of the SAR image classification using the fuzzy screening method. In the fig-
ure the number of alternatives are 4 (calm and turbulent water and sea ice of low and high concentra-
tion), number of experts are also 4 (AMP, PMR, GAM (=GAMMA_pdf) and ENT). The 2 criteria used 
are the KS and the statistical means. 
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4. Results 
This consists of, for the purpose of illustrating the method, a classification of two RADARSAT Scan-
SAR Wide images shown as figures 2 and 23, respectively, and given at the back of this report. The first 
image is from Disco Bay region of West Greenland from 2000-05-24. This image has been chosen be-
cause it is relatively easy to interpret manually and thus is adequate for illustrating the results. In particu-
lar, this image contains essentially 3 surface types: first year ice, fast ice and open water all of which are 
indicated on the figure. The second SAR image is much more difficult to interpret. It contains many dif-
ferent surface types: sea ice of both very low and very high concentration, calm and turbulent open water 
regions and first and multi-year sea ice floes, as indicated on the figure. This second image is of 
Scoresby Sound from the East coast of Greenland from 2000-07-22.  
 
In both figures 2 and 23 typical regions, representative of different surface types are indicated by differ-
ent colour boxes and have been marked with a unique identity code (e.g., I-1 and W-1). These regions 
were manually identified as described in the last chapter. For example, fig. 2 contains 8 boxes, 2 each of 
red, yellow, blue and turquoise. In particular, red and yellow boxes indicate regions of sea ice of low and 
high backscatter values while blue and turquoise boxes indicate calm and turbulent open water regions. 
Similarly, fig. 23 contain 12 boxes, three each for sea ice (low and high ice concentration) and open wa-
ter (calm and turbulent water) from the near, middle and far ranges of the RADARSAT image. The data 
points from four different products (AMPLITUDE, GAMMA, PMR and ENT) within these (and only 
these !) boxes are stored in a buffer and are used in the two criteria (KS distribution matching test and a 
comparison of the mean values) of the fuzzy image classification scheme described in the last section. 
The results from this image classification scheme are presented below. 

4.1 RADARSAT image from West Coast of Greenland 

Figures 3 - 5 show the PMR, GAMMA and ENT ‘image’ products, respectively, on a grey tone scale, 
after appropriate scaling, corresponding to the AMPLITUDE image product shown in figure 2. All 3 of 
these figures shows the usefulness of these products for interpreting the original SAR image (fig. 2) 
(Gill, 2002). 
 
Below the results of image classification using the above fuzzy screening method with 2, 4 and 8 alter-
native (surface classes) are presented below. 

4.1.1 Number of surface classes 2 

4.1.1.1 Maximum number of 2 experts 
 
Figure 6 shows the classification of the RADARSAT image using only: (i) the AMP expert, (ii) KS cri-
terion and (iii) just two alternatives (one each of water and ice with the identities W-4 and I-3, respec-
tively). As can be seen from this figure the classification of the different regions of sea ice and open wa-
ter seems to be reasonably accurate. There are few in-accuracies in this classification such as some of the 
first year ice floes (and the ice region between them) with low grey tone values have been misclassified 
as water. This is indicated on the figure. The results presented in fig. 6 are nothing more than the KS 
probabilities obtained by matching the unknown pixels with the predetermined water and sea ice pixels. 
The fuzzy screening method plays essential no role because only one expert has been chosen to do the 
screening and there is nothing to aggregate. Further, as in this case there are only 2 classes to choose 
from, fig. 6 simply shows when the AMP pixels in the test windows lies closer to either the predeter-
mined class of water or sea ice. The results , nevertheless, shows the potential of the classification 
method using just 2 classes.   
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The results shown in fig. 6 should be seen as only those of the expert AMP who was allowed to use only 
one criterion and given just 2 alternatives to chose from. Figure 7 shows the results of the cla ssification 
when we have 2 experts (AMP and PMR). All other parameters in the fuzzy screening were identical as 
in fig. 6 above. In this figure one can see that combining the individual classification of the experts AMP 
and PMR have not resulted in improved image classification. Instead the results are inferior to those in 
figure 6 where the opinion of the expert AMP only were sought. In particular, comparing figs. 6 and 7 
one can see that many more first year ice floes and the ice between them have been misclassified as wa-
ter. Further the fast ice region (top-middle of the image) has also been misclassified as water.  
 
To understand this, it should be pointed out that the default class of the test window as been set as water. 
The consequence of this is that in the case when the 2 experts, as in this case, disagree with one another 
about the classification of the test window then that window automatically gets classified as water. It 
should be noted that when the 2 experts disagree with one another then there is 50% : 50% chance the 
class of the window in question is either water or ice. Thus the extra regions of open water in fig. 7, 
when compared to fig. 6, should been be interpreted as the test windows for which the experts AMP and 
PMR were in disagreement (as to their class type). 
 
From a statistical point of view PMR is a measure of regions heterogeneity. Then the fact that more of 
the ice regions are misclassified as water means that the PMR values are not sensitive enough in some 
regions to discriminate between the two classes. This can be ascertained by manually inspecting PMR 
grey tone image shown in fig. 3. The PMR parameter is useful for delineating surface boundaries, ice-
bergs and the structures, such as ice ridges, with ice floes.  
 
Figure 8 shows the classification of the image carried out by the experts AMP and GAMMA. Again all 
other parameters were same as for fig. 7. Comparing this figure with figs. 6 and 7 discussed above, it can 
be seen that the results of the image classification by the experts AMP and GAMMA are very similar to 
those obtained using the expert AMP alone. In particular, comparing fig. 8 with fig. 6 shows that few 
more of the ice region have been misclassified as water (especially the fast ice region at top middle of 
the image). The reason for this are the same as for fig. 7 above i.e., extra regions of open water within 
the ice areas should again be interpreted as the test windows for which the experts AMP and GAMMA 
were in disagreement. The fact that the result of the evaluation by the experts AMP and GAMMA (fig. 
8) are not too different from those obtained by using expert AMP alone (fig. 6) implies that these 2 ex-
perts are mostly in agreement about classifying the different regions of the SAR image.  
 
Similarly, figure 9 shows the results of the classification carried by the experts AMP and ENT. As can 
be seen from this figure that combining the evaluations by the expert ENT with those of AMP alone has 
not improved the image classification. In particular, some of the ice regions are again misclassified as 
open water. The reasons for this are same as above i.e., these are the ice regions when the experts AMP 
and ENT have been in disagreement. More specifically, the correctly classified ice regions obtained by 
using only expert AMP in fig. 6 which are now misclassified as water in fig. 9, results because of the 
misclassification by ENT. The reason for this is that the entropy values of many of the ice and water 
regions are very ambiguous.  
 
The overall conclusion to be drawn from the results presented in fig. 6 – 9 above is that combining the 
evaluations of the results obtained by either of the experts PMR, GAMMA or ENT with those of AMP 
alone does not lead to improved image classification. The reason for this is only 2 experts and 2 surface 
classes have been used in the fuzzy model and when the experts disagree with one another then software 
model just assigns a default class (water) for the test window in question. In the next section results of 
aggregating the evaluations by 3 or more experts including using 2 criteria are presented. 

4.1.1.2 Maximum number of 4 experts 
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Figure 10 shows the results of the image classification obtained by aggregating the results from the 3 
experts AMP, GAMMA and PMR. The criterion and the surface classes used were again identical with 
those used in the previous results. As can be seen from this figure the image classification is much more 
realistic. Further, some of the characteristics of what GAMMA and PMR products measure are now re-
flected in these results. In particular, some of the small regions of ice and icebergs in the open water 
between land on the east and first year ice on the west, are now also properly classified. To understand 
how combining the scores from both GAMMA and PMR with those from AMP have improved the 
overall image classification while it lead to poorer results when only GAMMA or PMR were aggregated 
with AMP one has to recall that this is the weighting of an alternatives 3 scores with the measure of con-
fidence expressed by the function Q(j) (equation (9)). This means for any test window at least 2 experts 
are always in agreement as to which class it should belong. Thus the 50% : 50% uncertainty in the cases 
above when only 2 experts were used and when they disagree does not arise in this case. 
 
Figure 11 shows the results when aggregate the evaluations of 4 experts (AMP, PMR GAMMA and 
ENT). All other parameters were same as in fig. 10 above. As can be seen from this figure the results are 
much worse than when only 3 experts were used. Some of the misclassified areas are indicated on the 
figure. The reason for the misclassification results when the judges do not have a majority verdict i.e., 2 
of the experts says it is ice while the other 2 says it is not (i.e., it is sea ice). In these cases the test win-
dow in question is assigned the default class which is water.  
 
Instead of using the KS criterion the reliability of using instead the statistical mean values was also in-
vestigated. The results are shown in figs. 12 and 13, respectively. In particular, in fig. 12 the number of 
experts are 3 (AMP, PMR and GAMMA) while in fig. 13 all 4 experts are used. The number of alterna-
tives are again only 2; the same water and ice classes used in figs. 6 – 11 above. Comparing figs. 12 and 
13 with their counterparts, figs. 10 and 11 one can see that the results obtained using the mean values 
criterion are much inferior than those obtained using the KS criterion. This leads to the obvious conclu-
sion that the mean values criterion is not as effective as the KS test at discriminating between the water 
and sea ice classes. 
 
Figures 14 and 15 shows the results of aggregating the findings of the 3 experts AMP, PMR and 
GAMMA using both of the criteria (KS and the mean values tests). The classes of water and sea ice are 
same as above. In fig. 14 the 2 criteria have been assigned same importance while in fig. 15 KS test has 
been given higher importance because of the above results in figs. 12 and 13. From these results it can 
be seen that the results presented in fig. 15 are now much more accurate than those in fig. 14. These re-
sults shows the flexibility of the fuzzy screening model presented here i.e., allowing for unequal impor-
tance to the decision making criteria. 
 
The results presented in figures 16 and 17 are obtained using the same parameters as used in figs 14 and 
15 above, respectively, except now all 4 experts (AMP, PMR, GAMMA and ENT) are used in the deci-
sion making. The conclusions to be drawn here are thus the same as those obtained for figs. 14 and 15, 
namely by assigning less importance to the mean values criterion results in improved image classifica-
tion. 
 
The effect of using different classes of open water and sea ice in computing the scores in the KS and 
mean values criteria was also investigated and the results are shown in fig. 18. In this case all the pa-
rameters were identical to those used for fig. 17 except now the water and sea ice pixels designated by 
W-3 and I-4 (instead of W-4 and I-3 used in fig. 6 – 17) were used. The position of these different 
classes are shown in  fig. 2. Comparing figs. 17 and 18 it can be seen that the final image classification is 
also sensitive to the actual regions of water and ice used for matching in the 2 criteria. From this one can 
draw the obvious conclusion that the representative classes of the different surface types must be chosen 
with care.   
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In the above examples the maximum number of pre-determined classes used for computing the scores in 
the 2 criteria have been 2 (one each of water and sea ice). In the following section results are presented 
when a total of 4 (2 each of water and sea ice) pre-determined classes are used in the classification. 

4.1.2 Maximum number of surface classes 4. 
 
Figures 19 and 20 shows the results of using 4 pre-determined classes of open water and sea ice for clas-
sifying the SAR image. In particular, in both figs. 19 and 20 the 4 water and sea ice classes designated 
by W-3, W-4, I-3 and I-4 were used which represent a class of (i) calm water (W-3), (ii) turbulent water 
(W-4), (iii) ice with low backscatter (I-4), and (iv) sea ice of high backscatter (I-3). These are the classes 
used for image classification in figs. 6 -17 and fig. 18. As in fig. 16 – 18, more importance was given to 
the KS distribution matching criterion than to the mean values criterion. Then the results shown in fig. 
19 were obtained using the experts AMP, GAMMA and PMR. In fig. 20, on the other hand, all 4 experts 
(the above 3 and ENT) were used. It can be seen from figs. 19 -20 that the quality of the image classifi-
cation has significantly improved. In particular, the different regions of calm and turbulent water and 
that of sea of low and high backscatter values have now been differentiated. The classification on the 
whole appear to be much more representative of the different classes of open water and sea ice present in 
the image.  
 
The effect of using only 3 and all 4 experts can also be deduced by comparing figs. 19 and 20. The obvi-
ous difference is that in fig. 20 there are more ice floes with higher backscatter values and some of the 
water regions classified as calm in fig. 19 and now classified as turbulent water. Qualitative comparison 
of figs. 19 – 20 with the original RADARSAT image and the AMP image product shown in fig. 2 shows 
that fig. 20 is a more accurate representative of the 4 different surface classes than fig. 19.  

4.1.3 Maximum number of surface classes 8. 
 
Finally, figs. 21 – 22 shows the results of image classification when a total of 8 pre-determined classes 
of calm and turbulent water and sea ice with low and high backscatter values were used. In particular, 
these were 2 classes each of calm water (W-1, W-3), turbulent water (W-2, W-4), sea ice with low back-
scatter values (I-1, I-3) and with high backscatter values (I-2, I-4). Again in fig. 21 the experts AMP, 
GAMMA and PMR were used while in fig. 22 all 4 were used. Comparing the results presented here 
with those in the previous section above it can be seen that there is less difference between figs. 21 – 22 
than their counter parts figs. 19 – 20. In particular, there appears to be very little difference between the 
classification of the open water regions in figs. 21 – 22, implying that the opinion of the additional ex-
pert (ENT) was not too different from those used in the classification shown in fig. 21. However there is 
some difference between the classification of the sea ice regions in figs. 21 and 22. In particular, in fig. 
21 some parts of ice floes in the left of the image and parts of the fast ice region at top middle have been 
misclassified as turbulent water, both of which are indicated on figure. The conclusion to be drawn from 
this is that using more test classes of water and sea ice in the fuzzy classification scheme does not neces-
sarily results in more accurate image classification. Thus the final judgement of the quality of the image 
classification must be left to the user. 
 
Comparing figs. 21 and 22 shows that using 4 experts, instead of only 3, has resulted in improved image 
classification. 
 
The image used above to illustrate the potential of the fuzzy screening method is relatively easy to inter-
pret manually. The performance of this fuzzy method used to classify a much more complex RADAR-
SAT image are given below. This image is from the East coast of Greenland, off Scoresby Sound at ˜  70 
ºN from 22nd July 2000. 
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4.2 RADARSAT image from East Coast of Greenland 

Figures 23 - 25 shows the 3 experts, AMP, GAMMA and PMR shown on a grey tone scale used in the 
classification. These image products were computed in the same way as figs. 2 -4 above. In particular, in 
fig. 23 a total of 12 classes (3 each of calm and turbulent water and sea ice of low and high backscatter 
values) were manually identified. Of these the pairs (W-1, W-2)  and (I-1, I-2) represent calm and turbu-
lent water and sea ice of low and high backscatter in the near range of satellite pass (right half of the 
image as indicated on the figure). Similarly (W-3, W-4) and (I-3, I-4) are their counterparts in the far 
range of the image. The pairs (W-5, W-6) and (I-5, I-6) are the representative classes of these 4 surface 
types in the middle part of the image. As in the previous section these 12 alternatives, 3 experts and the 2 
decision making criteria  were used in the image classification. Further the effect of only using represen-
tative classes from the near or far range was also investigated. These results are discussed below. To 
help the reader assess the accuracy of these results, some of the important regions in the image, such as 
the turbulent water region in the near range, ice of high concentration in the far range, a multi-year ice 
floe in the mouth of Scoresby Sound have been indicated on fig. 23. 
 
The pair of figures 26 – 27 shows the results of image classification when the pre-determined classes 
from the far range (fig. 26) and near range (fig. 27) were used in the 2 decision making criteria. As can 
be seen from these figures, the results of image classification are significantly different. In particular, the 
turbulent water region in the near range has been totally misclassified in fig. 26. Similarly many of the 
water regions have been misclassified as sea ice in fig. 27. On the whole it can be seen that with the ex-
ception of misclassifying the turbulent water region in the near range as sea ice with low backscatter 
(colour code red), the results shown in fig. 26 are reasonably accurate. This cannot be said of the results 
shown in fig. 27. From this one can conclude that the representative classes of water and sea ice from the 
near range are much worse than their counter parts from the far range in the fuzzy image classification 
scheme used here. These results in some sense were expected because the backscatter from the near 
range are characterised by steep radar incidence angles which are known to be poor for sea ice open wa-
ter discrimination as has been found previously during the evaluation of ERS-SAR imagery (Gill et. al., 
1995).  
 
Figure 28 shows the results of image classification using a total of 8 representative classes of water and 
sea ice (4 from the near range and a similar number from the far range of the image). Only the expert 
AMP and one criterion (KS distribution matching test) was used in the decision making. As can be seen 
from the results shown in the figure there are many regions that are misclassified some of which are in-
dicated on the figure. In particular, the misclassification of some the sea ice in the mouth of the Sound as 
turbulent water ( colour code: turquoise) and the misclassification of the turbulent water region in the 
lower middle of the image as sea ice with low backscatter (colour code: red). From this it is clear that, 
due to the complexity of SAR image, using just 1 expert and 1 criterion is inadequate to classify this 
image accurately. 
 
Figure 29 shows the results of image classification when the 2 experts AMP and GAMMA were used to 
classify the image. All other parameters were identical to those used in the previous figure. Comparing 
fig. 29 with fig. 28 it can  be seen that there is in fact significant improvement in the resulting classifica-
tion. For example most of the sea ice in the Scoresby Sound, including most part of the multi-year ice 
floe, is correctly classified. This is also true for the sea ice surrounding the ice pack in the bottom left of 
the figure (indicated by the abbreviation xx on the figure). The turbulent water region in the bottom 
middle of the image misclassified as sea with low backscatter values in the last figure is now on the 
whole is also correctly classified. However, despite these improvements there are still regions of the 
image which are not correctly classified, especially the turbulent water in the near range (left hand side 
of figure) which is still misclassified as sea ice (colour code: yellow). 
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Similarly, figure 30 shows the classification of the same image when all 3 experts (AMP, GAMMA and 
PMR) were used for decision making. Again all other parameters were identical to the previous figure, 
especially only the KS criterion is used. Comparing this figure with the 2 previous ones one can again 
immediately see the improvements in the final classification. It can be seen from this figure that apart 
from the turbulent water region in the near range still misclassified as sea ice (colour code: red) and part 
of the multi-year ice floe classified as turbulent water (colour code: turquoise), most of the regions in the 
SAR image are correctly classified. A possible explanation why part of the multi-year floe is still mis-
classified as turbulent water is that parts of its surface may have undergone melting and thus in the clas-
sification is treated as a water class. Another reason in support of this explanation is that the image in 
question is from summer (22nd July). 
 
Figure 31 shows the classification by using the above 3 experts but in this case instead of using the KS 
distribution matching test to make decision, the criterion based on the statistical mean values of the dif-
ferent classes, was used. All other parameters were identical to previous figure. Comparing this figure 
with fig. 30 it can be seen that using the  mean values criterion is not as effective as KS test for image 
classification in the fuzzy scheme, thus confirming the results obtained in the previous section. 
 
Figure 32 shows the classification of the SAR image using all 3 experts and both criteria with less im-
portance given to the statistical mean criterion. As can be seen from this figure the classification of the 
image appear to be on the whole correct and improved to the case when just the criterion KS test was 
used (fig. 30). The only region which is still misclassified is the open water region in the near range of 
the image which is still misclassified as sea ice (colour code: yellow). Also notice that some of region in 
fig. 30 have been reclassified from one sea ice class into another (colour code: from red to yellow). This 
is similarly true for the water regions. 
 
Finally figure 33 shows the classification of the image when 12 predetermined test regions within the 
image are used in the image classification: In particular, these are the 8 classes used in the previous fig-
ures 28 – 32 plus 4 more; sea ice of low and high backscatter values and calm and turbulent water, from 
the middle part of the image. These 12 classes are marked on fig. 23 with the symbols I-1 to I-6 and W-1 
to W-6 for sea ice and open water, respectively. Comparing figs 32 and 33 one can see that using 12 test 
classes of water and sea ice, instead of 8, has not improved the results significantly. More specifically, 
no region of water or sea ice in fig. 32 have been re-classified into another type. The changes are only, at 
best, re-classification of calm to turbulent water (colour code: red into turquoise) or sea ice with low 
backscatter to high backscatter (colour code: red into ye llow), or vice-versa. The most disturbing result 
still is that the turbulent water region in the near range (left hand side of the image) is still misclassified 
as sea ice (colour code: yellow). The author has attempted using other representative surface classes of 
sea ice and water in the model, but to no avail.  
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5. Discussion and Conclusions 
In this report a new fuzzy method called Multi Experts – Multi Criteria Decision Making (ME-MCDM) 
has been evaluated for classifying a SAR image into regions of calm and turbulent water and sea ice 
with low and high backscatter values. The desired aim of this investigation was to find a reliable method 
that would allow for the possibility of fusing the information in the SAR image with that in the texture 
and statistical image products derived from it. The latter products, described below, are found to contain 
useful supplementary information which is often useful during the manual interpretation of the images. 
The ME-MCDM screening method was selected as it was found to be very flexible with potential to 
include auxiliary information which could be relevant for image classification. In particular, it allowed 
for having multiple experts (the products), any number of image classes (called alternatives), possibility 
to use multiple weighted criteria. The scheme also allowed the user to determine how many experts had 
to agree before a test window was believed to be reliably classified. 
 
The main advantage of using this image classification scheme over the more traditional ones is that, like 
neural networks, no prior knowledge is required of the statistical distribution of the different surface 
types. Furthermore, unlike neural networks, no prior data sets are required to train the algorithm. All the 
information needed for image classification by the method is contained in the ind ividual SAR images 
and derived products. The method does rely on the user identifying the training classes manually.  
 
The 4 experts used for image classification were the AMPLITUDE, GAMMA-pdf, PMR and EN-
TROPY. The former 2 are computed from the original RADARSAT ScanSAR Wide image by averag-
ing 4 × 4 windows (the inert-pixel spacing of these windows was also fixed at 4 × 4 pixels to reduce data 
volume). PMR and ENTROPY were computed using equations (11) – (12) using window sizes of 20 × 
20 pixels (see chapter for further details) The criteria used for making decisions were the Kolmogorov- 
Smirnov (KS) distribution matching test which involved comparing the unknown and known classes to 
determined whether they belong to the same distribution or not, and comparing the first order statistical 
means of the 2 classes. During the evaluations it was found that the second criterion was not as effective 
as the first (KS) in discriminating between the different classes which then allowed the option of associ-
ating less importance to it. Furthermore, it must be pointed out that the KS test has its own limitations: 
(i) it is most sensitive around the median of the cumulative distribution function and less sens itive at the 
tail ends, and (ii) it cannot discriminate between all types of distributions, such as a distribution with 2 
maximums. 
 
The evaluation of the ME-MCDM fuzzy screening method was centred around classifying 2 RADAR-
SAT images. The first one was easy to interpret (fig. 2) with well defined boundaries between the water 
and sea ice classes consisting of first year and fast ice along the coasts. The second image (fig. 23), on 
the other hand, was its complete opposite; it was characterised by sea ice consisting of a mixture of first 
and multi-year floes of different ice concentration and very turbulent open water regions. A summary of 
the results obtained using each one of these SAR images are given next. 
 
The results of image classification into just 2 classes (one each of water and sea ice) are shown in figs. 6 
– 18. Results of using just one expert (AMP) and one criterion (KS) are shown in fig. 6. These results 
are surprisingly very accurate and were computed to illustrate the potential of this classification scheme. 
Figs. 7 – 9 show the classification based on using the above expert and one of the other: PMR, GAMMA 
or ENT, respectively. The results in these figures show to what degree these experts agree or disagree 
with AMP which can be ascertained by comparing these figures with fig. 6. In particular, if any one of 
the results shown in figs. 7 – 9 are significantly different from fig. 6 then it can be concluded that the 2 
experts were in disagreement. Fig. 9, for example, was not significantly different from fig. 6 thus imply-
ing the experts AMP and GAMMA were broadly in agreement. The results of combining the opinion of 
3 and 4 judges are shown in figs. 10 – 11 and a general improvement  in the result classification of the 
image can be clearly seen.  The results of using the statistical mean values criterion, instead of the KS, 
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are shown in figs. 12 -13. By comparing these results with the previous ones it can be deduced that this 
criterion is not as effective at discriminating between the different classes. The results of using both of 
the above criteria and still only 2 alternatives are given in figs. 14 – 17. From these results it can be seen 
that the best results are those shown in fig. 15 which were obtained by associating less importance to the 
mean values criterion and by not using the ENT expert (to see this compare figs. 15 and 17). From this it 
can be concluded that not all products are equally efficient at classifying a SAR image and that it would 
be useful if the ME-MCDM model allowed for the possibility of assigning weighting to the experts. This 
facility is not available in the current version of the model and will be investigated in the future. Finally, 
fig. 18 shows the results of classifications using a different class of water and sea in the 2 criteria for 
making decisions. As can be seen from this figure the results are unfortunately somewhat sensitive to the 
actual representative classes of water and sea ice used in computing the scores. 
 
Results for using 4 classes; calm and turbulent water and sea ice with low and high backscatter va lues, 
are shown in figs.19 – 20. As can be seen from these 2 figures, by using 4 classes results in a much more 
representative and realistic classification of the SAR image. Further improvement results when using 8 
surface classes in the classification as shown in figs. 21 – 22. 
 
The results of applying the fuzzy screening method to classify a complex SAR image are shown in figs. 
26 – 33. In figs. 26 – 27 the sensitivity of image classification scheme to using pre-determined classes 
from the near and far range were investigated. It was found that using the classes to compute the scores 
from the far range were far better than from their counter parts in the near range of the image. This re-
sults confirmed earlier findings, namely that for reliable discrimination between sea ice and water re-
gions radar incidence angles = 30 º should be used (Gill and Valuer., 1999). The results of using a total 
of 8 test classes of water and sea ice are given in figs. 28 – 32. Figs. 30 – 31, again confirm the relative 
accuracy of the 2 criterion at discriminating between the different surface types with KS again confirm-
ing its prominence. Further, from these figures it can be seen that the best results are those shown in fig. 
32 which were obtained using both of the criteria, with less importance to mean values criterion, and all 
3 experts AMP, GAMMA and PMR. Finally fig. 33 shows the results obtained by using a total of 12 test 
classes of water and sea ice. Comparing this figure to fig. 32 it can be seen that it does not result in any 
significant improvement. 
 
From the results presented in fig. 6 – 33 it can be concluded that a minimum of 4 classes of water and 
sea ice are adequate for classifying the different surfaces in a RADARSAT image of sea ice. Best results 
are obtained when using 8 such classes. 
 
A point to note is that using 4, 8 or 12 classes in the classification have not been able to classify cor-
rectly the turbulent water region in the near range of the SAR in fig. 23. The result is obviously disap-
pointing and shows the limitations of the 2 criteria used in the decision making. It is difficult to see how 
a criterion using the information within the individual SAR image (based on statistical distributions or 
texture parameters) can help resolve this problem. The best way to improve the image classification 
would be to use information contained in data from other satellite sensors, particularly SSM/I and/or 
QuickSCAT and ENVISAT (and the sea ice products computed from them). More specifically, an auto-
matic SAR image classification method has been developed which uses the above ME-MCDM fuzzy 
method together with the sea ice product based on the SSM/I – 85 GHz and the EUMETSAT SAF – OI 
(Satellite Application Facility on Ocean and Sea Ice) sea ice concentration. The particular advantages of 
this method is that the training areas of representative classes are no longer determined by the user; the 
algorithm locates such classes automatically. Initial results obtained from the algorithm looks promising 
and shall be reported in the near future. 
 
The effectiveness of using surface types identified in one SAR image to classify a SAR image of the 
same (and different) region, from another day, was also investigated by the author. The results found 
were not very encouraging and thus were not presented in this report. The main reason for this is that the 
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different image classes are too sensitive to the radar incidence angles, i.e., their position in the across 
range direction. Another important reason is that the statistical characteristics of the surface classes can, 
in the time between the 2 images, undergo significant changes (due to meteorological conditions). This 
finding has consequences for the algorithms based on neural networks which require credible training 
sets of the different classes. 
  
Finally it should be recalled that in the ME-MCDM model it is assumed that all experts are independent 
and have same importance. This assumption is not strictly satisfied as all the 4 products are derived from 
the same original SAR image. This point should be borne in mind by the reader when evaluating the 
results presented in the last chapter. However, with the imminent availability of ENVISAT -ASAR data, 
this assumption will be satisfied when the model is used to fuse these data with those of RADARSAT. 
Results of this investigation will be reported in the near future. 
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8. Danish Meteorological Institute -  Scientific Reports 
 
Scientific reports from the Danish Meteorological Institute cover a variety of geo physi-
cal fields, i.e. meteorology (including climatology), oceanography, subjects on air and 
sea pollution, geomagnetism, solar-terrestrial physics, and physics of the middle and up-
per atmosphere. 
 
Reports in the series within the last five years: 
 

 
No. 97-1 
E. Friis Christensen og C. Skøtt: Contributions 
from the International Science Team. The Ørsted 
Mission - a pre-launch compendium 
 
No. 97-2 
Alix Rasmussen, Sissi Kiilsholm, Jens Havskov 
Sørensen, Ib Steen Mikkelsen: Analysis of tropo-
spheric ozone measurements in Greenland: Contract 
No. EV5V-CT93-0318 (DG 12 DTEE): DMI’s con-
tribution to CEC Final Report Arctic Trophospheric 
Ozone Chemistry ARCTOC  
 
No. 97-3 
Peter Thejll: A search for effects of external events 
on terrestrial atmospheric pressure: cosmic rays  
 
No. 97-4 
Peter Thejll: A search for effects of external events 
on terrestrial atmospheric pressure: sector boundary 
crossings 
 
No. 97-5 
Knud Lassen: Twentieth century retreat of sea-ice 
in the Greenland Sea 
 
No. 98-1 
Niels Woetman Nielsen, Bjarne Amstrup, Jess U. 
Jørgensen: HIRLAM 2.5 parallel tests at DMI: sen-
sitivity to type of schemes for turbulence, moist 
processes and advection 

 
No. 98-2 
Per Høeg, Georg Bergeton Larsen, Hans-Henrik 
Benzon, Stig Syndergaard, Mette Dahl 
Mortensen: The GPSOS project. Algorithm func-
tional design and analysis of ionosphere, stratosphere 
and troposphere observations 

 
No. 98-3 
Mette Dahl Mortensen,  Per Høeg: 
Satellite atmosphere profiling retrieval in a nonlinear 
troposphere. Previously entitled: Limitations induced 
by Multipath 

 No. 98-4 
Mette Dahl Mortensen, Per Høeg: Resolu-
tion properties in atmospheric profiling with 
GPS 
 
No. 98-5 
R.S. Gill and M. K. Rosengren: Evaluation 
of the Radarsat imagery for the operational 
mapping of sea ice around Greenland in 1997 
 
No. 98-6 
R.S. Gi ll, H.H. Valeur, P. Nielsen and K.Q. 
Hansen: Using ERS SAR images in the opera-
tional mapping of sea ice in the Greenland wa-
ters: final report for ESA-ESRIN’s: pilot pro-
jekt no. PP2.PP2.DK2 and 2nd announcement 
of opportunity for the exploitation of  ERS data 
projekt No. AO2..DK 102 

 
No. 98-7 
Per Høeg et al.: GPS Atmosphere profiling 
methods and error assessments  
 
No. 98-8 
H. Svensmark, N. Woetmann Nielsen and 
A.M. Sempreviva: Large scale soft and hard 
turbulent states of the atmo sphere 
 
No. 98-9 
Philippe Lopez, Eigil Kaas and Annette 
Guldberg: The full particle-in-cell advection 
scheme in spherical geometry 

 
No. 98-10 
H. Svensmark: Influence of cosmic rays on 
earth’s climate 
 
No. 98-11 
Peter Thejll and Henrik Svensmark: Notes 
on the method of normalized multivariate 
regression 
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No. 98-12 
K. Lassen: Extent of sea ice in the Greenland Sea 
1877-1997: an extension of DMI Scientific Report 
97-5 
 
No. 98-13 
Niels Larsen, Alberto Adriani and Guido DiDon-
francesco: Microphysical analysis of polar strato-
spheric clouds observed by lidar at McMurdo, Ant-
arctica 
 
No.98-14 
Mette Dahl Mortensen:  The back-propagation 
method for inversion of radio occultation data 
 
No. 98-15 
Xiang -Yu Huang: Variational analysis using spa-
tial filters 
 
No. 99-1 
Henrik Feddersen: Project on prediction of cli-
mate variations on seasonel to interannual time-
scales (PROVOST) EU contract ENVA4-CT95-
0109: DMI contribution to the final report: Statis-
tical analysis and post-processing of uncoupled 
PROVOST simulations 
 
No. 99-2 
Wilhelm May: A time-slice experiment with the 
ECHAM4 A-GCM at high resolution: the experi-
mental design and the assessment of climate 
change as compared to a greenhouse gas experi-
ment with ECHAM4/OPYC at low resolution 
 
No. 99-3 
Niels Larsen et al.: European stratospheric moni-
toring stations in the Artic II: CEC Environment 
and Climate Programme Contract ENV4-CT95-
0136. DMI Contributions to the project 
 
No. 99-4 
Alexander Baklanov: Parameteris ation of the 
deposition processes and radioactive decay: a re-
view and some preliminary results with the 
DERMA model 
 
No. 99-5 
Mette Dahl Mortensen: Non-linear high resolu-
tion inversion of radio occultation data 
 
No. 99-6 
Stig Syndergaard: Retrieval analysis and meth-
odologies in atmospheric limb sounding using the 
GNSS radio occultation technique 
 
No. 99-7 
Jun She, Jacob Woge Nielsen: Operational wave 
forecasts over the Baltic and North Sea 

 
No. 99-8 
Henrik Feddersen: Monthly temperature 
forecasts for Denmark - statistical or dy-
namical? 
 
No. 99-9 
P.  Thejll, K. Lassen: Solar forcing of the 
Northern hemisphere air temperature: new 
data 
 
No. 99-10 
Torben Stockflet Jørgensen, Aksel Walløe 
Hansen: Comment on “Variation of cosmic 
ray flux and global coverage - a missing link 
in solar-climate relationships” by Henrik 
Svensmark and Eigil Friis -Christensen 
 
No. 99-11 
Mette Dahl Meincke: Inversion methods for 
atmospheric profiling with GPS occultations 
 
No. 99-12 
Hans-Henrik Benzon; Laust Olsen; Per 
Høeg: Simulations of current density meas-
urements with a Faraday Current Meter and a 
magnetometer 
 
No. 00-01 
Per Høeg; G. Leppelmeier: ACE - Atmo s-
phere Climate Experiment 
 
No. 00-02 
Per Høeg: FACE-IT: Field-Aligned Current 
Experiment in the Ionosphere and Thermo-
sphere 
 
No. 00-03 
Allan Gross:  Surface ozone and tropo-
spheric chemistry with applications to re-
gional air quality modeling. PhD thesis  
 
No. 00-04 
Henrik Vedel: Conversion of WGS84 geo-
metric heights to NWP model HIRLAM 
geopotential heights 
 
No. 00-05 
Jérôme Chenevez: Advection experiments 
with DMI-Hirlam-Tracer 
No. 00-06 
Niels Larsen: Polar stratospheric clouds mi-
cro-physical and optical models  
 
No. 00-07 
Alix Rasmussen: “Uncertainty of meteoro-
logical parameters from DMI-HIRLAM” 
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No. 00-08 
A.L. Morozova: Solar activity and Earth’s 
weather. Effect of the forced atmospheric transpar-
ency changes on the troposphere temperature pro-
file studied with atmospheric models  
 
No. 00-09 
Niels Larsen, Bjørn M. Knudsen, Michael 
Gauss, Giovanni Pitari:  Effects from high-speed 
civil traffic aircraft emissions on polar strato-
spheric clouds 
 
No. 00-10 
Søren Andersen:  Evaluation of SSM/I sea ice al-
gorithms for use in the SAF on ocean and sea ice, 
July 2000 
 
No. 00-11 
Claus Petersen, Niels Woetmann Nielsen: Diag-
nosis of visibility in DMI-HIRLAM 
 
No. 00-12 
Erik Buch: A monograph on the physical ocean-
ography of the Greenland waters 
 
No. 00-13 
M. Steffensen: Stability indices as indicators of 
lightning and thunder 
 
No. 00-14 
Bjarne Amstrup, Kristian S. Mogensen, Xiang-
Yu Huang: Use of GPS observations in an opti-
mum interpolation based data assimilation system 
 
No. 00-15 
Mads Hvid Nielsen: Dynamisk beskrivelse og hy-
drografisk klassifikation af den jyske kyststrøm 
 
No. 00-16 
Kristian S. Mogensen, Jess U. Jørgensen, Bjar-
ne Amstrup, Xiaohua Yang and Xiang-Yu 
Huang: Towards an operational implementation of 
HIRLAM 3D-VAR at DMI 
 
No. 00-17 
Sattler, Kai; Huang, Xiang-Yu: Structure func-
tion characteristics for 2 meter temperature and 
relative humidity in different horizontal resolutions 
 
No. 00-18 
Niels Larsen, Ib Steen Mikkelsen, Bjørn M. 
Knudsen m.fl.: In-situ analysis of aerosols and 
gases in the polar stratosphere. A contribution to 
THESEO. Environment and climate research pro-
gramme. Contract no. ENV4-CT97-0523. Final re-
port 
 
 

No. 00-19 
Amstrup, Bjarne: EUCOS observing sys-
tem experiments with the DMI HIRLAM op-
timum interpolation analysis and forecasting 
system 
 
No. 01-01 
V.O. Papitashvili, L.I. Gromova, V.A. 
Popov and O. Rasmussen: Northern polar 
cap magnetic activity index PCN: Effective 
area, universal time, seasonal, and solar cycle 
variations 
 
No. 01-02 
M.E. Gorbunov: Radioholographic methods 
for processing radio occultation data in mu l-
tipath regions 

 
No. 01-03 
Niels Woetmann Nielsen; Claus Petersen:  
Calculation of wind gusts in DMI-HIRLAM 
 
No. 01-04 
Vladimir Penenko; Alexander Baklanov:  
Methods of sensitivity theory and inverse 
modeling for estimation of source parameter 
and risk/vulnerability areas 
 
No. 01-05 
Sergej Zilitinkevich; Alexander Baklanov; 
Jutta Rost; Ann-Sofi Smedman, Vasiliy 
Lykosov and Pierluigi Calanca: Diagnostic 
and prognostic equations for the depth of the 
stably stratified Ekman boundary layer  
 
No. 01-06 
Bjarne Amstrup: Impact of ATOVS 
AMSU-A radiance data in the DMI-
HIRLAM 3D-Var analysis and forecasting 
system 
 
No. 01-07 
Sergej Zilitinkevich; Alexander Baklanov:  
Calculation of the height of stable boundary 
layers in operational models  
 
No. 01-08 
Vibeke Huess: Sea level variations in the 
North Sea – from tide gauges, altimetry and 
modelling 
No. 01-09 
Alexander Baklanov and Alexander Ma-
hura: Atmospheric transport pathways, vul-
nerability and possible accidental conse-
quences from nuclear risk sites: methodology 
for probabilistic atmospheric studies  
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No. 02-01 
Bent Hansen Sass and Claus Petersen: 
Short range atmospheric forecasts using a nudging 
procedure to combine analyses of cloud and pre-
cipitation with a numerical forecast model 
 
No. 02-02 
Erik Buch: Present oceanographic conditions in 
Greenland waters 
 
No. 02-03 
Bjørn M. Knudsen, Signe B. Andersen and 
Allan Gross: Contribution of the Danish Meteoro-
logical Institute to the final report of SAMMOA. 
CEC contract EVK2-1999-00315: Spring-to.-
autumn measurements and modelling of ozone and 
active species 
 
No. 02-04 
Nicolai Kliem: Numerical ocean and sea ice mo d-
elling: the area around Cape Farewell (Ph.D. the-
sis) 
 
No. 02-05 
Niels Woetmann Nielsen: The structure and dy-
namics of the atmospheric boundary layer  
 
No. 02-06 
Arne Skov Jensen, Hans-Henrik Benzon and 
Martin S. Lohmann: A new high resolution 
method for processing radio occultation data  
 
No. 02-07 
Per Høeg and Gottfried Kirchengast: ACE+: 
Atmosphere and Climate Explorer 
 
No. 02-08 
Rashpal Gill: SAR surface cover classification us-
ing distribution matching 
 
No. 02-09 
Kai Sattler, Jun She, Bent Hansen Sass, Leif 
Laursen, Lars Landberg, Morten Nielsen and 
Henning S. Christensen: Enhanced description of 
the wind climate in Denmark for determination of 
wind resources: final report for 1363/00-0020: 
Supported by the Danish Energy Authority 

 
No. 02-10 
Michael E. Gorbunov and Kent B. Lauritsen:  
Canonical transform methods for radio occultation 
data 
 
No. 02-11 
Kent B. Lauritsen and Martin S. Lohmann: Un-
folding of radio occultation multi path behavior us-
ing phase models  


