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Abstract

We have analyzed radio occultation simulations containing various types
of multipath behavior. The simulations are performed for global atmospheric
fields containing strong refractivity gradients which give rise to multipath be-
havior. In the case where the medium and the satellite orbits are spherically
symmetric the multipath behavior can be unfolded by a Fourier transform of
the measured signal where the derivative of the transformed phase at a given
frequency is related to the time where that signal frequency occurs. However,
small deviations from circular orbits may imply that the multipath behav-
ior cannot be completely unfolded due to the fact that a given instantaneous
frequency may occur at more than one time instant. In order to resolve the
multipath behavior for realistic satellite orbits, we employ the idea of modify-
ing the measured signal by a model before carrying out a Fourier transform.
For certain models, which depend on the measured phase of the simulated
signal, we find that multipath behavior can be successfully unfolded. Even
very strong multipath behavior, leading to critical refraction, can in some
cases also be handled. The combined effect of applying a model and a Fourier
transform can be viewed as a specific type of a canonical transform.

1 Introduction

In the present paper we will investigate multipath (MP) behavior in simulated radio
occultation data. Recently, the method of performing a canonical transform to the
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Figure 1: Simulated example with a wave optics propagator showing i) amplitude
of a radio signal at the LEO orbit (left), and ii) the Doppler frequency shift (right).
One observes strong focusing resulting in multipath behavior with 3 interfering rays
appearing around the time 42-46 seconds.

impact parameter representation was introduced in order to unfold multipath be-
havior in radio occultation measurements [1]. Another recently introduced method
consists in Fourier transforming the measured field directly [2]. The canonical trans-
form method can also be applied directly to the measured field and when the satellite
orbit degenerates to a circle this canonical transform reduces to a Fourier transform
of the measured signal [3]. Here, we will focus on Fourier transforming the mea-
sured field for realistic satellite orbits and study whether it is possible to extract the
multiple ray structure by applying various phase models.

The simulations we have analyzed have been generated by a wave optics propa-
gator using the multiple phase screen method together with a forward propagation
from the last screen to the low-Earth orbit (LEO) satellite [4]. We have used global
atmospheric fields obtained from the ECMWF center. In Fig. 1 we show an example
of the calculated phase and amplitude containing multipath behavior for a global
atmospheric field. The geometry of the radio occultation system is chosen such that
the x-axis coincides with the initial propagation direction of the radio waves. The
origin of the coordinate system is located in the center of curvature of the occulta-
tion point. The simulated field is a solution u(r) = A(r) exp(iφ(r)) to the Helmholtz
equation. The signal measured along the LEO trajectory is denoted u(t) and we
will also refer to this trajectory as a time direction. The impact parameter for a ray
is denoted p and the bending angle ε, cf. Fig. 2.

The wavelengths of the GPS radio waves are much smaller than typical atmo-
spheric variations so one expects that geometrical optics can be used to describe the
propagation of the wave field [5]. In Fig. 3 is schematically shown the propagation
of rays from the GPS satellite towards the LEO satellite in phase space. Initially,
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Figure 2: Multipath example: water vapor layers in the lower troposphere give rise
to the formation of a caustic (in the example it is a so-called cusp caustic) which
surrounds a region with 3 rays passing through any point, implying that 3 rays are
arriving at the same time instant at the LEO orbit.

the impact parameter coordinate corresponds to the y coordinate whereas along the
LEO orbit the impact parameter is approximately proportional to the associated
canonical momentum η.

2 Fourier Transform Method

The field measured at the LEO satellite is u(t) = A(t) exp(iφ(t)), where the phase
term can be written

φ(t) =
∫ t

t0
ω(t′)dt′ . (1)

In the geometrical optics ray picture, the function ω(t) will be equal to the (total)
Doppler shift

ωD = �k · �v (2)

in one ray regions whereas in multi-ray regions it will give rise to an ω(t) that
effectively shows the interference structure of multiple rays (cf. Figs. 1–3). Here
�k = 2π/λ is the wave vector and �v = �̇r is the LEO velocity.

Using �v = ṙ�er + rΩ�eθ, with polar coordinate basis vectors �er = �r/r and �eθ =
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Figure 3: Schematic drawing of phase space showing the ray manifold and its pro-
jection onto the Doppler vs. time plot. The propagation direction is x, whereas
the canonical momenta associated to y is denoted η. The MP region results in an
irregular Doppler signal shown as the dashed line (see also Fig. 1).

�̂r/r = �̂eθ, it follows that the Doppler reads

ωD = kṙ
√

1 − (p/r)2 + kpΩ , (3)

where Ω is the angular velocity related to the satellite-to-satellite angle θ through
Ω = dθ/dt (note, when the GPS satellite is located at a finite distance rG an addi-

tional term kṙG

√
1 − (p/rG)2 appears on the right hand side).

During an occultation Ω(t) is practically constant, being of the order of 0.001
s−1, with a variation of the order of 10−7 s−2. The kpΩ term is of the order of 250
krad/s. The other term can be estimated as follows: the distance r to the LEO orbit
varies by about 200 meters during an occultation implying that the effect of non-
circular orbits results in an effect of the order of 50 rad/s on ωD. This is comparable
to typical MP shifts (the order of MP effects on the Doppler can be estimated to be
about 30 rad/s corresponding to a deviation of 1

2
× 10−3 radians of MP rays).

Upon Fourier transforming u(t) one obtains

ũ(ω) = Ft→ω(u(t))(ω) ≡ B(ω) exp(iψ(ω)) , (4)

where the phase ψ(ω) can be written in terms of some function t(ω) as follows:

ψ(ω) = −
∫ ω

ω0

t(ω′)dω′ . (5)
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The Fourier transform (FT) is defined by the following equation:

Ff(ω) = f̃(ω) =
∫

e−iωtf(t)dt , (6)

and the inverse Fourier transform reads

F−1f̃(t) = f(t) =
1

2π

∫
eiωtf̃(ω)dω . (7)

Note, the choice of the sign convention is due to the fact that t is effectively acting
as a space coordinate.

In the limit k → 0, the Fourier transform maps the wave function u(t) to the ω-
representation: ũ(ω) [6]. In this representation, the function t(ω) will have a simple,
monotonic behavior in one ray regions whereas t(ω) will show an interference-like
structure in multiple ray regions similar to ω(t). For a non-degenerate stationary
phase point, φ(t) and ψ(ω) are related by a Legendre transform ψ(ω) = φ(t) − ωt,
evaluated at the stationary phase point where ω = dφ/dt [6]. As a result, the
function t(ω) can be interpreted as the time, t, where the ray with frequency ω
appears at the LEO orbit and, using Eq. (3), it follows for circular orbits (and
Ω = const) that ω is proportional to the impact parameter p [2]. In the general
case, it has been pointed out that for a spherically symmetric atmosphere the p-
representation of the wave function yields a unique ray-structure identification [1].

3 Phase Models

Next, we will investigate the effect of applying a phase term in the Fourier analysis.
The purpose of introducing a phase term, ∆φm(t), is to transform the measured
field u(t) in such a way that the Fourier transform will map the signal, not to the
ω-representation, but to a pseudo representation which approximates the impact
parameter representation.

Generically, the mapping yields a field um(t) defined as follows:

um(t) ≡ Am(t) exp(iφm(t)) , (8)

where the resulting phase model φm(t) reads φm(t) = φ(t) + ∆φm(t). Here, we will
concentrate on the case where the amplitude is unchanged, i.e., we take Am(t) ≡
A(t). It should be noted that ∆φm(t) should not introduce any additional MP-like
structure into the signal in order not to destroy the original MP spectrum, i.e., the
model ∆φm(t) should be a slowly varying function.

As the next step, one Fourier transforms the transformed field um(t). If one
could apply a phase model such that the FT would map the field to the impact
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parameter representation then the unfolding of MP would be complete [1]. However,
by applying a phase model only, and leaving the amplitude unchanged, we cannot
obtain a mapping to the impact parameter representation. Thus, what we seek is a
phase model that effectively maps the field to

A(t) exp
(
ikΩ0

∫ t

t0
p̃(t′)dt′

)
,

where p̃(t) is a quantity which approximately is equal to the impact parameter, and
Ω0 simply sets the scale (e.g., Ω0 = 〈Ω(t)〉). Expressed in terms of ∆φm(t), this
yields

∆φm(t) = kΩ0

∫ t

t0
p̃(t′)dt′ − φ(t) . (9)

Note, this ∆φm(t) depends on the measured field φ(t).
In the following we will report results for three different phase models. The first

is a linear phase model defined by the expression [7]

∆φm(t) = at2 . (10)

Here, d∆φm/dt = 2at, i.e., this model implies that a linear shift is applied to the
Doppler φ̇ and it can be interpreted as a rotation of the φ̇-axis. The quantity a is a
tunable parameter and by varying it one can investigate how the unfolding of MP
behavior is expressed in the (pseudo) ω-representation. In Figs. 4 and 5 we show
plots for two different values of a for the MP example shown in Fig. 1. Note, the
results are obtained from the numerical derivative of the phase without applying any
filtering or smoothing. We observe that by tuning the rotation parameter a we can
obtain an unfolding of the MP behavior demonstrated by the nearly constant am-
plitude of the transformed field. The fact that the amplitude is only approximately
constant shows that this representation is only an approximate impact parameter
representation.

Next, we will use the Doppler expression (3) [2]. Using this expression, we can
obtain two models for our approximate impact parameter p̃(t):

Model 1 : p̃(1)(t) = p(0)(t) ≡ φ̇

kΩ
, (11)

Model 2 : p̃(2)(t) = p(t) ≡ p(0)(t) + ∆p(t) . (12)

Here, φ̇ is the measured Doppler. The function p(t) is the (full) solution of Eq. (3).
As noted previously, ∆p(t) is approximately 10−4 − 10−3 times smaller than p(0)(t).
Nevertheless, MP shifts are also about 10−4 times smaller than total Doppler shifts
so including this term is important.
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Figure 4: Unfolding of MP behavior using a FT (and no phase model). Left: the
amplitude B(ω) of the FT field; Right: the function t(ω).

Figure 5: Unfolding of MP behavior using a linear phase model with a = 0.1. Left:
the amplitude B(ω) of the FT field; Right: the function t(ω). Note the nearly
constant amplitude over the multipath region signaling that the unfolding has been
complete.

Since Ω(t) is nearly constant it can be expanded around some t0 to yield ∆φ(1)
m ≈

− ∫
φ̇Ω′(t0)

Ω(t0)
(t − t0) dt, thus the phase model 1 approximately corresponds to a linear

phase model, cf. (10). Concerning phase model 2, it follows that in single ray regions
the quantity p̃(2)(t) will be identical to the impact parameter, whereas in the MP
region we can think of p̃(2)(t) as a smoothed impact parameter.

In Figs. 6 and 7 we apply phase model 2 in the analysis of simulations based on
global atmospheric fields. Figure 6 show the amplitude and derivative of the trans-
formed phase. The almost constant amplitude signals that a very good unfolding
of MP has been achieved. Figure 7 show the bending angle as a function of impact
parameter for two simulations. Notice the sharp spikes which signal the presence of
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Figure 6: Unfolding of MP behavior using p̃(2)(t) for a simulation with a global
atmospheric field. Left: the amplitude B(ω) of the FT field; Right: the function
t(ω). Note the nearly constant amplitude over the multipath region signaling that
the unfolding has been complete.

Figure 7: Unfolding of MP behavior using p̃(2)(t) for the same global field as used in
Fig. 6 (left) and for another global atmospheric field (right). The panels show the
bending angle ε(p) as a function of ray height (defined as impact parameter minus
the local radius of curvature).

critical refraction.
It is possible to formulate the phase model approach as a specific canonical

transform. Since p̃(t) is approximately equal to the impact parameter we expect
that the transformed wave function will be able to unfold MP to a high degree. Our
results show that this indeed is the case. Furthermore, we observe that model 2
results in a better unfolding of the MP behavior than model 1 in accordance with
the fact that model 2 is based on a more precise estimation of the impact parameter.
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4 Conclusions

We have carried out a Fourier analysis of radio occultation simulations for various
global atmospheric fields. Introducing phase models before performing the Fourier
transform, we obtain that multipath behavior can be unfolded for realistic satel-
lite orbits. Specifically, we investigated two models constructed in such a way that
they yield an approximate form for the impact parameter. As a result, performing
a Fourier transform yields an approximate impact parameter representation of the
measured wave field in analogy to the canonical transform method. The resolution
of Fourier and canonical transform inversion methods will be limited by atmospheric
diffraction which implies that the resolution will be of the order of 30-50 m. Theo-
retically, however, the resolution limit of geometrical optics based inversion methods
can be estimated to be as high as Dλ/A, where D is the distance from the occultation
point to the LEO satellite and A the aperture along the LEO orbit.
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