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Summary

Different aspects of numerical ocean and sea ice modelling are presented. The primary goal is to
simulate ocean currents and drift of sea ice in the area around Cape Farewell, Greenland. The study
is split into three parts; a study of the pressure gradient error in sigma coordinate ocean models,
ocean simulations of the Cape Farewell area, and sea ice simulations of the Cape Farewell area. Of
these the first and the last parts cover the major innovations, whereas previously developed models
are applied for the ocean simulations.

A study of the pressure gradient error in sigma coordinate ocean models is performed. The
error arises in the baroclinic part of the pressure gradient, under conditions of a density stratifica-
tion above a sloping bed. Different methods for calculation of the gradient are implemented in the
Princeton Ocean Model. A laboratory experiment of the circulation in the Skagerrak is used as
reference solution. The numerical model is set up similar to the laboratory model, and simulations
are performed with different resolutions using a sigma and a z-level-based method. The results
are compared to those from the laboratory experiment with respect to the general circulation in the
area and for current velocities at three different sections. It is concluded that at fine resolution the
methods perform similarly and give better results than at coarse resolution. At coarse resolution
the sigma method apparently produces good results with respect to the circulation and the surface
elevation, but artificial currents are found at the slopes of the Norwegian trench. These flows are
reduced using the z-level-based method.

The area around Cape Farewell is characterised by the cold and fresh Arctic water found
above the warmer and more saline Atlantic water. The current system is strongly controlled by the
continental slope close to the coast. Finite element models are applied for this area. Simulations
with a linear, diagnostic and a non-linear, prognostic ocean model are performed. The models
have previously been applied for shallower coastal regions. An attempt is made to adapt the
models to the deep ocean as well by implementing the dependence of the density on pressure in
the equation of state. In addition, an optimisation of the prognostic model by implementation
of the conjugate gradient is investigated. Simulations with and without wind stress and baroclinic
effects are performed. The simplest simulation, performed for a barotropic ocean without influence
of the wind, gives a reasonable picture of the current system and velocities in agreement with
measurements. Hence it is concluded that there is a large barotropic component in the surface
currents in this region.

A finite element sea ice model is developed and implemented for the Cape Farewell area. The
model calculates the ice drift based on wind, sea surface elevation and current, Coriolis force,
and internal ice stress. Initial conditions are based on observations of sea ice concentration, wind
fields are received from an operational atmospheric model, and sea surface elevation and current
are obtained from the diagnostic ocean simulation. Ice drift is simulated for a period of 10 days,
and the results are compared with observations of ice concentration. Different ice rheologies are
tested. Furthermore, sensitivity tests of different model coefficients are performed. The model
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results are in agreement with observations, thus it is reasonable to expect that the model can be
used to predict ice drift in this area. A set-up for an operational forecasting system is proposed. In
addition, several directions for further development of the model are given.

In order to include the interaction between the sea ice and ocean, the ice model is coupled to
the prognostic ocean model. This is performed through the ice-ocean stress and the sea surface
tilt. At first the results for the ice drift are not improved, compared to the sea ice simulations with
an ocean at steady state. It is believed that this is partly because of the relatively short time scale,
and that better results would be obtained by using other values of the drag coefficients.
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Dansk resuḿe

Forskellige aspekter ved numerisk ocean og havis modellering præsenteres. Det primære mål er at
kunne simulere havstrømme og isdrift i området omkring Kap Farvel, Grønland. Arbejdet er delt
op i tre dele; en undersøgelse af fejlen ved beregningen af den horisontale trykgradient i sigma-
koordinat ocean modeller, simulering af havstrømme i Kap Farvel området, samt simulering af
isdrift i Kap Farvel området. Heraf indeholder første og sidste del de væsentligste nyskabelser,
mens der for ocean simuleringerne er benyttet tidligere anvendte modeller.

Der er foretaget en undersøgelse af fejlen ved beregningen af den horisontale trykgradient i
sigma-koordinat ocean modeller. Fejlen opstår i den barokline del af trykgradienten, hvis der er en
densitetsstratifikation over en skrånende bund. Forskellige metoder til beregningen af gradienten
er implementeret i Princeton Ocean Modellen. Et laboratorie-eksperiment over cirkulationen i
Skagerrak benyttes som referenceløsning. Den numeriske model er sat op svarende til laboratorie-
modellen, og der er foretaget simuleringer med forskellige opløsninger med en sigma og en z-
niveau-baseret metode. Resultaterne er sammenlignet med laboratorie-modellen på den generelle
cirkulation i området samt på strømhastigheder i tre forskellige snit. Det konkluderes, at begge
metoder giver bedst resultat ved fin opløsning. I den fine opløsning ligner resultaterne hinanden
med de to metoder. I den grovere opløsning giver sigma metoden tilsyneladende fine resultater
med hensyn til cirkulationen i Skagerrak, men fejlagtige strømme er fundet på skråningerne af
Norske Renden som en følge af fejlen i trykgradienten. De fejlagtige strømme reduceres med den
z-niveau-baserede metode.

Kap Farvel området er kendetegnet ved at koldt Arktisk vand findes over varmere og mere
salt Atlantisk vand. Strømforholdene er kraftigt styret af kontinentalskråningen, som findes tæt
ved kysten. Endelig element modeller er anvendt for dette område. Der er foretaget simuleringer
med en lineær, diagnostisk samt en ikke-lineær, prognostisk ocean model. Modellerne er tidligere
fortrinsvis anvendt for mere lavvandede kystområder, men er her søgt tilpasset området ved im-
plementering af densitetens afhængighed af tryk i tilstandsligningen. Desuden er der foretaget
en undersøgelse af muligheden for en optimering af den prognostiske model ved implementer-
ing af konjugeret gradient metoden til løsning af et system af lineære ligninger. Der er foretaget
simuleringer med og uden vindpåvirkning og barokline effekter. Den simpleste simulering, fore-
taget for et barotropt ocean uden vindpåvirkning, giver et rimeligt billede af strømforholdene med
strømhastigheder, der er i overensstemmelse med målinger. Det konkluderes deraf, at der er en
kraftig barotrop komponent i overfladestrømmene i området.

En endelig element havis model er udviklet og sat op for Kap Farvel området. Modellen bereg-
ner isdriften på baggrund af vind, overfladestrøm, hældningen af havoverfladen, Coriolis kraften
samt interne kræfter i isen. Begyndelsesbetingelser er baseret på observationer af iskoncentration,
vindfelter fås fra en operationel meteorologisk model, og havoverfladehældning og -strøm fås fra
den diagnostiske ocean simulering. Isdriften er simuleret for en 10 dages periode, og resultaterne
er sammenlignet med observationer af iskoncentration. Der er foretaget test med forskellige udtryk
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for isens interne kræfter. Desuden er der foretaget sensitivitetstests for forskellige koefficienter,
der indgår i modellen. Modelresultaterne er i rimelig overensstemmelse med observationer, og der
er grund til at antage, at modellen kan benyttes til forudsigelse af udbredelsen af havis i området.
Der gives forslag til en opsætning af modellen for operationel brug. Der gives desuden flere forslag
for yderligere udvikling af modellen.

For at inkludere vekselvirkningen mellem ocean og is er ismodellen koblet til den prognostiske
oceanmodel. Dette er sket gennem is-ocean friktionsleddene, samt via havoverfladehældningen.
Resultaterne for isdriften er ikke umiddelbart forbedret i forhold til havis-simuleringerne med et
stationært ocean. Det skønnes, at dette til dels skyldes den relativt korte tidsskala, og at bedre
resultater ville kunne opnås ved benyttelse af andre værdier for friktionskoefficienterne.
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Preface

This thesis is the culmination of my Ph.D. project. I have finally made a version suitable for
publication in the DMI scientific report series.

The thesis is written with blood, sweat, toil, and tears. When I started the study, I expected
that writing the thesis would be the hardest part. I was right. I have had some hard months, and it
has been necessary to neglect my daughter and my wife. Nevertheless, I think it was worthwhile
doing it. I have learned so much during the study. I enjoy, what I am doing, and I have had three
good years.

I spend the fall 1998 at the Institute of Marine Research in Bergen. I am happy, I had the
opportunity to go abroad. It was a very inspiring time. Actually, most of the work presented here
was made in Bergen; suddenly the ocean simulations gave decent results, and there the sea ice
model was developed and coded. I even had the opportunity to give a presentation on the pressure
gradient stuff, and got some useful response on that. My family was there as well. We liked the
city and enjoyed the nature and surrounding mountains.

Before I started, I neither knew about sea ice modelling nor about the finite element method.
Now, I suddenly have the feeling that I am at the frontier of numerical ocean modelling. I really
do believe in the finite elements and the use of unstructured grids for ocean models, and I feel
privileged to be in the Quoddy User’s Group.

I have tried to document my work so far. I hope this text is of use for other people, and can
inspire other students. There is still much to be developed on the sea ice model. I have tried to
pass on some of my ideas for future work.
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Chapter 1

Introduction

The objective of this study is to investigate different aspects of numerical ocean and sea ice mod-
elling, on a relative small spatial scale of a few kilometres and time scales of a few days. The
primary aim is to be able to predict sea ice drift in the area around Cape Farewell and southern
Greenland. On a longer perspective the aim is to be able to predict the ocean state not only around
Cape Farewell, but in Greenland waters in general. By the ocean state is meant the sea ice and
surface ocean conditions, as well as the conditions at depth.

The Danish Meteorological Institute produces maps of sea ice concentration in the Cape
Farewell area. The maps are mainly used for safety of navigation and are produced every 2-3
days. They are based on remote sensing, that is, satellite-borne measurements primarily from
Radarsat, and by airborne measurements with a specially-equipped aircraft and helicopter. De-
velopment of the service system goes in two directions. One is to exploit the number of different
kinds of satellite observations (Gill and Valeur, 1996; Gill, 1998; Gill and Valeur, 1999). The other
is to use numerical models to predict sea ice drift, in order to produce forecasts of the ice extent a
few days ahead. The latter approach is represented by this study.

The currents transporting the ice along the Greenland coast are to a large degree influenced
by the continental slope. All the way along the east and southwest Greenland coast the distance
between the slope and the coast is less than a few hundred kilometres and in the Cape Farewell
area the shelf is only 50-100 km wide. To resolve both the shallow shelf and the continental slope,
it is advantageous to exploit the terrain following σ-coordinate in the vertical giving a smooth
representation of the bathymetry. On the other hand, the σ-coordinate is known to give errors on
the pressure gradient calculation in the case of a density stratification over a sloping bed. This is
the case in the Cape Farewell area, where the fresh Arctic water of the East Greenland Current
lies above the more saline water. There does not seem to be consensus in the literature of the
importance on the error. In order to use a well-defined test with a known reference solution,
consideration of the Greenland waters will be postponed while the Skagerrak area including the
north-eastern North Sea and the Kattegat is simulated instead. The pressure gradient error is of
general relevance and applies to the Skagerrak, as well. Furthermore, the results of a laboratory
experiment for that area are available as a benchmark for the numerical models.

The study of the pressure gradient error is performed with the Princeton Ocean Model (POM),
which uses the finite difference method. For various reasons, the finite element method is used for
the simulations of the Cape Farewell area.

The two finite element ocean models, Fundy and Quoddy, are used for the simulations of
the Cape Farewell area. They are diagnostic and prognostic, respectively, and were originally
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developed for coastal ocean simulations. Here they will be used for deep ocean simulations,
as well. This capability has already been demonstrated by a simulation of the North Atlantic
(Greenberg et al., 1998), and in a simulation of the continental slope off the west Canadian coast
(Foreman and Thomson, 1997). Other models developed for shallow water have been used in deep
water with success. POM, for example, is now frequently used as a general-purpose model, and
is applied to such different cases as estuarine exchange through a narrow inlet of 2.5 km width
(Wheless and Vale-Levinson, 1996), the Atlantic (Ezer and Mellor, 1997; Häkkinen, 1999; Gan
et al., 1998), and the Arctic coupled with a sea ice model (Häkkinen, 1993).

The main innovation in this work is the development of a finite element sea ice model. It is a
dynamic model that simulates the ice drift forced by wind and ocean current, and the sea surface
tilt. The governing equations are basically the same as in most other sea ice models. The ice
is assumed to be a continuum having a thickness, an area concentration and a velocity, and the
evolution with time is described by continuity equations and a momentum equation. In continuous
form these are written as partial differential equations. The models differ in the physics through the
parameterisation of the internal ice stress and in the numerical formulation. The model presented
here is able to resolve the ice edge and other interesting features, exploiting the unstructured grid
and varying resolution of the finite element method. In most applications sea ice models are set
up for a much larger scale with a climate perspective, such as for simulating the entire Arctic
Ocean. Here the model is used on other length and time scales. However, it is still a large-scale
simulation in the sense that the length scale of the mesh is much larger than a typical floe size and
the continuum description of the ice is applied.

Altogether, the work presents some of the important aspects of numerical modelling with
special focus on the ocean and sea ice condition in the Cape Farewell area. An attempt is made
to build up the thesis in a natural order starting with a fundamental problem of ocean modelling,
then showing some ocean simulations, and ending with the development of a sea ice model and
simulations of the ice drift.

The thesis is outlined as follows. The study of the horizontal pressure gradient does not apply
directly to the Cape Farewell area, but is of general relevance and is presented in Chapter 2. The
rest of the thesis concerns the Cape Farewell area. Chapter 3 describes the hydrography of the area,
and the data available for initial values, forcing and validation. The ocean models and simulations
are presented in Chapter 4. The sea ice model is presented in Chapter 5, together with simple tests
of the model and simulations of the drift of sea ice around Cape Farewell. In addition, a section
describing the coupling of the sea ice model to the prognostic ocean model and a simulation with
the coupled ice-ocean model is included.

Brief descriptions of the basics of the numerical methods used in the study are given in ap-
pendices. An introduction to the finite difference and finite element methods is given in appendix
A, while appendix B gives a brief outline of the power method and how to calculate the condition
number. Finally internet addresses for most of the data and programs that are used in the work are
collected in appendix C.
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Chapter 2

Sigma coordinates in ocean models

2.1 Introduction

This chapter deals with the truncation error in the numerical calculation of the horizontal pressure
gradient in σ-coordinate ocean models. This problem arises when a vertical density stratification
is present and the bed is sloping, as is the case in the Cape Farewell area.

The problem has been recognised in atmospheric models for many years, and Haney (1991)
brought the problem to the attention of ocean modellers as well. While Haney (1991) argues that
the error might be serious, Mellor et al. (1994) found that the error is of only minor relevance and
that the temperature and salinity fields will adjust by advection to remove the error. Other people
seem to take a point of view somewhere in between and different schemes have been proposed in
order to minimise the error.

Apparently, it is still relevant to study the topic, owing to this lack of consensus, and also
to perform a fair comparison of the different methods. This has been done using the Princeton
Ocean Model (POM) and is described by Kliem and Pietrzak (1999) (henceforth KP99). In KP99
the second-order sigma method originally used in the model is compared with a fourth-order
sigma method inspired by McCalpin (1994), second- and fourth-order versions of a z-level-based
correction by Beckmann and Haidvogel (1993), a z-coordinate method by Stelling and van Kester
(1994), the modification of this by Slørdal (1997) and a true and quite straightforward z-level-
based method. It is noted that by the term “sigma method” is simply meant a method using
σ-coordinates.

This chapter relies heavily on the work presented in KP99. The simple tests performed in KP99
are discussed only very briefly, with emphasis on the comparison with a laboratory model of the
circulation in the Skagerrak. Four simulations are presented and compared with the laboratory
model. The simulations are performed with the original second-order sigma and the z-level-based
methods with resolutions of 1852 m and 3704 m (1 and 2 nautical miles, respectively).

The four simulations are all performed with POM (see Blumberg and Mellor (1987) for details
on the model). It is non-linear, 3-dimensional and hydrostatic, and includes a free surface and the
level 2.5 turbulence closure scheme by Mellor and Yamada (1982).

POM has been applied to the Skagerrak before (Svendsen et al., 1996) with satisfactory re-
sults for the general circulation. Also in KP99 the circulation is simulated well with all methods.
However differences between the various methods are demonstrated in the vertical structure of
the velocity field. The best result in the comparison with the laboratory model is found with the
simple z-level-based method, while a flow reversal at the steep northern slope of the Norwegian
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Figure 2.1: Vertical grid and notation employed. The buoyancy points (solid circles) are located
at the cell centres (i, k), the velocity points (open triangles) at the cell interfaces (i− 1/2, k), and
the density gradients (solid triangles) are calculated in between (i − 1/2, k − 1/2). (a) Sigma
coordinate C grid. (b) Hydrostatically-consistent grid. (c) Hydrostatically-inconsistent grid.

trench is found with the original second-order sigma method.
The theoretical error evaluation suggests that decreasing the horizontal grid size reduces the

error. Therefore the 3704 m simulations from KP99 are compared with simulations performed
with a resolution of 1852 m. Three of the simulations are presented elsewhere. The 3704 m simu-
lations are taken from KP99, the 1852 m simulation with the z-level-based method are presented
by McClimans et al. (2000) and to complete the comparison, the second-order sigma method is
used in a 1852 m simulation not presented elsewhere.

2.2 Pressure gradient error

2.2.1 Sigma coordinate model

Sigma coordinates are terrain following, meaning that the surface and the bottom define constant
levels. In POM the surface is at σ = 0 and the bottom at σ = −1. For simplicity the rigid lid
approximation will be made setting the surface elevation to zero, and the analysis here is made
for two dimensions only. The extension to three dimensions and inclusion of a free surface is
straitforward. The horizontal coordinates in the Cartesian coordinate system is denoted with a star
and (x, σ) corresponds to (x∗, z). With H denoting the depth the relation between the coordinate
systems is

x = x∗ σ =
z

H
(2.1)

In the model, the order of calculation is such that the density gradient is calculated, and is then
integrated to give the baroclinic pressure gradient. The density is represented by the buoyancy,
b = gρ/ρ0, where g is the gravity acceleration and ρ0 is a reference density. It is in the calculation
of the horizontal density gradient that the error arises. Therefore, mainly the density gradient is
discussed in the following. When the density gradient is integrated, the error is integrated as well
giving an error on the part of the pressure gradient term in the momentum equation.
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Using the chain rule the horizontal density gradient is calculated as

∂b

∂x∗ =
∂b

∂x
− σ

H

∂H

∂x

∂b

∂σ
(2.2)

This equation simply states that the horizontal gradient (left-hand side) equals the gradient along
a surface of constant σ (first term on the right-hand side) corrected for the vertical gradient (sec-
ond term on the right-hand side). The equation is mathematically correct, the problem arise in
the numerical discretization. In POM this is done with second-order central differences. The
computational grid is illustrated in figure 2.1a. The density gradient is calculated at the position
(i − 1/2, k − 1/2) using the four surrounding density points

∂b

∂x∗ =
bi,k + bi,k−1 − bi−1,k − bi−1,k−1

2∆x
− σ

H

∆H

∆x

bi,k−1 + bi−1,k−1 − bi,k − bi−1,k

2∆σ
(2.3)

where ∆x = xi − xi−1, ∆σ = σk−1 − σk, ∆H = Hi − Hi−1, σ = (σk−1 + σk)/2 and
H = (Hi + Hi−1)/2.

The order of accuracy is found by performing a Taylor expansion of the density and inserting
this into the algorithm. For simplicity a horizontally homogeneous stratification is assumed. This
is a common assumption (e.g. Mellor et al., 1994). Then the error is found to be

E

(
∂b

∂x∗

)
=

H

4
∂H

∂x

∣∣∣∣∣(∆σ)2 −
(

∆x
σ

H

∂H

∂x

)2
∣∣∣∣∣ ·

[(
∂2b

∂z2

)
+

σH

3

(
∂3b

∂z3

)
+ . . .

]
(2.4)

From the last pair of brackets it is seen that the error is zero for a linear density profile, and the
method is therefore said to of be second order.

One of the disagreements found in the literature is whether the sigma method is convergent or
not. Haney (1991) and Stelling and van Kester (1994) claim that the method is nonconvergent, if
the hydrostatic consistency condition (eq. 2.5) is violated. This is denied by Mellor et al. (1994)
and Fortunato and Baptista (1996). To judge this eq. 2.4 is slightly rewritten compared with the
expression in KP99, using that ∆H = ∆x(∂H/∂x). In this way ∆x is included in the equation.
It is then seen that the method is convergent, as E → 0 for ∆σ → 0 and ∆x → 0. On the other
hand, it is also seen that just increasing the vertical resolution will not necessarily decrease the
error, owing to the second term in the first pair of brackets. This is the reason for introducing the
hydrostatic consistency condition ∣∣∣∣ σ

H

∂H

∂x

∣∣∣∣ ∆x

∆σ
< 1 (2.5)

This assures that the content of the first pair of brackets is positive. When this condition is violated
the error is mainly due to a large ∆x and will not decrease for a refinement in the vertical. When
∆x is decreased, the error also decreases, until the hydrostatic consistency conditions is satisfied.
Then the main part of the error lies in the vertical discretization, and the error actually increases
as ∆x is reduced further.

The consequence of the hydrostatic consistency condition is seen in figure 2.1b and c, with
the grid sketched in Cartesian coordinates. If the hydrostatic consistency condition is satisfied, the
depth of the density gradient (denoted z0) is located in between the density points, and the vertical
differentiation in eq. 2.2 is performed as an interpolation. If the hydrostatic consistency condition
is violated the two points in one water column is above z0 while the two points in the other column
is below z0, and the vertical differentiation is now an extrapolation.
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z

z0

i − 1
i

Figure 2.2: Grid used for the z-level interpolation. Open circles indicate interpolated density
values for the z-level method. Solid circles are the buoyancy points used to calculate the horizontal
gradients and crosses are the locations of the buoyancy points on the sigma grid.

In σ-coordinates the grid is always nicely structured (figure 2.1a) with the position for the den-
sity gradient in between the four density points used to calculate the gradient and is independent
of the hydrostatic consistency condition. This is the reason why the method converges as ∆x and
∆σ goes to zero.

Usually extrapolation is undesirable, the reasoning being that ideally the grid should be hydrostatically-
consistent. However, this condition is severe with respect to the horizontal resolution in the pres-
ence of steep slopes. Satisfying it will in some cases lead to such a fine resolution that the com-
putational burden becomes overwhelming. The interesting questions are thus: how serious is the
error when the condition is violated? Is it possible to define a limit of how far the condition can
be violated while still giving satisfactory results, and do other methods give smaller error?

In KP99 a number of different methods are tested. Here only the simple z-level-based method
is compared with the second-order sigma method originally used in the model. The z-level-based
method is sketched in figure 2.2. Instead of using the densities at the corresponding levels k − 1
and k as in the second-order sigma method, a search is made down through the water column to
find the two densities around the depth z0. These are then interpolated to z0, and the horizontal
density gradient is calculated as

∂b

∂x∗ =
bi(z0) − bi−1(z0)

∆x
(2.6)

This procedure is repeated for all the density gradient points in the grid. If the hydrostatic consis-
tency condition is violated, the z-level-based method is expected to be superior, since it assures
interpolation. On the other hand if the condition is satisfied, the z-level-based and the second-
order sigma method use the same four density points in the calculation, and the two methods are
expected to be of the same accuracy.
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A problem with the z-level based method arises, if z0 is actually in the bed at one of the two
columns. The density gradient is then assumed to be zero, as also by Stelling and van Kester
(1994) and Slørdal (1997).

It should be noted that the error evaluation above is based on the assumption of zero horizon-
tal gradients. Then it is expected that the z-level-based method perform better, since it always
interpolates. Fortunato and Baptista (1996) made an error evaluation with the isopycnals parallel
to the bed and found the lowest error with the sigma method in this case. This can be explained
by the fact that then the vertical derivative at the grid position (i − 1/2, k − 1/2) is actually well
represented by the density points at k − 1 and k. In other words, if the isopycnals are parallel
to the σ-levels, the sigma method interpolates even for large ∆x. This suggests that a discussion
of interpolation versus extrapolation should be performed neither in z- nor σ-coordinates but in
isopycnal coordinates, with the density as the vertical coordinate. In the error evaluation above,
isopycnal and z-coordinates equal each other, owing to the assumption of horizontal stratification.

2.2.2 Testing the methods

Usually the various methods are tested through simple tests. The model is set up for an idealised
case, often in 2 dimensions, i.e. in a section, with a specified density field and a known analytical
solution. The tests are performed as follows: A bathymetry and a density field are specified. They
must be simple such that the corresponding pressure gradient can be calculated analytically. Often
the pressure gradient is expressed as a geostrophic velocity, since this gives a better idea of the
effect of the error. For the given density field the model calculates the pressure gradient, which is
then compared with the analytical solution. The model performs only one step. This gives a very
quick execution, with the possibility of testing the various methods for different bathymetries and
density fields, and of performing sensitivity tests, for example of the grid size.

In KP99 two simple tests, of Slørdal (1997) and Haidvogel and Beckmann (1999) respectively,
are performed. The main conclusion of the tests is that the z-level-based method performs best,
with lower errors than the sigma methods. The set-up and results are described in detail in KP99
and will not be discussed further here. However, a few comments on the simple tests in general
are given.

The advantages of the simple tests, with the quick execution and possibility of performing dif-
ferent tests and sensitivity analysis, make them attractive for the evaluation of the various methods.
There are weaknesses, however, that should be taken into account, when the results are interpreted.

First of all, the error depends upon the given set-up, and some methods might be favoured
by the set-up. For example, if the density profile is a second- or third-order polynomial, fourth-
order methods have advantages over second-order methods. Likewise, based on the findings of
Fortunato and Baptista (1996), it might be reasonable to expect that z-level-based methods are
favoured by a horizontally homogeneous stratification, while the sigma methods are favoured if
the isopycnals are parallel to sigma surfaces.

In the Slørdal (1997) test (test 1 in KP99) the largest errors using the sigma methods are found
where the pycnocline intersects the bed (see figures 2(top) and 4 in KP99). If this coincides with
the position of density gradients the error will be large. If the grid is moved to one side or the other
the error decreases. Thus, the error depends on the actual position of the grid points, and moving
the grid horizontally will change the value of the error.

Sometimes it is convenient to express the error as a relative error. However, it is quite often
seen that the tests are performed with horizontal homogeneous stratification. This density field is
convenient, since the two terms on the right hand side of eq. 2.2 cancel each other and the analytic
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solution is a zero pressure gradient. Therefore, if the model gives something different from zero,
this equals the error. In this case, the evaluation should not be on relative error, for the obvious
reason that even a small error will show up as a huge (infinite) relative error, when the reference
solution is very small (zero).

Keeping in mind the above mentioned weaknesses the simple tests are a powerful tool in the
evaluation of the various methods. However, the direct error of the pressure gradient corresponding
to the idealised set-up is calculated. But actually, it is the model result for the elevation and
velocity that is of interest. The complexity of a full three dimensional model gives the possibility
of feedback mechanisms and cancellation of the error. Thus, realistic simulations with the model
are needed in addition to the simple tests. Unfortunately, it is necessary to know the solution in
order to perform a fair evaluation of the different methods. This problem is overcome here through
comparison with a laboratory experiment.

2.3 Simulations of Skagerrak

2.3.1 Set-up

As a step towards a more realistic simulation, the model is set up for the Skagerrak and the results
are compared with a simulation performed with a laboratory model. The set-up is configured as
close to the laboratory experiment as possible. The simulations are thus performed on the real
bathymetry, but with simple initial fields and controlled forcing.

The laboratory tank diameter is 5 m, the maximum depth is about 0.5 m, and length and time
scales are given according to a consistent set of scaling laws (McClimans, 1990). The laboratory
model is described in detail by McClimans et al. (1996) and McClimans et al. (2000).

Two different sets of scales are possible for the numerical simulations. The model can be
set up either to simulate the exact laboratory experiment (same length and time scales as in the
laboratory) or it can be set up with the scales of the Skagerrak. The latter is chosen here, since
the aim is to investigate the model’s ability to simulate the circulation in the Skagerrak using the
real scales. It is noted that, in this case, the reference solution is actually also just a model result.
Exact agreement is therefore not expected, but the laboratory result is used more as a guide in the
comparison of the different numerical methods.

The bathymetry is shown in figure 2.3. The model domain covers the Kattegat, the Skagerrak
and a part of the North Sea in a circular region with a diameter of about 625 km. The boundary
through the North Sea (to the west and south-west of the model domain) is a closed wall deter-
mined by the laboratory tank. In KP99 two sections (A and C) are used in the comparison, here
the results from section B are also shown.

Inflow Salinity Position
Source (106m3/s) (psu) (km,km)
Atlantic ocean 1.0 35.2 (59-70,483)
Central North Sea 0.7 34.9 (16,226-314)
German Bight 0.05 31.0 (204-328,65)
The Belts 0.07 20.0 (483-515,168)
The Sound 0.03 20.0 (585-594,185)

Table 2.1: Inflow sources. The positions correspond to the full domain (e.g. figure 2.3).
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Figure 2.3: Bathymetry of the Skagerrak model. The three sections, A, B and C, used to compare
the numerical results with the laboratory experiment are shown. Section X is an extra section used
for the intercomparison of the various numerical simulations.

The model is initialised with homogeneous water at a salinity of 35.2 psu, a temperature of
18◦C and zero velocity. It is forced by five inflow sources (see table 2.1). The temperature is kept
uniform throughout the simulations and the baroclinic forcing arises from the salinity differences.

In the laboratory model the outflow takes place at an overflow weir. In the numerical simula-
tions a flow relaxation scheme is applied, relaxing the interior solution toward zero elevation and
velocity and a salinity of 35.2 psu (Atlantic water at rest) over a 10 grid point wide zone.

The simulations are performed for two different resolutions; a grid of 340×340 points with
a grid size of 1852 m and a grid of 170×170 points with a grid size of 3704 m. Sixteen levels
are used in the vertical with a fine resolution close to the surface and bed, in order to resolve the
surface and bottom boundary layers.

The measurements in the laboratory experiment were performed after the model had reached
steady state. In KP99 it is found that 100 days are suitable for the numerical simulations to reach
the steady state. Thus the simulations are performed for a 100-day period and all results shown in
the following section are extracted at the end of this period1.

The hydrostatic consistency fraction (left-hand side of eq. 2.5) is shown in figure 2.4. For the
3704 m resolution the hydrostatic consistency condition is violated in large areas, and close to the

1The results shown by McClimans et al. (2000) are after 90 days. In order to make a fair comparison of the
simulations shown in KP99 with the 1852 m simulation with the z-levels-based method performed by McClimans et al.
(2000), the latter is extended for another 10 days for this study.
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(a) ∆x=1852 m (b) ∆x=3704 m

Figure 2.4: Hydrostatic consistency fraction (left-hand side of equation 2.5) for the numerical
simulations using 16 vertical sigma levels. (a) Horizontal grid spacing of 1852 m (1 n.m.). (b)
Horizontal grid spacing of 3704 m (2 n.m.) (from KP99 figure 10).

Norwegian coast values of up to 20 are found. As ∆x is halved, the hydrostatic consistency frac-
tion is also halved, and in parts of the Skagerrak the hydrostatic consistency condition is satisfied
with the 1852 m resolution while violated with the 3704 m. Close to the coast, though, the value
is high in both cases. Also, in the Kattegat and on the Danish side of the Norwegian trench the
condition is violated for both resolutions owing to the small depths.

2.3.2 Results

The results of the simulations are shown in figures 2.5-2.8. The results of the 3704 m simulations
are also shown in KP99 and are here plotted together with the 1852 m simulations to facilitate the
comparison on different resolutions. As mentioned above (section 2.2.1), it is to be expected that
the results with the sigma and the z-level-based methods converge as the resolution is increased.
This is seen in all the figures. While the two 3704 m simulations show distinct differences as
discussed in KP99, the two 1852 m simulations are much more similar.

Figure 2.5 shows the surface elevation field after 100 days. A strong cyclonic circulation is
seen in all simulations. The gradient of the surface elevation is slightly sharper in the 1852 m than
in the 3704 m simulations, probably owing to the higher resolution. This is especially distinct
in the northernmost corner of the Skagerrak. Here the isolines for elevation closely follow the
Swedish coast until the Norwegian coast is reached. They then turn southwest following the
Norwegian coast. In the 1852 m simulations the isolines make an almost 90◦ turn, while with the
coarser resolution the turn is more smooth. The same features is seen in the surface salinity (not
shown).

Figure 2.6 shows the alongshore component of the current at the surface and at 50 m depth
at sections A, B and C. The results of the four numerical simulations agree with each other and
conform to the laboratory model at section C and to some extent also at section B. It is uncertain
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Figure 2.5: Surface elevation (meters). The coordinates correspond to the full domain (e.g. figure
2.3).

why the velocity at section C is so much higher in the numerical simulation than in the laboratory
model, while the current speed agrees much better at sections A and B.

At section C the results agree with the laboratory model both with respect to the position and
the width of the coastal current. The velocities at 50 m depth are almost identical in the four
numerical simulations. At the surface the coastal current is slightly broader with the coarse than
with the fine resolution, and the peak velocity is correspondingly smaller, in agreement with the
findings of the elevation gradient mentioned above. Furthermore, it is seen that the z-level-based
method gives a slightly narrower current than the sigma method.

At section B the surface current maximum is found to be further offshore than expected from
the laboratory model. The best result with respect to the distance from the Norwegian coast to
the peak velocity is found with the finer resolution with a slightly better performance of the z-
level-based method than the sigma method. On the other hand the sigma method seems to perform
better at coarse resolution. This is contrary to the expectations from the theoretical error evalua-
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(a) Section A, surface (b) Section A, 50 m depth
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(c) Section B, surface (d) Section B, 50 m depth
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(e) Section C, surface (f) Section C, 50 m depth

0

20

40

60

80

100

120

140

0102030405060

V
el

oc
ity

 (
cm

/s
)

Distance from Swedish coast (km)

Lab. model
2nd order sigma, dx=1852m
2nd order sigma, dx=3704m

z-levels, dx=1852m
z-levels, dx=3704m

0

20

40

60

80

100

120

140

0102030405060

V
el

oc
ity

 (
cm

/s
)

Distance from Swedish coast (km)

Lab. model
2nd order sigma, dx=1852m
2nd order sigma, dx=3704m

z-levels, dx=1852m
z-levels, dx=3704m

Figure 2.6: Alongshore component of the velocity at the surface and at 50 m depth at sections A,
B and C. (a,b) Section A. A positive current indicates a westward flow. (c,d) Section B. A positive
current indicates a south-westward flow. (e,f) Section C. A positive current indicates a northward
flow.
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tion (section 2.2.1), where it was suggested that the z-level-based method should have the lowest
error at coarse resolution (hydrostatically-inconsistent grid), but the two methods should perform
equally well at fine resolution (hydrostatically-consistent grid). This contradiction is not directly
explainable and shows some of the problems with the complexity of the realistic simulations.

The most pronounced differences in the comparison of the simulations are found at section
A. This is to be expected since section A goes right across the Norwegian trench with its steep
slopes. At figure 2.6 it is seen that all four numerical simulations agree with the laboratory model
to within 20 cm/s with respect to the peak value of the surface velocity. However, at 50 m depth the
simulated velocities are much higher than in the laboratory model. The reason why the velocities
in the simulations decrease less with depth than in the laboratory model is probably that there is
too much vertical mixing in the numerical model.

The 3704 m simulation with the z-level-based method apparently performs best. The width
and position of the coastal current correspond closely to the laboratory model and the peak value
is the same within a few cm/s. The worst result is found with the coarse resolution sigma method,
where the current is moved too far away from the Norwegian coast. In between, the two 1852 m
simulations are found. They both agree reasonably well with the laboratory model with the sigma
method giving a slightly better result, i.e. the current is closer to the coast in agreement with the
laboratory model.

In KP99 it is found that the differences between the various methods become more apparent
in the cross sections of salinity and velocity. In figure 2.7 the cross section of the velocity at
section A is shown. The curves of figure 2.6a,b are actually the same as shown in figure 2.7 for
the surface and 50 m depth. However, the velocities shown in figure 2.6 are “measured” in the
numerical simulations exactly at the same positions as in the laboratory model. Therefore, both
figures contain useful information. Figure 2.6 gives the exact comparison of the simulations with
the laboratory model and with each other, while figure 2.7 gives a better overview of the variation
of the velocities with depth.

In figure 2.7 the similarity of the two methods in the 1852 m simulations is clear, with only
small differences in the magnitudes of the velocities and the position of the core of the Norwegian
coastal current. More pronounced differences are found with the coarser resolution, with the z-
level-based method in better agreement with the laboratory model. With the sigma method there
is a flow reversal at the steep slope of the Norwegian trench and the coastal current is moved
away from the coast to the deep part of the Skagerrak. With the z-level-based method the result
compares much better with the laboratory model, with the Norwegian coastal current close to the
coast and no flow reversal.

The result with the sigma method is improved by decreasing the grid size from 3704 m to
1852 m; the area of the cross section covered by the flow reversal is decreased and the Norwegian
coastal current is considerably closer to the coast. Surprisingly, the z-level-based method does not
gain by increased resolution; rather, the result seems to be worse with the smaller grid size. While
there is no flow reversal with the larger grid size, this is clearly seen with the fine resolution.

It is not clear why the z-level-based method apparently performs better with the coarser reso-
lution. It may be that it just looks so by chance. On figure 2.5 it is seen that the elevation isolines
meander in the 3704 m simulation using the z-level-based method rather than being parallel to the
Norwegian coast and exactly at section A the isolines are closest to the coast. Since the elevation
field to some extent is a picture of the surface currents, the coastal current meanders too and is
closest to the coast exactly at section A. It should be noted that the positions of the sections are
decided in the laboratory experiment, i.e. before the numerical simulations were performed. In the
other simulations the elevation isolines are much more parallel to the coast and the bathymetry.
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Figure 2.7: Cross section of velocity (m/s) at section A.

This is to be expected due to topographical steering.
An extra cross section (section X on figure 2.3) is shown in figure 2.8 to support the argument

that the coarse resolution z-level-based method has the best performance only by chance. The extra
section is positioned where the surface current in this simulation is far off-shore. This simulation
also shows a flow reversal and does not seem to perform better than the 1852 m simulations.

The results of sections A and X show the difficulties encountered in comparing the various
methods in a full and realistic simulation. This has to do with the complexity of the model with
possible feedback mechanisms and a large number of variables and positions available for use
in the comparison. At one position one simulation seems to be the best, while at other position
another simulation might be better.

The overall impression of the figures is that the results are better at the finer resolution with a
grid size of 1852 m. At this resolution the sigma and the z-level-based methods seem to perform
similarly. However, this resolution involves a large number of grid points (340 × 340 in the
horizontal). And even with this resolution the hydrostatic consistency condition is not satisfied
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Figure 2.8: Cross section of velocity (m/s) at section X.

everywhere (figure 2.4) and there is an artificial flow reversal of 20-30 cm/s (figure 2.7). It took
about 10 days of real time to perform one 100 days simulation on the supercomputer (NEC SX-4)
at the Danish Meteorological Institute. If one wishes to extend the area and at the same time cover
the Skagerrak with a satisfactory resolution, the computations might easily become overwhelming.
Therefore, the simulations at the coarser resolutions are indeed interesting. A grid size of 3704 m is
still a low value if a larger domain is simulated. At this resolution the sigma method as originally
used in the model apparently gives good quality results with respect to the circulation and the
elevation, but artificial currents are found at the slopes of the Norwegian trench. These flows are
reduced using the z-level-based method but they are not removed totally as illustrated by section
X (figure 2.8).

The z-level-based method has a problem when the interpolation goes into the bottom. In
this case the simple assumption of no gradient has been made. The z-level-based method would
probably perform better with more sophisticated assumptions near the bottom. This has not been
studied here, but might be a relevant topic for future work.
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Chapter 3

The area around Cape Farewell

3.1 Background description

The circulation in the area around Cape Farewell is strongly influenced by the continental slope
close to the coast giving a strong topographical steering. The shelf is narrow - less than 100 km,
with depths up to 500 m. The deep ocean, with depths exceeding 3000 m, is found less than
200 km off the coast.

Three types of water masses are found in the area. At the surface on the shelf and partly on
the continental slope Arctic water is found. It is cold and relatively fresh, with temperature less
than −1.5◦C and salinity less than 33.3 psu (Krauss, 1995). On the outside of the Arctic water and
partly mixed with it, is the Irminger water of about 4◦-5◦C and 34.9-35.0 psu. Below these water
masses and further off the coast is the warm and saline Atlantic water of about 7◦C and 35.05 psu.

The ocean dynamics of the region are influenced by the current pattern in the northern North
Atlantic. Here is given a brief description only, see Dietrich et al. (1980) for a general description
of the North Atlantic circulation, Schmitz and McCartney (1993) for a more recent review, and
Mortensen (1997) for a detailed description of the water masses.

The North Atlantic Current brings the relatively warm and saline water northward. Between
Iceland and the Faeroe Islands it bifurcates with one branch going northeast into the Norwegian
Sea, and another branch trapped by the western slope of the Mid Atlantic Ridge, turning west
to form the Irminger Current. This divides further, with one branch going through the east side
of the Denmark Strait up north of Iceland. The other branch merges with the East Greenland
Current flowing southward along the east coast of Greenland to the Cape Farewell area. The East
Greenland Current initiates with the outlet through Fram Strait. It follows the continental slope
along the east coast of Greenland transporting the relatively cold and fresh Arctic water southward
passing Cape Farewell.

Buoy drift studies have given an essential contribution to the picture of the circulation in the
area. Krauss (1995) deployed 18 buoys at a section between the Faeroe Islands and Greenland at
62◦N to study the branching of the Irminger Current. The buoys deployed on the western side of
the Reykjanes Ridge (west of 28◦W) joins the East Greenland Current. The largest current speed
of 0.7 m/s was found at the continental slope. Uotila et al. (1997) deployed two buoys in the
Denmark Strait. Both buoys followed the East Greenland Current to Cape Farewell. Uotila et al.
(1997) observed current velocities up to 0.5 m/s with stable directions.

Ice is formed in the Arctic Ocean by freezing. It becomes 2-4 m thick and up to 3 years old
before it drifts out of the Arctic Ocean (McLaren et al., 1994; Thomas et al., 1996; Harder, 1997).
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The Arctic Ocean is enclosed by land except for a few straits. The Fram Strait between Greenland
and Spitsbergen is one of the main outlets of ice. The annual ice transport through Fram Strait
shows significant variations from year to year with values of 2000-4000 km3/year (Harder et al.,
1998; Vinje et al., 1998). In Fram Strait the ice floes are up to 50 km in diameter. The ice is
transported with the East Greenland Current, breaking up on the way, and at Cape Farewell the
floe size is typically less than 100 m (Gill and Valeur, 1996). Along the way new ice is formed by
freezing. This is usually called first year ice, in contrast to the multi-year ice originating from the
Arctic.

3.2 Numerical simulations

The numerical simulations of the ocean and sea ice conditions in the area are performed for a
10-day period. All simulations are made on the same set-up, i.e. on the same mesh and for the
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same period, to facilitate model comparison. The period March 17-27 1997 is simulated due to
the good coverage of sea ice observations used for validation of the sea ice model.

The bathymetry of the model domain is shown in figure 3.2. The domain covers the area
around Cape Farewell with open boundaries normal to the isobaths about 300 km up the east and
west coasts, respectively, and an open boundary on deep water almost parallel to the coast and
isobaths about 250 km offshore. The inflow of water and sea ice takes place at the boundary
normal to the east coast, and outflow will primarily be at the boundary normal to the west coast,
while the currents at the boundary on the deep water will be very small.

The computational mesh is shown in figure 3.3. It consists of 3420 nodes connected by 6611
elements. The generation of the mesh exploits the possibility with the finite element method to
have a varying resolution, thus having high resolution in areas of interest and where necessary
for good model results, and coarse resolution on the deep parts to place the boundaries well away
from the coast without unnecessary computations. The sea ice and ocean models are set up on the
same mesh. This is done to facilitate model comparison and so that output from one model easily
can be used as input in other models. In addition, in the simulations with the coupled ocean and
sea ice model it is necessary, or at least preferable, to use the same mesh.

As described in Chapter 2 it is preferable for the ocean simulations to have a high resolution
on steep bottom slopes to decrease the truncation error on the baroclinic pressure gradient. Also
for the barotropic currents the bottom slopes should be well resolved due to the topographical
steering and the resolution therefore depends on the bathymetry with high resolution on the shelf
break and the continental slope. Moreover, the resolution depends on the square root of the depth
to get the same Courant number everywhere in order to achieve a better use of the time step, thus
having high resolution on the shelf and coarse resolution on deep water. Finally the resolution was
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Figure 3.3: Computational mesh with 3420 nodes and 6611 elements.

increased close to the inflow boundary in order to decrease the error sources at this boundary, such
that the inflow is well-behaved and smooth.

Even though the ocean model is mainly used as forcing for the sea ice model in the work
presented here, and the emphasis and especially the validation are on the results from the sea ice
model, the criteria for the resolution are mainly determined by considerations concerning the ocean
models. There are several reasons for this. First of all, due to the decision of having one mesh
which is used in all simulations, it should meet both the sea ice and the ocean needs, particularly
with respect to the coupled ice-ocean simulations. Furthermore, it is difficult in advance to define
criteria for the sea ice simulations, since this involves high resolution on the ice edge and where the
ice is found, which is unknown before the simulations are actually performed. Of course, the mesh
could be constructed based on observations, for example those used for initial values. But due to
the highly changing ice conditions in the area, this carries the risk of a mesh suitable only for a
part of the simulation period. One solution could then be to use an adaptive mesh. This has not
been investigated in this study, although it might also be beneficial for the advection calculations.

Instead, the more intuitive procedure is used, simply to construct the mesh based on some other
criteria, no matter how, and then just check if there is high resolution where the ice is expected
to be found. This seems to be the case, since the mesh based on the ocean criteria gives high
resolution on the shelf and continental slope, where most of the ocean dynamics take place and
where the ice is usually found. Thus, it seems to be a suitable mesh for both sea ice and ocean
simulations.

When the resolution is given by the bathymetry, as is done here, the node separation goes
to zero as the depth goes to zero at the coast, and becomes very large for the deep areas. It is
therefore necessary to specify proper minimum and maximum node separations. Requirements
on the resolution also appear from the formulation of the sea ice model (Flato, 1998). A lower
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bound on the resolution is defined by the fact that the assumption of the ice as a continuum with
a concentration and thickness field breaks down if the scale gets too small. On the other hand, if
the scale gets too large, real geophysical variations are not resolved. Based on observations Flato
(1998) estimates the lower and upper bound to be roughly 10 and 200 km for the Arctic. It is
expected that the lower bound of the resolution is smaller in the area around Cape Farewell than
in the Arctic, since the floe size is smaller, and the minimum and maximum separation between
two nodes are chosen to be 5 and 50 km, respectively.

3.3 Data

This section describes the data that are used for initial and forcing fields and for validation of the
model simulations. Except for the wind fields and the ice maps, all data are freely available on the
internet (see appendix C).

3.3.1 Bathymetry

The bathymetry shown in figure 3.2 and used in the mesh generation and in the ocean simulations is
the ETOPO5 bathymetry (NGDC, 1988). It has a global coverage of 5x5 minutes, i.e. a resolution
of about 4.5 km in the east-west direction and 9 km in the north-south direction in the area around
Cape Farewell. The World Data Bank II coastline is used to extract the land boundary and is also
shown in figure 3.2. It has a resolution of approximately 500 meters.

3.3.2 Temperature and salinity fields

The ocean simulations require initial temperature and salinity fields. It takes many profile mea-
surements to get a reasonable coverage and therefore a climatology is usually used. The Levitus
climatology (Levitus et al., 1994; Levitus and Boyer, 1994) is widely used (e.g. Ezer and Mellor,
1994, 1997) and there is a new global climatology (Gouretski and Jancke, 1998) that is partly based
on the Levitus data. In this study the Levitus monthly mean salinity and potential temperature for
March are used for the baroclinic forcing. Figures 3.4 and 3.5 show the surface temperature and
salinity fields. It is noted that numerical models usually solve for potential rather than in situ
temperature. The potential temperature is available from the Levitus climatology as monthly and
annual means, while the in situ temperature is also available as seasonal mean.

The advantage of the Levitus climatology and the reason to use it here, is that it covers the
entire area and is easy to get and use. The greatest disadvantage is that the fields are very smooth,
as clearly seen in figures 3.4 and 3.5. This is caused by the spatial interpolation and time averaging
procedures and further by the low coverage of observations in the polar regions. Unfortunately,
the Levitus climatology seems to be too smooth, and the baroclinic forcing is found to have no real
effect on the results of the limited area simulations performed in this study as discussed in section
4.3.

Mortensen (1997) performed simulations of a limited area of the Denmark Strait and waters
around Iceland. Instead of using climatological temperature and salinity fields for the initialisation,
he constructed his own data set on a regional scale and representative for a specific year. Even
though this might be the preferred procedure, it is regarded as outside the scope of this study.

Holland et al. (1996) performed a sensitivity test of the temperature and salinity fields for
simulations of the Arctic ocean and the Greenland-Iceland-Norwegian Sea with a resolution of
2 degrees. They made simulations with and without the Levitus data as initial values and found
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Figure 3.4: March surface temperature field from the Levitus climatology.
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that the horizontal density variations in the Levitus data did influence the result. Thus, on a large
scale the climatological fields apparently capture the important structure of the density field and
perform well.

3.3.3 Wind fields

The models are forced by the analysed wind fields from the High Resolution Limited Area Model
(HIRLAM) (Källén, 1996), run operationally at the Danish Meteorological Institute. The model is
set up for an area covering the North Atlantic. The wind fields are available every 6 hours. Figure
3.6 shows the wind fields at 06 GMT at the first 4 and the last 4 days of the simulation period.

3.3.4 Ice concentration

The ice concentration fields for initialisation and for validation of the sea ice model are obtained
from sea ice maps produced at the Danish Meteorological Institute. The ice maps are based on
Radarsat images. Figure 3.7 shows the ice concentration at March 17, 20 and 27 all at 09 GMT.
The ice is situated on the shelf, indicating the drag from the East Greenland Current. The ice
edge is very sharp east of Greenland and the concentration is high with values of about 90% all
the way from the inflow boundary to Cape Farewell. When the ice has passed Cape Farewell the
concentration rapidly decreases, probably due to melting.

In the first 3 days only small changes of the concentration field are seen, while the next 7 days
are much more dynamically active. A few distinct features are pointed out here and used in the
discussion in section 5.5.

First, it is noticed that at March 17 the ice edge off the east coast is almost a straight line
with a distance to land varying from about 50 km at the inflow boundary to about 10 km at Cape
Farewell. The ice extends about 200 km further to the west of Cape Farewell and there separates
from the land. Three days later, at March 20, the ice edge is still about 50 km off land at the inflow
boundary, but now makes a sudden turn towards land around 61◦N. The ice extends further along
the west coast and has moved northward and is almost connected to the land. Another 7 days later
at March 27, the ice cover along the east coast has broadened to a width of 50-60 km all the way
to Cape Farewell and the ice edge is now meandering. A few of these meanders will be used in
the discussion section 5.5 and have been marked (A, B and C) to clarify the discussion. South of
Cape Farewell an ice free area has formed and to the west the ice has moved away from the coast
and is spread out, extending the area of the ice cover substantially.

On the plot of March 20 it seems as if there is no ice just inside the inflow boundary. The
reason for this apparent ice free area is simply that the observations do not cover the total domain
at that date and it is expected that, in reality, the ice did extend all the way along the east coast.
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Figure 3.6: Analysed wind fields from HIRLAM.
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Figure 3.7: Sea ice concentration fields.
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Chapter 4

Finite element ocean simulations

4.1 Finite element method

In Chapter 2 it was found that for ocean models with terrain following coordinates (σ-coordinates)
it is necessary, or at least preferable, to maintain high spatial resolution on the steep bottom to-
pography, if a density stratification is present, in order to minimise the error from the numerical
treatment of the pressure gradient. Simulations with high resolution were performed, but due to
the constant grid size the resolution was high everywhere, including areas where it was not needed,
causing unnecessary computation. Further, as mentioned in section 3.2, with the grid size propor-
tional to the square-root of the depth, the Courant number on the external mode will be uniform,
making a better use of the time step.

It is thus preferable when using a variable grid size to be able to resolve interesting or necessary
features, while still having low resolution elsewhere. This is one of the reasons for leaving the
finite difference method in favour of the finite element method in this study. Whereas the finite
difference grid always contains some kind of regularity or structure, the finite element method
uses an unstructured mesh, i.e. there is no specific requirement1 on the position of the nodes. This
provides a high degree of freedom in varying the resolution, as for example seen in figure 3.3.
The variable grid size can to some extent be achieved with the finite difference method by using
curvilinear coordinates (e.g. Ezer and Mellor, 1994), or by nesting grids of different resolution
into each other (e.g. Vested et al., 1995). The nesting technique is known to produce small scale
noise at the grid boundaries, while the curvilinear coordinates seem to perform well, but none of
them are as flexible as the finite element method.

Another reason for using the finite element method is the smooth representation of the coasts.
Due to the unstructured mesh and the linear elements an irregular coastline is piecewise linearly
represented (see figure 4.1a) and the method is well suited to handle the irregular coastal areas.
With the finite difference method the coastline becomes staircase-shaped due to the pointwise
representation. The shape of the coast depends on the orientation of the computational grid to the
coast, as indicated in figure 4.1b,c. The problem is described by Adcroft and Marshall (1998),
who found that the circulation is sensitive to the orientation of the computational grid to the coast.

The disadvantages with the finite element method is that it is not as easy to apply as the finite
difference method and it might require more cpu time (Meyers and Weaver, 1995). Nevertheless,
the advantages mentioned above makes the finite element method an attractive method for ocean

1In the two dimensional mesh with triangular elements, these should not be extremely distorted. Ideally, the elements
should be equilateral triangles. This is not a limitation in practice.
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(a) (b) (c)

Figure 4.1: Representation of coastline. (a) Finite element method. (b) Finite difference method.
(c) Finite difference method with rotated grid.

studies and forecasting.

4.2 Two ocean models

This chapter describes the simulations of the Cape Farewell area with two finite element ocean
models, Fundy and Quoddy. Fundy is a diagnostic model, i.e. the calculations are based on spec-
ified baroclinic forcing. Quoddy is a prognostic model, i.e. it is a time stepping model, where the
temperature and salinity fields are dependent variables, developing with time. They belong to the
same family of finite element ocean models and possess many similarities, as for example in the
representation of the mesh.

In both models, the mesh basically consists of a 2-dimensional horizontal mesh of triangles
(figure 3.3) and a 1-dimensional vertical mesh discretised into the same number of levels at each
horizontal node. The grid is terrain-following with the lower level at the bottom and the upper level
following the sea surface. This gives a mesh that is slightly more general than the σ-coordinates
used in Chapter 2, since the only restriction is that the number of vertical nodes is the same
everywhere, while, in principle, it is possible to use different vertical resolution at various places.

The combination of the two models is advantageous. The diagnostic model solves for the dy-
namical variables, i.e. elevation and current. These are then used as initial fields in the prognostic
model. This saves the long spin-up simulation usually necessary to get the dynamics in balance
with the diagnostic forcing fields, i.e. salinity and temperature. In addition, the climatological
salinity and temperature fields are provided in z-levels. These are used for the pressure gradient
calculation in the diagnostic model, thereby avoiding the problems described in Chapter 2. The
model interpolates the pressure gradient field to the terrain-following coordinates. The same in-
terpolation routine is used to interpolate salinity and temperature. The diagnostic model is thus
used to interpolate the diagnostic fields to the mesh and provides all initial fields for the prognostic
model.
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4.3 Linear diagnostic model

The linear harmonic model, Fundy, is used for the diagnostic simulations. The model is described
in detail by Lynch and Werner (1987), Lynch et al. (1992) and Greenberg et al. (1998). The
time dependence is based on the assumption that the dependent variables are harmonic, oscillating
with frequency ω. The model is not time-stepping, but instead operates in the frequency domain.
The variables are written as φ(x, y, t) = φ0e

i(ωt+ϕ) with φ0(x, y) the amplitude and ϕ(x, y) the
phase, and where i is the imaginary unit with the property i2 = −1. The time derivatives are then
∂φ
∂t = iωφ. The elevation ζ is calculated according to the depth-integrated continuity equation

iωζ = −∇xy ·
(
h�v

)
(4.1)

where h is the depth and �v is the depth averaged velocity. The velocity �v is found from the
momentum equation

iω�v + �f × �v = −g∇xyζ − g

ρ0

∫ 0

z
∇xyρdz +

∂

∂z

(
Nm

∂�v

∂z

)
(4.2)

where �f is the Coriolis parameter written as a vector pointing upward, g is the gravitational accel-
eration, ρ is the density, and Nm is the vertical turbulent mixing coefficient.

For a given frequency, the model equations with specified density gradient, wind stress, and
boundary conditions, can be solved for amplitudes and phases. Zero frequency gives the steady-
state solution. If there is more than one frequency, a simulation is performed for each of them.
Since there is no non-linear interaction, the solutions are simply added together.

4.4 Linear diagnostic simulations

4.4.1 Set-up

Simulations with the diagnostic ocean model are performed for the Cape Farewell area on the mesh
described in section 3.2. The simulations are performed for zero frequency giving a steady-state
solution. All the simulations are made on the same set-up, with different choices of parameters
in order to investigate the importance of the different terms. The simulations are summarised in
table 4.1. The results are shown as elevation and velocity fields in figure 4.2. There is no direct
comparison with observations.

No. T and S Caw cpu velocity
(s) (m/s)

F0 barotropic 0 3.4 0.21
F1 Levitus 9.8 0.19
F2 1.4 · 10−3 3.6 0.69
F3 0.7 · 10−3 3.6 0.45

Table 4.1: Simulations performed with the diagnostic ocean model for the Cape Farewell area.
Where no value is given, it is as in F0. The velocity is found about 50 km south of Cape Farewell
(position marked on figure 3.2).
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Seven nodes are used in the vertical. This is very few, and many more could easily be afforded
both with respect to memory requirements and time usage. Since the output of the diagnostic
simulations is used as input for prognostic simulations, the vertical meshes should agree. The
prognostic model is more demanding and the relatively coarse vertical resolution is because of
these simulations.

As mentioned in section 3.2, it is assumed there is inflow at the northernmost boundary normal
to the east coast. This is achieved by specifying the elevation along this boundary with zero
elevation at the northeast corner of the domain over deep water increasing towards the coast. The
slope of the sea surface is chosen by trial and error. From simulations on a larger domain (not
shown) it was found that the strongest surface current and the steepest slope of the sea surface are
found on the continental slope. This is a reasonable result, argued for by the topographic steering.
Thus, as seen in figure 4.2 the boundary conditions are set to zero elevation on the deep water with
a high increase over the continental slope and a small increase on the shelf to a value of almost
0.25 m at the coast. At the rest of the open boundaries the water is allowed to flow out according
to geostrophy.

One simulation is forced by variations in the density field. The baroclinic forcing is based on
the Levitus climatological salinity and potential temperature fields. The density is calculated as a
function of salinity, potential temperature and pressure ρ(S, θ, p) (eqs. 4.20-4.21).

Two simulations are forced by analysed HIRLAM winds from March 17 (see figure 3.6a). A
quadratic drag law is used. The drag coefficient is a constant set to 1.4 · 10−3 for F2 and half the
value for F3. The value 1.4 · 10−3 is given by Pond and Pickard (1983).

4.4.2 Results

The elevation and velocity fields of the simulations are shown in figure 4.2.
The barotropic simulation, F0, without wind forcing is depicted as the reference solution of

the linear model for the intercomparisons and is used as initial condition for the simulations with
the time stepping ocean model (section 4.5), and for the ocean forcing in the sea ice simulations
(section 5.5). The elevation field follows closely the bathymetry, as expected. For example, the
meanders on the elevation isolines between the inflow boundary and 62◦N are related to the 250 m
and 1500 m isobaths (see figure 3.2) and the spur in the continental slope just south of Cape
Farewell is clearly seen in the elevation field. The highest current velocity is found on the conti-
nental slope. On the shelf the velocity is smaller and the velocity is very small at deep water. The
sea surface current is 0.21 m/s about 50 km south of Cape Farewell. In general the current is up
to about 0.3 m/s, with a maximum value of 0.55 m/s. The maximum value is found just inside the
inflow boundary and is probably an artifact of the boundary condition. The simulated velocity is
in agreement with observations, for example Uotila et al. (1997) found velocities up to 0.5 m/s in
the East Greenland Current.

The baroclinic simulation, F1, is almost indistinguishable from F0 indicating that the baro-
clinic forcing is not important for the circulation. At the position south of Cape Farewell the
current is slightly smaller, 0.19 m/s. The maximum current speed is 0.55 m/s as in F0 and found
at the same node just inside the inflow boundary. Small differences are also found close to land.
The elevation is slightly higher within F1 than within F0 especially at the west coast, where the
surface current is slightly larger too.

As discussed previously (section 3.3.2) the reason for the similarity between the barotropic and
the baroclinic simulations must be sought in the climatological temperature and salinity fields that
are used for the baroclinic forcing. They are based on measurements from several years resulting
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Figure 4.2: Sea surface current and elevation, linear diagnostic simulations.

in very smooth fields with weak baroclinic forces. Since the effect of the baroclinicity is so small,
it is regarded as no real improvement to the result, and F0 will be used for the ocean forcing in the
sea ice simulations.

The two simulations, F2 and F3, are forced by the wind field of March 17 with different drag
coefficients. The general result is the same for the two simulations, although the response to the
wind forcing is clearly demonstrated to depend upon the magnitude of the drag coefficient. As the
wind is toward the south and west the water is forced in the same direction as the existing current
pattern of F0 resulting in a 5-10 cm increase of the coastal set-up. The sea surface elevation still
reflects the bottom topography.

The surface current increases substantially with the drag coefficient. For example, at the given
position south of Cape Farewell the current speed is 0.21 m/s for F0, 0.45 m/s for F3 and 0.69 m/s
for F2. The maximum speed is 0.75 m/s in F3 and 1.43 m/s in F2 and is found at the same node in
the two simulations close to land. These high maximum values are probably due to a combination
of the wind drag and land effects.
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4.5 Nonlinear prognostic model

4.5.1 Model description

The prognostic simulations are performed with Quoddy. The model is described in detail by Lynch
and Werner (1991) and Lynch et al. (1996). It is non-linear, 3-dimensional and hydrostatic, and
includes a free surface and the 2.5 turbulence closure scheme by Mellor and Yamada (1982).

The Navier-Stokes equation is solved for the horizontal part of the velocity (momentum) with
the usual Boussinesq and hydrostatic approximations

d�v

dt
+ �f × �v = −g∇xyζ − g

ρ0

∫ ζ

z
∇xyρdz + ∇xy (Ah∇xy · �v) +

∂

∂z

(
Nm

∂�v

∂z

)
(4.3)

where �v is the velocity, �f is the Coriolis parameter written as a vector pointing upward, g is the
gravity, ζ is the sea surface elevation, ρ is the density, Ah is the horizontal mixing coefficient, and
Nm is the vertical turbulent mixing coefficient. The vertical velocity w is calculated using the
continuity equation

∂w

∂z
= −∇xy · �v (4.4)

The free surface is defined by depth integrating the continuity equation

∂ζ

∂t
= −∇xy ·

∫ ζ

h
�vdz (4.5)

This equation is not solved directly for the elevation. Instead it is rearranged together with eq. 4.3
to produce a wave equation. This is to preserve the gravity wave performance on the simple
elements (Lynch and Gray, 1979). Equation 4.5 is differentiated with respect to time

∂2ζ

∂t2
= −∇xy · ∂

∂t

∫ ζ

h
�vdz = −∇xy ·

(
�v|z=ζ

∂ζ

∂t
+

∫ ζ

h

∂�v

∂t
dz

)
(4.6)

and adding eq. 4.5 multiplied a constant τ0 gives the wave equation

∂2ζ

∂t2
+ τ0

∂ζ

∂t
= −∇xy ·

(
�v|z=ζ

∂ζ

∂t
+ τ0

∫ ζ

h
�vdz +

∫ ζ

h

∂�v

∂t
dz

)
(4.7)

The last term on the right hand side is found by depth integrating eq. 4.3.
The spatial variations are discretized with the finite element method, with a finite difference

time stepping. A three level time discretization

ζ ≈ θ

2
(ζn+1+ζn−1)+(1−θ)ζn ∂ζ

∂t
≈ ζn+1 − ζn−1

2∆t

∂2ζ

∂t2
≈ ζn+1 − 2ζn + ζn−1

∆t2
(4.8)

with the weight θ ∈ [0; 1], is used for the wave equation, and a two level (n−1 and n) discretization
is used for the momentum equation.

4.5.2 Changes to the model

A few changes to the source code of the model have been made. Of these the implementation
of the preconditioned conjugate gradient method is the major change. This iterative method is
substituted for the direct solution of the wave equation originally performed in the model by the
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LU method. Furthermore, the equation of state has been under consideration. First, a possible
optimisation of the algorithm is investigated, motivated by the fact that the equation of state is
a computationally expensive task in an ocean model. Secondly, the pressure dependence on the
density is implemented. The topics of the conjugate gradient method and the equation of state are
described in the following sections.

Finally, a flow relaxation scheme (see e.g. Martinsen and Engedahl, 1987) is implemented for
the open boundary condition. In the diagnostic simulations a geostrophic condition was applied at
the outflow boundary, but this conflicts with the conjugate gradient method, as described below.
Instead flow relaxation is used for a zone along the boundary, where the temperature and salinity
are relaxed toward the climatological fields, and horizontal velocities and elevation are relaxed
toward the diagnostic solution. This means that after calculation of the value of a variable φ, it is
updated according to

φ = αφintern + (1 − α)φextern, (4.9)

where φintern is the solution of the prognostic model before the relaxation, φextern is an external
solution, i.e. the climatology and diagnostic solution and α is a weight varying from 0 at the
boundary to 1 in the domain. In the interior domain inside the relaxation zone the internal solution
is used by setting α = 1. To facilitate a smooth transition between the internal domain and the
relaxation zone, α varies quadraticly with the distance from the boundary, with the requirement
that ∂α

∂s = 0 at the interface between the relaxation zone and the internal domain, with s the
distance from the boundary.

This kind of open boundary is not mass- and momentum-conserving and is not physically
and mathematically founded, but it seems to work. The same boundary condition is used in the
simulations of the laboratory experiment described in section 2.3. It should be noted that when the
solution is relaxed to climatological fields as is done here (and in section 2.3) the relaxation zone
is sometimes called a sponge layer (e.g. Haidvogel and Beckmann, 1999).

4.5.3 Conjugate gradient method

One of the main tasks in the model is to solve the wave equation, which in the discrete formulation
is formulated as a system of linear equations

A�x = �b (4.10)

where A is a N × N dimensional matrix, and �b and �x are N dimensional vectors, with N equal
to the number of nodes. A is defined by the dependency of the nodes on each other, �b includes
all terms evaluated at known time levels n and n − 1 and �x is the change of the elevation with
time, xi = ζn+1

i − ζn−1
i . A is sparse, banded, symmetric and positive definite. Furthermore,

A is constant in time, and originally, eq. 4.10 is solved with a LU decomposition which then is
performed only once and the work needed in each time step is just a forward and a backward
substitution. Due to the symmetry and positive definiteness, a Cholesky decomposition can be
used (Kreyszig, 1988). This means that the upper triangular matrix is the transpose of the lower,
and A = LT L. Storage requirements are kept down, because A is banded and symmetric, and
it is therefore important to have as low a bandwidth as possible. For the mesh used here the half
bandwidth is 64. Since there are 3420 nodes in the mesh, A is actually a 3420 × 3420 matrix, but
it is possible to store it in an array of dimensions 3420 × 64.

Due to the sequential execution of the LU method the algorithm is not easy parallelised and
vectorised. This was the main reason to investigate the possibility of using other methods.
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Figure 4.3: Upper left part of the sparse matrix. Numbers different from zero are marked.

Utilising that A is symmetric and positive definite, the preconditioned conjugate gradient
method has been implemented in the model as an alternative to the LU method. The theory leading
to the algorithm of the conjugate gradient method will not be examinated here, see for example
Golub and Van Loan (1989), Schewchuk (1994) or Van de Velde (1994) for a thorough treatment.

The conjugate gradient method is an iterative method, which solves eq. 4.10 given the matrix
A and the vector �b and an initial guess �x0. A and �b are given by the model equations, while �x0 is
specified by the user. Then the algorithm is

k = 0; �r0 = �b − A�x0; C = diag(A); �z0 = C−1�r0; �p0 = �z0;

do while (k < N and �rT
k �zk > ε�rT

0 �z0)

αk =
�rT
k �zk

�pT
k A�pk

�xk+1 = �xk + αk�pk

�rk+1 = �rk − αkA�pk

�zk+1 = C−1�rk+1

βk =
�rT
k+1�zk+1

�rT
k �zk

�pk+1 = �zk+1 + βk�pk

k = k + 1

(4.11)

where k is an iteration counter, C is a preconditioning matrix (described below) here implemented
as a diagonal matrix consisting of the diagonal elements of A, and �r is the residual �r = �b − A�xk.
�z and �p are vectors, α and β are scalar products and ε is a small number defining the stopping
criterion (described below).

One of the advantages of the method is that A need not be inverted directly, but is only used
in a matrix-vector multiplication. This makes the method useful for sparse matrices. However,
the method will not be efficient if the matrix is not sparse, since the multiplication then would be
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too computationally expensive. From figure 4.3 it is seen that A is indeed very sparse, with only a
few non-zero elements. For the mesh used here the sparsity, i.e. the maximum number of non-zero
elements in a row is 7. This means that A is actually stored in an array of dimension 3420 × 7.
The conjugate gradient method thus uses less computer memory than the LU method.

Owing to the nature of the iterative procedure, the solution and the number of iterations and,
thereby, the execution time, depend on the chosen accuracy through the specification of ε. This is
one of the greatest disadvantages of the method and is tested below.

Another disadvantage is that A has to be symmetric. This excludes the geostrophic boundary
conditions that would make A non-symmetric.

The positive definiteness of A ensures convergence independent of the initial guess and it can
be shown that the method will converge in at least N iterations. For any mesh but for small test
cases this is a large number and would require an incredible amount of computing. The strength
of the method is that a satisfactory solution often is found in much fewer iterations.

Even though convergence is guaranteed, the algorithm should start with a sensible initial guess
�x0. �x is the change of the surface elevation from one time step to the next. The i’th element of �x is
thus the change of elevation at the i’th node ζn+1

i − ζn−1
i . This is expected to be relatively small

and the initial guess is simply zero, corresponding to steady state.
Improved convergence can be obtained by use of a preconditioner. This is called the pre-

conditioned conjugate method and works by solving eq. 4.10 indirectly, by solving the equation
multiplied on both sides of the equal sign by a matrix. After some rearranging one can get some-
thing very like the conjugate gradient method, but where the preconditioning matrix C enters the
algorithm in inverse form. From the derivation it follows that C, too, must be symmetric and
positive definite. Setting C to the unit matrix simply gives the conjugate gradient method without
preconditioning.

It can be shown that the error in the k’th iteration is bounded by

‖�xk − �x∗‖2 ≤ 2‖�x0 − �x∗‖2

(√
κ − 1√
κ + 1

)k

(4.12)

where �x∗ is the true solution, i.e. A�x∗ = �b, and κ is the condition number of C−1A defined from
a given matrix norm as

κ = ‖C−1A‖ · ‖(C−1A)−1‖ (4.13)

If the spectral matrix norm is used, the condition number is the ratio of the maximum to the
minimum eigenvalue of C−1A. The eigenvalues are found by the power method as explained
in appendix B. Equation 4.12 gives an upper limit of the error and shows that in each iteration
this will decrease with

√
κ−1√
κ+1

. This is in the following called the convergence factor. With a
condition number of one, i.e. C = A, the method converges in one iteration. Thus, besides that
the preconditioner must be symmetric and positive definite, the requirement is that the condition
number for C−1A must be low. In other words, the preconditioner must be a good approximation
to A.

A enters the algorithm directly without being inverted. This is one of the strengths of the
method. On the other hand C−1 is used in the algorithm. Thus, apart from being a good approxi-
mation to A, the preconditioner must be easy to invert.

There is no unique way of constructing C, so A has to be inspected. Figure 4.3 illustrates that
A is a band matrix with high density around the diagonal. Furthermore, the diagonal elements are
in the order of 10 - 100 times larger than the off-diagonal elements. Thus, A is diagonally dominant
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and the preconditioner is chosen to be a diagonal matrix consisting of the diagonal elements of A

Cij =
{

Aii i = j
0 i �= j

(4.14)

This is called diagonal or Jacobi preconditioning and the inverse of C is simply the reciprocal of
the diagonal elements. It is stored as a vector, giving an easy implementation with small memory
requirements.

Without the preconditioner the condition number is 218 giving a convergence factor of about
0.87. With the preconditioner the condition number is decreased to 6.05 with a convergence factor
of 0.42. The efficiency of the preconditioner is due to the structure of A. Because A is diagonally
dominant with a relatively large difference in the values of the diagonal elements, the eigenvalues
are also very different, with a large condition number as the result. With preconditioning the matrix
C−1A is also diagonally dominant, but all diagonal elements are exactly one and the eigenvalues
are all close to one, with a small condition number as the result.

The iteration procedure is terminated when the relative error on �x is less than a small number.
The error on �x after k iterations is defined as �xk−�x∗. When multiplied by A the error is expressed
as the residual

rk = −A(�xk − �x∗) = �b − A�xk (4.15)

When the true solution is found, the error, and thereby the residual, is zero. The algorithm is
terminated when

�rT
k C−1�rk ≤ ε�rT

0 C−1�r0 (4.16)

where ε is a small number and C is the preconditioner. This ensures an upper bound of the error
of ‖�r‖2 ≤ ε‖�b‖2. Now the problem is to choose a proper value of ε. It must be small enough to
give a satisfactory solution of �x, but on the other hand ε should be large enough to give a quick
execution.

4.5.4 Equation of state

As in other 3-dimensional ocean models the salinity and the temperature are prognostic variables
and an equation of state is needed to close the system of equations. In the ocean both the in situ
temperature (the temperature measured at a given position) and the density depend on the pressure.
At higher pressure both temperature and density are increased. The pressure p used here is defined
as the pressure due to the weight of the water volume lying above, i.e. at the surface p = 0.

Actually, a numerical ocean model does not solve for in situ temperature, but for potential
temperature. The latter is defined, as the temperature a given water parcel would have if it was
moved adiabatically2 to the surface. Thus the potential temperature is a measure of the content of
heat in the water. Therefore, if a water parcel is moved to another depth, the potential temperature
is unaltered, while the in situ temperature changes.

The present version of the model is built for coastal areas with small depth, where it is rea-
sonable to ignore the pressure dependence on the temperature and the density. The potential and
in situ temperature are therefore the same, and the density is calculated as a function of salinity
S and temperature T according to the one atmosphere international equation of state of sea water

2Without exchange of heat with the surroundings.
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a0 999.842594 b0 0.824493 c0 −5.72466 · 10−3

a1 6.793952 · 10−2 b1 −4.0899 · 10−3 c1 1.0227 · 10−4

a2 −9.095290 · 10−3 b2 7.6438 · 10−5 c2 −1.6546 · 10−6

a3 1.001685 · 10−4 b3 −8.2467 · 10−7 d0 4.8314 · 10−4

a4 −1.120083 · 10−6 b4 5.3875 · 10−9

a5 6.536332 · 10−9

Table 4.2: Constants in the one atmosphere equation of state, eqs. 4.17 and 4.18.

(UNESCO, 1981)

ρ = a0 + a1T + a2T
2 + a3T

3 + a4T
4 + a5T

5

+ S(b0 + b1T + b2T
2 + b3T

3 + b4T
4)

+ S3/2(c0 + c1T + c2T
2)

+ d0S
2

(4.17)

with the constants a0−5, b0−4, c0−2 and d0 given in table 4.2. This polynomial is evaluated at all
nodes in every time step, thus the algorithm is relatively expensive. Counting a power of an integer
as a number of multiplications, for example T 4 as 3 multiplications, this algorithm executes 34
multiplications, 14 additions and 1 power of 3/2.

By exploiting that the temperature enters almost all terms and can be set outside parenthesis,
the polynomial is rewritten as

ρ = a0 + (a1 + (a2 + (a3 + (a4 + a5T )T )T )T )T

+ S
[
b0 + (b1 + (b2 + (b3 + b4T )T )T )T

+
√

S(c0 + (c1 + c2T )T )

+ Sd0

] (4.18)

This algorithm executes only 14 multiplications, 14 adds and 1 square root, i.e. a reduction to about
half the work of the original algorithm. A new routine of calculating the density is implemented
using eq. 4.18 instead of eq. 4.17.

Figure 4.4 shows the density as a function of pressure at constant salinity of 35 psu and poten-
tial temperature of 2◦C. At 500 m depth the density has increased by about 2.4 kg/m3. In the model
domain used in this study, the maximum depth is more than 3000 m. Then the density is increased
by 13.7 kg/m3, and it is expected that the pressure dependency should be included in the density
calculations. The density is calculated at one atmosphere through eq. 4.17 or 4.18 according to
the given salinity and temperature and then corrected for the pressure. It is of course possible to
use eqs. 4.17 and 4.18 for the first step, since at one atmosphere the potential temperature is equal
to the in situ temperature by definition. Two different routines performing the pressure correction
are implemented and tested with respect to execution time.

In the international equation of state for sea-water (UNESCO, 1981) the density is corrected
for the water pressure by ρ(S, T, p) = ρ(S, T, 0)/[1−p/K(S, T, p)]. The problem from a numer-
ical perspective is that the secant bulk modulus K is an even more complicated polynomial (not
shown) in temperature, salinity and pressure than eq. 4.17, and that the in situ temperature is to
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Figure 4.4: Density as function of pressure with constant salinity of 35 psu and potential temper-
ature of 2◦C. Calculated by eqs. 4.18, 4.20 and 4.21

be used. Jackett and McDougall (1995) let K be a function of potential temperature instead, and
Haidvogel and Beckmann (1999) give the secant bulk modulus and the density more conveniently,
as functions of salinity, potential temperature and depth

ρ(S, θ, z) =
ρ(S, θ, 0)

1 + z
K(S,θ,z)

(4.19)

There is still the problem with K that it is a fairly complex polynomial and slows down the
execution. Instead, an algorithm proposed by Mellor (1991, 1996) is implemented. First the
density at one atmosphere is calculated by 4.18. Then the density is corrected for the pressure as

ρ(S, θ, p) = ρ(S, θ, 0) +
p

c2

(
1 − 2.0 · 10−5 p

c2

)
(4.20)

where

c = 1449.2 + 1.34(S − 35) + 4.55θ − 0.045θ2 + 8.21 · 10−7p + 15.0 · 10−17p2 (4.21)

with c in m/s, S in psu, θ in ◦C and p in Pa. c is close, but not exactly equal, to the speed of
sound. Mellor (1991) compared values calculated by eqs. 4.20 and 4.21 with values of the standard
equation of state and found very small deviations. Even with a pressure of 108 Pa corresponding to
a depth of approximately 10 km he found an error of the resulting geostrophic velocity much less
than 1%. It is actually the depth and not the pressure that is known at the density points (that is why
eq. 4.19 is convenient). For eqs. 4.20-4.21 the pressure is calculated by the hydrostatic equation
p = −gρ0z with a constant reference density ρ0. This seems to give a satisfactory accuracy and it
is done, for example, in POM. However, it would not be much more difficult to perform a better
integration down through the water column with the correct density.
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4.6 Non-linear prognostic simulations

4.6.1 Set-up

Simulations with the prognostic ocean model are performed for the Cape Farewell area for the
period March 17-27 1997 on the same mesh (figure 3.3) as the diagnostic simulations. Basically
the same set-up is applied for the prognostic simulations. The simulations are summarised in table
4.3. The results are shown as elevation and velocity fields in figure 4.5, and surface current at a
position about 50 km south of Cape Farewell is shown in figure 4.6. There is no direct comparison
with observations.

Seven nodes are used in the vertical. This is a quite coarse resolution. In this study the results
at depth are not investigated, since only the surface fields are used as forcing in the sea ice model.
The time usage is kept low by using a small number of nodes in the vertical and in the horizontal
to be able to explore the model through series of simulations.

The result of the diagnostic simulation F0 is used as initial condition. This saves the spin-up
usually performed to let the dynamics adjust to the initial density field and boundary conditions.

As in the diagnostic simulations the inflow at the northernmost boundary normal to the east
coast is given through a specification of the elevation along the boundary. The simulations are
performed with a clamped boundary with the elevation kept at the initial values

∂ζ

∂t
= 0 or ζn+1 = ζn = ζ0 (4.22)

The rest of the open boundary (the deep water and normal to the west coast) is intended to be
a “passive” open boundary, where the water is allowed to flow out of the domain. For this purpose
a flow relaxation, described in section 4.5.2, is used. The width of the flow relaxation zone is
100 km, and the salinity, temperature, horizontal velocities and elevation are relaxed toward the
climatological fields and the corresponding diagnostic solution, i.e. the same as the initial fields.

The simplest simulation Q0 is only forced by the boundary conditions. The result is expected
to differ from that of F0 mainly due to non-linear effects. The other simulation Q1 is forced by 6-
hourly analysed HIRLAM wind fields. The same drag law and coefficient as in F3 are used. Here
the prognostic simulation is expected to show its superiority due to the inclusion of the evolution
of the wind fields, and thereby of the ocean state, with time.

The efficiency of the conjugate gradient method is compared to the LU method through a
number of simulations, using the elevation as an error measure. The simulations are performed
for a 3 days period and are timed with the program gprof. Only the cpu usage and the error are
reported. Because the iterative conjugate gradient method is implemented with an initial guess
assuming stationarity, a simulation with only small changes in time would favour the conjugate
gradient method. Therefore the test is performed with oscillating elevation, ζ = ζ0 cos(ωt), on
the inflow boundary.

No. Caw Equation Boundary Matrix cpu
of state condition solver (s)

Q0 0 barotropic clamped PCGM 7171.9
Q1 0.7 · 10−3 7185.3

Table 4.3: Simulations performed with the prognostic ocean model for the Cape Farewell area.
Where no value is given, it is as in Q0.
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(a) Q0, No wind, March 20 (b) Q0, No wind, March 27
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(c) Q1, Caw = 0.7 · 10−3, March 20 (d) Q1, Caw = 0.7 · 10−3, March 27
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Figure 4.5: Sea surface current and elevation at March 20 and 27, non-linear prognostic simula-
tions.

The simulations described above are barotropic, with salinity and temperature set to constant
values. The baroclinic simulations were not stable, and the planned simulations are therefore not
shown. Simulations including density calculations are therefore limited to a test of the cpu usage
of the equation of state. The climatological salinity and temperature fields are read into the model,
and evolving with time. The density is calculated, but the horizontal pressure gradient is barotropic
calculated by the tilt of the sea surface. The simulations are performed for a 3 days period and are
timed with the program gprof.

4.6.2 Results

The elevation and velocity fields of the simulations Q0 and Q1 after 3 days and 10 days are shown
in figure 4.5. Both simulations are initialised with F0 (figure 4.2a).

In Q0 no wind forcing is applied, and the simulation is basically just a spin-up from the linear
solution used as initial condition. In F0 the flow is highly topographically steered, and every little
feature in the bathymetry is reproduced in the elevation field. This is smoothed a little in Q0 due
to non-linear effects. After 3 days the state has changed slightly, the largest changes being most
evident in the elevation field. A new state of equilibrium is reached at day 3, with only very small
changes during the next 7 days. This becomes clearer in figure 4.6, showing surface current at a
position about 50 km south of Cape Farewell. Small variations of the current are seen for the first
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3 days, while no changes occur during the rest of the period.
Q1 is forced by the wind. Strong northeasterly winds in the first part of the period give an

increased coastal set-up after 3 days, and the surface current is strengthened and turned towards
the coast (see figure 4.5c). Near the end of the period the wind turns towards the east and the
coastal set-up and strong surface current decrease. At March 27 the Q0 and Q1 elevation and
current fields are very similar. Figure 4.6 shows the large variations of the current south of Cape
Farewell within Q1. It starts at 0.21 m/s given by F0 having two peaks; one after 3 days (0.37 m/s),
and again after 6 days (0.46 m/s).

4.6.3 Conjugate gradient method

The effect of the preconditioner and the stopping criterion for the iteration in the conjugate gradient
method is tested through a series of experiments for the first 3 days of the simulation period. As a
reference solution, a similar simulation using the LU method is performed.

The simulations are summarised in table 4.4 showing the upper bound ε of the residual, the cpu
time and number of iterations used by the conjugate gradient method, the total cpu time and the
root mean square (rms) of the error of the elevation field after 3 days. The error is defined as the
difference of elevation calculated with the conjugate gradient method and the reference solution
calculated with the LU method. The rms error is calculated as an integration over the total domain

rms =

√∫
(ζ − ζlu)2da∫

da
(4.23)

In the elemental way this is a summation weighted with the area, ae, of the e’th element

rms =

√∑
e

∑3
i=1

1
3ae(ζ − ζlu)2∑
e ae

(4.24)

where
∑

e is a sum over all elements and
∑3

i=1 is a sum over the three local basis functions in
an element. The rms error is given relative to the standard deviation of the reference solution,√∫

ζ2
luda/

∫
da.

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

March 19
00:00

March 21
00:00

March 23
00:00

March 25
00:00

March 27
00:00

V
el

oc
ity

 (
m

/s
)

Date

Q0
Q1
SQ

Figure 4.6: Velocity about 50 km south of Cape Farewell (position marked on figure 3.2). The
model results are saved every 24 hours (marked on the curves). SQ is the coupled ice-ocean
simulation described in section 5.6.1.
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Method ε no. of cpu solver cpu total rms error
iterations (s) (s) (%)

PCGM 10−1 1−1 21.35 1537.28 84.24
PCGM 10−2 1−2 27.59 1544.34 76.34
PCGM 10−3 3−4 36.19 1551.78 19.72
PCGM 10−4 4−5 42.78 1561.48 2.99
PCGM 10−5 5−6 55.43 1563.99 2.98
PCGM 10−6 6−7 64.33 1582.55 3.29
PCGM 10−7 8−9 70.14 1582.77 2.97
PCGM 10−8 9−10 80.57 1591.14 3.27
PCGM 10−9 10−11 90.60 1599.54 2.91
PCGM 10−10 11−12 98.13 1602.29 3.26
PCGM 10−11 12−14 104.43 1612.08 3.21
PCGM 10−12 14−15 113.77 1620.43 2.99
CGM 10−12 61−86 537.15 2015.33 3.07
LU 129.40 1644.48 0

Table 4.4: Tests of the conjugate gradient method with and without preconditioning in a 3-day
simulation. The number of iterations and cpu time used by the algorithm are shown together with
total cpu time of the simulation and the rms error of the elevation field after 3 days. ε specifies the
stopping criterion (see eq. 4.16).

With the preconditioned method the number of iterations is seen to depend logarithmicly on
ε (no. iterations 	 − log ε). The cpu time is mainly spent by the matrix-vector product in the
algorithm (A�p in eq. 4.11). This is performed once every iteration and the cpu time depends
linearly on the number of iterations. None of the simulations are especially demanding compared
to the total execution time, less than 10% for the best accuracy, and ε = 10−12 is used in the
simulations of the total 10-day period shown in the following.

The effect of the preconditioner is clearly seen. The conjugate gradient method uses about 5
times as many iterations without preconditioning as with, and the execution time is correspond-
ingly higher.

The simulation using the LU method is also tabulated to compare the cpu time used by the two
methods. Since the LU decomposition is just performed once, it is not relevant in the comparison
of time usage, and only the cpu time used by the back substitution is listed in the table. It is found
that with respect to cpu time, little is gained by using the conjugate gradient method. It should be
noted that a relatively small number of nodes is used in this study. Simulations on a larger mesh3

have indicated that the difference of cpu time between the LU method and the preconditioned
conjugate gradient method becomes more pronounced with increasing number of nodes, in favour
of the latter method. In addition, the LU method depends on the bandwidth of A (eq. 4.10),
while the conjugate gradient method is independent of the node number ordering. Therefore, the
complexity of the domain, for example the number of islands and narrow straits, may also play a
role on the time usage for the LU method, but not for the conjugate gradient method.

3The testcase known by Quoddy users as G2S M2 having 6756 nodes.
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Equation Equations Optimisation cpu
of state (s)
ρ(S, θ, 0) 4.17 No 74.37
ρ(S, θ, 0) 4.18 No 60.76
ρ(S, θ, 0) 4.17 Yes 19.70
ρ(S, θ, 0) 4.18 Yes 18.77
ρ(S, θ, p) 4.18,4.19 Yes 61.02
ρ(S, θ, p) 4.18,4.20,4.21 Yes 42.94

Table 4.5: Tests of the different algorithms for the equation of state, showing the cpu time used by
the equation of state in a 3 days simulation.

4.6.4 Equation of state

To test the work load of the different algorithms of the equation of state a series of simulations are
performed for a 3-day period. The cpu time used by the algorithms solving the equation of state
are shown in table 4.5. Without any optimisation eq. 4.18 uses 60 s and is quicker than eq. 4.17
using 74 s, although the benefit is not a doubling of the speed as suggested above. Full compiler
optimisation gives a remarkable speed-up of the algorithms, both using about 19 s. The conclusion
is, therefore, that with optimisation by the compiler, the two algorithms perform equally and there
is no need to actually change the algorithm in the model. On the other hand there is no reason not
to use eq. 4.18 instead of eq. 4.17 in new implementations.

The two different algorithms of the pressure-dependent equation of state are compiled with
full optimisation. The international standard (eqs. 4.18 and 4.19) uses 61 s, almost three times as
much as just the one atmosphere equation. The alternative algorithm (eqs. 4.18, 4.20 and 4.21) is
quicker using 42 s, though this is still more than a doubling of the time used by the one atmosphere
equation. Thus for reasons of efficiency the one atmosphere equation of state (eq. 4.17 or 4.18)
should be used in coastal areas with small depth. If the depth increases, the pressure dependency
on the density should be taken into account. For this purpose the algorithm proposed by Mellor
(1991) (eqs. 4.18, 4.20 and 4.21) is more efficient than the international standard (eqs. 4.18 and
4.19).

4.7 Future work

4.7.1 Wind stress

In the present implementation the ocean models are fed with the surface wind velocity (10 meter
wind) and the wind stress is calculated by a quadratic drag law with a constant drag coefficient.
The wind is obtained from simulations with the atmospheric model HIRLAM. In fact, the wind
stress is also available from the HIRLAM simulations. There are various reasons to use the wind
stress directly in the ocean model instead of surface wind. First of all, since the stress depends
not only on the surface velocity but also on the stability of the atmosphere (Nielsen, 1998), this
would then be taken into account. Furthermore, the amount of momentum transported from the
atmosphere to the ocean would be the same in the atmospheric and the ocean simulations. This is
not the case in the present implementation. It should be easy to change the model source code and
set-up to use the wind stress instead of the wind velocity, and it is proposed to do so.
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4.7.2 Baroclinic forcing

The baroclinic simulations were not stable and were performed for a short test only. The baroclinic
forcing is usually expected to be important and the instability must therefore be taken seriously.
The reason for the instability is not known, and has been investigated only briefly. One explanation
might be strange features in the bathymetry. It might have also to do with the temperature and
salinity climatologies, giving rise to static instability. Other climatologies might be tried for the
baroclinic forcing; there is a new global climatology (Gouretski and Jancke, 1998) that is partly
based on the Levitus data, and there is one for the North Atlantic (Grey and Haines, 1999).

4.7.3 Comparison with laboratory experiment

In section 2.3 it was described how a laboratory experiment of the circulation in the Skagerrak
is used as benchmark for a numerical model. The test case includes many important aspects of
a baroclinic flow and is relevant not only for the Skagerrak, but for coastal regions in general. It
might be regarded as a step beyond simple tests with known solutions.

In order to test the nonlinear finite element model, it is proposed to set it up for the laboratory
experiment. The purpose should first of all be to investigate the ability of the model to simulate the
circulation in a region characterised by a highly variable topography, but several numerical tests
might be interesting. These could, for example, be the importance of the different resolutions,
different outflow conditions etc.

4.7.4 Iterative method

The conjugate gradient method implemented in the prognostic ocean model is shown (section
4.5.3) to reduce the memory requirements and is therefore especially attractive for domains with
a large number of nodes. The method gives only a small speed-up compared to the LU method
for the domain used in this study, though it is suggested that for a larger number of nodes the
conjugate gradient method is preferable. This could be investigated by measuring the cpu time on
meshes with different numbers of nodes.

The conjugate gradient method requires that the involved matrix be symmetric. This is gen-
erally the case in the prognostic model, but conflicts, for example, with geostrophic boundary
conditions. Since both the conjugate gradient method and the geostrophic boundary condition
have valuable features it is proposed to implement other iterative methods, for example some kind
of a biconjugate gradient method which would be able to solve for nonsymmetric matrices (e.g.
Barrett et al., 1994). This would also be of interest for the diagnostic model. This model also
solves a system of linear equations for the elevation. Here the matrix is nonsymmetric with com-
plex elements. Since this model just solves for one step, time usage is not important, but again,
the benefit with the iterative method will be in the saving of memory.
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Chapter 5

Finite element sea ice simulations

5.1 Introduction to sea ice simulations

The sea ice consists of individual floes having sizes in the order of kilometres when they leave the
Arctic Ocean though the Fram Strait. On their way along the east coast of Greenland they gradually
break up, having sizes in the order of meters in the Cape Farewell area. On a large scale the ice
is assumed to be a continuum, with state variables continuously varying (Flato, 1998; Leppäranta,
1998; Timokhov, 1998), and the ice state is described through a set of differential equations. The
floe-floe interaction is parameterised through the internal stress term of the momentum equation.
The parameterisation is termed the ice rheology. Sea ice models are usually distinguished by the
ice rheology, while the basic equations more or less are the same for most models. See Leppäranta
(1998) for a treatment of ice dynamics, Häkkinen (1990), Mellor and Häkkinen (1994) and Preller
(1999) for reviews of ice and ice-ocean models, and Hibler and Flato (1992) for an overview of
sea ice models in climate studies.

In a typical sea ice model the ice is assumed to be a continuum having a velocity, a thickness,
and a concentration. The concentration, also referred to as the compactness, is the fraction of
the area that is covered by ice. The model includes continuity equations for ice thickness and
concentration, a momentum equation for the velocity, an expression that relates the ice strength
(ice pressure) to the thickness characteristics, and the ice rheology for the internal ice stress. If
thermodynamics are included, this enters the model through a sink/source term in the continuity
equations (melting/freezing).

There are different rheologies that might be useful in the Cape Farewell area. The simplest
is to set the internal ice stress to zero. This is called free drift and is probably sufficient in open
water, if the ice concentration is not too high. When the concentration increases the internal ice
stress becomes important, especially in areas of convergence, such as when the ice drifts towards
land.

The most used rheology is the viscous-plastic proposed by Hibler (1979). This treats the ice
in a plastic manner, with different behaviour in case of convergence and divergence. Flato and
Hibler (1992) found the cavitating fluid rheology useful for large scale simulations and due to
its simplicity and quick execution it is well suited for climate studies. Flato and Hibler (1992)
extended the work to include shear stresses through the Mohr-Coulomb failure criteria. Then the
ice is treated as a granular material, an ensemble of ice floes, which is a more physically realistic
rheology. Tremblay and Mysak (1997) used the same rheology and give a detailed description.
Another example of a floe collision rheology is that of Lu et al. (1989). It is based on collision
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of disks of different sizes and used for the marginal ice zone in a meso-scale model. Hunke and
Dukowicz (1997) developed an elastic-viscous-plastic rheology that uses a fully explicit time-
stepping scheme. On large time scales the results using this rheology are similar to that using the
viscous-plastic rheology (Hunke and Zhang, 1999).

The “Sea Ice Model Intercomparison Project” (Kreyscher et al., 1997; Lemke et al., 1997)
compared different ice rheologies to determine the best ice model for climate studies. They made
simulations of the Arctic with different ice rheologies for the same set-up and forcing fields and
compared the results with observations on drift statistics, ice thickness in the central Arctic and
ice transport through the Fram Strait. They compared the viscous-plastic, a viscous (Newtonian
fluid), a cavitating fluid rheology, and an ice drift scheme with a step-function stoppage. They
found the best overall result with the viscous-plastic rheology.

Rasmussen et al. (1999) performed simulations for the Greenland, Iceland and Norwegian
Seas with a coupled ice-ocean model, where the ice model is that of Lu et al. (1989). They forced
the model with six-hourly HIRLAM wind fields, as in this study, and with 6-hourly wind fields in
a coarser resolution from the European Centre for Medium-Range Weather Forecasts (ECMWF).
They found the high frequency temporal variability of the meteorological fields to be of importance
for predicting the ice concentration and the position of the ice edge.

It is not always easy to verify the numerical simulations, due to lack of exact observations.
Harder and Fischer (1999) made simulations of the sea ice in the Weddell Sea with a viscous-
plastic model and compared simulated sea ice trajectories with observed buoy drift paths. They
defined an error function based on the differences and optimised the model performance through
sensitivity tests of the drag coefficients and the ice strength parameter.

Until recently numerical sea ice models were mainly used in climate studies on time scales of
years and for large areas such as the entire Arctic. The models are thus developed and calibrated
for the large scale simulations. In recent years the need for prognoses of the ice conditions a few
days ahead has increased, mainly for ship routing and navigation purposes, and due to increasing
oil exploration and production in ice-covered areas.

Yet only few forecast systems exist for ice-covered seas. Preller (1999) gives an introduction
to four different forecast systems used in shallow areas. Russian forecast systems for the Arctic
are used to assist ship routing along the Northern Sea Route in the coastal waters of the Russian
Maritime Arctic. Seasonal as well as 1-5 day forecasts are produced. A Baltic forecast system
has been developed as a joint Swedish-Finish project (see also Omstedt et al., 1994). The system
produces a daily forecast of 48 hours. Besides the navigational purpose the results from the ice
forecast is used in the HIRLAM system running at the Swedish Meteorological and Hydrological
Institute. This has improved the atmospheric forecasts compared to the previous approach, where
a climatology for the ice cover was used. A Chinese forecast system, based on the same model as
that used by Sweden and Finland in the Baltic, is applied to the Bohai Sea. This is an economically
very important area, containing one of Chinas major oil fields and several ports. The U.S. Navy
runs a forecast system called the Polar Ice Prediction System 2.0 (PIPS 2.0) (see also Cheng and
Preller, 1992; Riedlinger and Preller, 1991). It is not specifically developed for shallow seas,
but the Arctic shelf areas are included in the model domain. The model is run daily to produce
forecasts 5 days ahead.

Another forecast system is that used by the Canadian Ice Service1. It runs on a daily basis to
produce forecasts of 48 hours for different limited areas. The sea ice model includes full dynamics
and thermodynamics and attempts are made to couple it to POM.

1see http://www.cis.ec.gc.ca/model/eng
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All the above mentioned modelling efforts have made use of the finite difference method.
Only a few attempts to use the finite element method have been made. Thompson et al. (1988)
compared different rheologies in a short-term model. They used two meshes; a stationary mesh
for the momentum equation and an adaptive mesh for the advection equations. Thompson and
Sykes (1990) performed sensitivity tests of the input parameters using an adjoint model. Sykes
and Miller-Cushon (1992a,b) used a steady-state momentum equation together with an adjoint
equation to perform sensitivity analysis of the ice motion near Adams Island. They simulated a
limited area with a mesh size on the order of a few kilometres. Schulkes et al. (1998) investigated
the effect of different rheologies on evolution of a large scale sea ice pack. Their model used an
adaptive mesh which allowed the domain to deform under the action of external forces.

The advantages of the finite element method mentioned in section 4.1 apply for sea ice mod-
elling as well as for ocean modelling. In the following, a dynamic finite element sea ice model is
described and used for simulations of the Cape Farewell area.

5.2 Model description

Sea ice is treated as a continuum with a velocity field �v, a thickness field h, and a concentration
field A. The thickness is the area mean thickness, and the actual ice thickness is equal to h/A for
A �= 0.

The basic governing equations in the present modelling work are the same as usually seen
in the literature. This includes a momentum equation and continuity equations for ice thickness
and concentration. The difference compared to previous ice modelling efforts is that the spatial
discretization is made by the finite element method giving a high flexibility of resolution and a
relatively smooth representation of the coastline. The feasibility of the variable resolution has not
really been investigated yet, but it is expected that, for instance, the ice edge or other interesting
areas can be resolved in an appropriate manner.

The aim of this study is to produce sea ice simulations on a time scale of a few days up to one
week and it is assumed that the thermodynamics only have a small effect. Hence, the model is a
purely dynamical model (drift model) with no thermodynamics included. A few comments on the
thermodynamics are given in section 5.7.6.

5.2.1 Spherical coordinates

To make the model suitable for large domains, it includes the ability of using latitude/longitude
coordinates. This is done similar to Greenberg et al. (1998) by the transformation to curvilinear
coordinates

dx = R cos(φ)dλ

dy = Rdφ
(5.1)

where λ and φ denote the longitude and latitude, respectively, and R is the radius of the earth.
However, for simplicity the model is formulated in Cartesian coordinates in the following.

Of the simulations shown in the following, Cartesian coordinates are applied in the tests of the
model (section 5.4) to keep these as simple as possible, while the simulations of the Cape Farewell
area (section 5.5) are performed in spherical coordinates.
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5.2.2 Advection-diffusion equation

The thickness and concentration fields evolve in time according to the advection-diffusion equa-
tions

∂h

∂t
= −∇ · (�vh) + ∇ · (D∇h) (5.2)

and
∂A

∂t
= −∇ · (�vA) + ∇ · (D∇A) (5.3)

where D is a diffusion-coefficient. The diffusion is necessary to keep the solution smooth and
stable as shown in section 5.4.3. Introducing a characteristic velocity scale V and a length scale
∆l for the mesh, the ratio of the advection to the diffusion define the mesh Péclet number

Pe =
V ∆l

D
(5.4)

The model is run with a uniform mesh Péclet number throughout the domain and eq. 5.4 is used to
calculate the diffusion coefficient for each element. V is the mean speed in the element, and ∆l is
the side length of the element assuming it is an equilateral triangle. Thus, the diffusion coefficient
varies dependent upon the velocity and the distance between the nodes. It is noted that a high
mesh Péclet number gives little diffusion and vice versa.

5.2.3 Momentum equation

The momentum equation includes the Coriolis force, a gravity force due to the tilt of the sea
surface ∇ζ, the wind drag �τa on the ice, the surface current drag �τw on the ice, and a force �F due
to the divergence of the internal ice stress

ρh
∂�v

∂t
+ ρhf�k × �v = −gρh∇ζ + �τa + �τw + �F (5.5)

where f is the Coriolis parameter, �k a unit vector pointing upward and ρ is the density of sea ice.
The ice is a relatively thin layer with a small mass and contains only a small amount of momentum.
It is assumed that the non-linear advection term influences the ice drift negligibly, and it is left out
of the equation.

Since the two components of the velocity are coupled through the Coriolis term, they should
preferably be solved simultaneously. This is done by a transformation of the vectors to complex
numbers, such that the two components of the vector are the real and imaginary parts of the
complex number. Denoting the complex number with a tilde, the velocity �v = (u, v) is written
as ṽ = u + iv, where i is the imaginary unit with the property i2 = −1. The ∇-operator is
transformed in a similar way to ∇̃ = ∂

∂x + i ∂
∂y , and eq. 5.5 is then written

ρh

(
∂ṽ

∂t
+ if ṽ

)
= −gρh∇̃ζ + τ̃a + τ̃w + F̃ (5.6)

The wind and ocean current stresses are calculated using the quadratic formulations

τ̃a = ACaiρa |ṽa − ṽ| (ṽa − ṽ) (5.7)

τ̃w = ACwiρw |ṽw − ṽ| (ṽw − ṽ) (5.8)

where Cai and Cwi are dimensionless air-ice and water-ice drag coefficients, ρa and ρw are the air
and water densities, and ṽa and ṽw are the wind and surface current velocities.
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5.2.4 Ice rheology

To examine the influence of the internal ice stress, simulations are carried out with free drift, with
the ice as a cavitating fluid and with shear stresses included through a Newtonian fluid description.

The simplest rheology is to assume that there is no internal ice stress, i.e. F = 0. In this way
the ice is allowed to move without interacting with the surrounding ice. One drawback with this is
that in areas with convergence, it is possible that all the ice just moves to the same place piling up
to a huge thickness, as shown later in section 5.4.3.

In nature there is an internal stress when the ice starts to pack. The cavitating fluid representa-
tion is the first step to model this plastic behaviour of the ice. This rheology assumes that there is
no shear stress, and no internal stress in the case of divergence, but there is resistance to compres-
sion. The internal ice stress is then calculated as a pressure P , usually called the ice strength. As
in Hibler (1979) and Flato and Hibler (1992), P depends on the thickness and concentration as

P = P ∗he−C(1−A) (5.9)

where P ∗ and C are empirical constants.
The next step in the development of the model is to include shear stresses. Then the internal

ice stress is written as a tensor and the force in the momentum equation is the divergence of the
stress tensor

F̃ = ∇̃σij (5.10)

The shear is included through the relation of the ice stress to the strain rate by

σij = 2ηε̇ij + (ξ − η)ε̇kkδij − P

2
δij (5.11)

where ξ and η are the viscosity coefficients, δij is the Kronecker delta2, and ε̇ij is the strain rate

ε̇11 = 2
∂u

∂x
ε̇22 = 2

∂v

∂y
ε̇12 = ε̇21 =

∂u

∂y
+

∂v

∂x
(5.12)

Two rheologies including the shear stress are implemented. In the simplest the ice is treated as a
viscous fluid with constant viscosity coefficient. With this, there is no difference in the forces for
convergence and divergence.

A more sophisticated and often used rheology is the viscous-plastic rheology by Hibler (1979).
The ice is treated as a plastic medium with limits set by the viscous state. For both the viscous and
the plastic rheologies the viscosity coefficients are calculated as

ξ =
P

2∆
(5.13)

η =
ξ

e2
(5.14)

where e specifies the ellipticity of the yield curve. In the plastic state ∆ is the strain rate invariant

∆ =
√(

ε̇211 + ε̇2
22

)
(1 + 1/e2) + 4ε̇2

12/e
2 + 2ε̇11ε̇22 (1 − 1/e2) (5.15)

and the viscous state is represented by a constant value, ∆0. Kreyscher et al. (1997) used the value
∆0 = 10−7 s−1 in their simulations with the viscous rheology.

2δ = 1 if i = j and δ = 0 if i �= j
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5.3 Numerical scheme

The governing equations are discretized as in Quoddy, with a finite difference time stepping and
the finite element method for the spatial (horizontal) variations.

5.3.1 Time stepping

A two-level scheme is used for both the momentum equation and the continuity equations. Due to
reasons of stability it is necessary to apply an implicit scheme for the momentum equation, while
it is sufficient to use an explicit scheme for the advection and diffusion [Paul Budgell, personal
communication]. With all values known at time step n the model first updates thickness and
concentration for the next time step n + 1 by

hn+1 − hn

∆t
= −∇ · (�vnhn) + ∇ · (D∇hn) (5.16)

and similarly for the concentration. Then the velocities are updated with the terms centred at time
level n + θ where θ ∈ [0; 1]

ρhn+θ

(
ṽn+1 − ṽn

∆t
+ if(θṽn+1 + (1 − θ)ṽn)

)
= −gρhn+θ∇̃ζ + τ̃a + τ̃w + F̃ (5.17)

The values at time n + θ are found as a weighted average of values at time step n + 1 and n,
hn+θ = θhn+1 + (1 − θ)hn. With θ = 0 the scheme is explicit, while the other extreme θ = 1
gives a fully implicit scheme. In this study the simulations are performed with θ = 1/2.

The ocean stress is calculated as

τ̃w = ACwiρw |ṽw − ṽn| (ṽw − (θṽn+1 + (1 − θ)ṽn)
)

(5.18)

and likewise the wind stress. The reason not to centre the ice velocity at time n+ θ in the absolute
value of the difference of water and ice velocity is to keep the equation linear with respect to ṽn+1.
It is found that due to stability reasons it is necessary to make the term semi-implicit by employing
ṽn+1 in the last parenthesis.

The viscous and plastic ice stresses need to be implemented in implicit form [Paul Budgell,
personal communication]. Since this complicates the model substantially, this is left for future
work (see the discussion in section 5.7.4). The implementation and execution of an explicit version
is relatively straight-forward and has been made for reasons of comparison. Then the strain rates
are calculated explicitly based on the velocities at time level n.

A semi-implicit scheme for the advection was tested using 1
2(hn+1 + hn) instead of hn on the

right hand side of the continuity equation giving

hn+1 − hn

∆t
=

1
2
∇ · (�vn

(
hn+1 + hn

))
+

1
2
∇ · (D∇ (

hn+1 + hn
))

(5.19)

With finite differences this usually results in a substantial increase in the cpu time for one time step
going from an explicit to an implicit scheme, since the implicit scheme involves a system of linear
equations to be solved, while the solution is directly calculated with the explicit scheme. With
the finite elements the explicit scheme itself involves a system of linear equations as discussed
in the following section. But, while the matrix appearing in the linear system of equations is
time-invariant with the explicit scheme, it is time dependent in the implicit scheme, because hn+1
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enters the right hand side of the advection equation, resulting in terms of hn+1 multiplied by
the time varying �v. Therefore the matrix is built only once with the explicit scheme, but has
to be rebuilt in every time step with the implicit scheme. This creates two disadvantages of the
implicit compared with the explicit scheme. First of all, it takes some cpu time to build the matrix
every time step resulting in a slower execution, and secondly, the time-varying matrix makes it
practically impossible to use other than iterative solvers, as for example, the conjugate gradient
method discussed in section 4.5.3. In this sense, the explicit method is more general, since besides
the iterative solution procedure it is possible to obtain the direct solution with the LU method. In
the explicit case the LU decomposition is made only once, and just the back substitution is made
every time step. However, only the preconditioned conjugate gradient method is implemented in
the model due to the advantages of this method compared with the LU method.

5.3.2 Horizontal discretization

To be able to couple the sea ice model to the prognostic ocean model a horizontal discretization
similar to that model is chosen. The finite element mesh consist of a number of triangles (see
figure 3.3) with linear basis functions φi. There are N basis functions, where N is the number of
nodes in the mesh. The i’th basis function is defined as equal to 1 at the i’th node, 0 at all other
nodes and varies linearly across the elements.

The weak form of the advection-diffusion equation for the ice thickness (eq. 5.2) is〈
∂h

∂t
φi

〉
= −〈∇ · (�vh)φi〉 + 〈∇ · (D∇h)φi〉 (5.20)

Assuming no diffusive fluxes across open boundaries, that D is element-wise constant, and split-
ting up the first term on the right hand side, gives〈

∂h

∂t
φi

〉
= −〈(�v · ∇h + h∇ · �v) φi + D∇h · ∇φi〉 (5.21)

The variables h and �v are expanded in the basis functions

h(x, y, t) =
N∑

j=1

hj(t)φj(x, y) �v(x, y, t) =
N∑

k=1

�vk(t)φk(x, y) (5.22)

and inserting into eq. 5.21

N∑
j=1

∂hj

∂t
〈φiφj〉 = −

N∑
j=1

N∑
k=1

[hj�vk · (〈φi∇φjφk〉 + 〈φiφj∇φk〉) + 〈D∇φi · ∇φj〉] (5.23)

The weak form of the momentum equation (eq. 5.6) is〈
ρh

(
∂ṽ

∂t
+ if ṽ

)
φi

〉
=

〈(
−gρh∇̃ζ + τ̃w + τ̃a + F̃

)
φi

〉
(5.24)

Nodal quadrature gives

ρhi

(
∂ṽi

∂t
+ if ṽi

)
〈φiφi〉 = −gρhi

N∑
j=1

ζj

〈
φi∇̃φj

〉
+ τ̃wi + τ̃ai + F̃i (5.25)
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Figure 5.1: Mesh for the simple tests. There are 961 nodes and 1800 elements.

The ocean stress is calculated node-wise as

τ̃wi = AiCwiρw |ṽwi − ṽi| (ṽwi − ṽi) 〈φiφi〉 (5.26)

and likewise the wind stress. It is noted that index i in Cwi stands for ice, but the other i’th stand
for for the i’th basis function. With the cavitating fluid rheology the internal ice stress is simply
the divergence of the ice strength

F̃i =
N∑

j=1

Pj

〈
φi∇̃φj

〉
(5.27)

5.4 Simple tests

5.4.1 Set-up

The tests are carried out on a square with 961 nodes, arranged on a regular grid with 31 times 31
nodes, see figure 5.1. The grid size is 5 km. The northern and southern boundaries are land, while
there are cyclic boundary conditions on the western and eastern boundaries.

5.4.2 Internal ice stress

The first test shows the importance of the internal ice stress when the ice is compact. The simu-
lations are initialised with a homogeneous ice cover with a thickness of 0.5 m, a concentration of
0.5 and no velocity. There is no ocean forcing and the Coriolis parameter is set to zero. There is a
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Figure 5.2: Ice thickness every second day for simulation with free drift (left column) and cav-
itating fluid (right column). x-axis is distance in kilometres from southern coast, and y-axis is
thickness in meters.
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constant southerly wind of 5 m/s giving a drift of the ice toward north, and there is thus divergence
at the southern coast with the off-shore wind and convergence at the northern coast with the on-
shore wind. The results are displayed in figure 5.2, showing ice thickness along a central section
from south to north. The simulation period is 6 days and the results are shown every second day.

The left column in figure 5.2 shows the free drift simulation. The ice drifts away from the
southern coast as expected. The thickness field does not show a sharp ice edge with an abrupt
change from 0 to 0.5 meters as in the analytic solution. This is due to the diffusion term as seen in
the other test discussed in section 5.4.3. On the northern coast it is found, that, except from some
noise, the thickness is 0.5 m all the way to the last node, where the ice adds up to an incredible
thickness of 11 m after 6 days. This is due to the lack of a resisting force when the ice starts to
pack. The ice is simply allowed to move until it reaches the northern coast.

The right column shows the simulation with the ice as a cavitating fluid, i.e. with a simple
formulation of an internal ice stress. The consequence is clearly seen on the northern coast. Now
there exists a resistance against convergence and the thickness is 0.9 m at the coast after 6 days and
decreasing away from the coast. At the southern coast the result is exactly the same as for the free
drift. This is because the ice strength decreases with decreasing ice concentration and thickness,
as seen from eq. 5.9.

5.4.3 Advection

Where the preceding test showed some of the physics of the model, this test illustrates a numerical
problem that comes from the discretisation of the advection equation. This issue is not new and is
described for example by Johnson (1987). It is not only present with the finite element method, but
is also found with the finite difference method (e.g. Pietrzak, 1998). In the model, the advection
equation is solved with the standard Galerkin method. It is of 2nd order, and the results are similar
to what is found with a 2nd order centred finite difference scheme.

To focus on the problem, the momentum equation is discarded and the velocity is set constant
to 0.5 m/s toward east. Initially there is a circular area in the middle of the domain with an ice
thickness of 1 m in a radius of 25 km, i.e. 5 nodes, and no ice elsewhere. The analytical solution to
the pure advection equation (eq. 5.2 with D = 0) is that the ice moves to the east without changing
shape. The numerical results are shown in figure 5.3 and 5.4 as thickness at a section from west
to east in the middle of the domain right through the ice covered area. The simulation period is 30
hours, and the results are shown every 10 hours.

The left column in figure 5.3 shows the results from the simulation with pure advection. The
solution oscillates with over- and undershooting and even negative thickness. To get a smoother
solution it is common to introduce some diffusion. This has been done in the right column by
setting the mesh Péclet number to 2, with the consequence that the thickness field is smoothed too
much and the sharp ice edge has disappeared. The balance is thus to add enough diffusion to filter
out the oscillations, but not more than necessary. Figure 5.4 shows the results from simulations
with lower diffusion coefficient (higher mesh Péclet number). It seems that the mesh Péclet num-
ber should be between 5 and 10. With Pe = 5 there is enough diffusion to keep the field smooth,
but the sharp gradients are flatten off, while Pe = 10 tends not to smooth the gradient so much,
but on the other hand does not give enough diffusion to remove all oscillations.
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Figure 5.3: Ice thickness every 10 hours for simulation with pure advection (left column) and
advection + diffusion, Pe = 2 (right column). x-axis is distance in kilometres from western
boundary, and y-axis is thickness in meters.
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Figure 5.4: Ice thickness every 10 hours for simulation with Pe = 5 (left column) and Pe = 10
(right column). x-axis is distance in kilometres from western boundary, and y-axis is thickness in
meters.
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No. Ice rheology P ∗ Cai Cwi Pe ∆t cpu rms error
(N m−2) (s) (s) March 27

S0 Cavitating 5.0 · 103 1.2 · 10−4 1.0 · 10−3 10 600 111.0 0.1180
S1 Free drift 106.9 0.1759
S2 Viscous 426.8 0.1563
S3 Viscous-Plastic 143.9 0.1990
S4 1.0 · 103 111.3 0.1319
S5 27.5 · 103 111.9 0.1217
S6 50.0 · 103 332.6 0.1637
S7 50.0 · 103 60 1001.3 0.1365
S8 1.2 · 10−3 5.5 · 10−3 113.6 0.1202
S9 1.2 · 10−3 112.0 0.1965
S10 5.5 · 10−3 110.9 0.1188
S11 0 111.8 0.1277
S12 0 111.8 0.3785
S13 2 109.5 0.1085
S14 5 111.1 0.1138
S15 25 111.5 0.1293
S16 10 6077.9 0.1174
S17 1200 61.6 0.1233

Table 5.1: Simulations performed with the sea ice model for the Cape Farewell area. Where no
value is given, it as in S0.

5.5 Sea ice simulations

5.5.1 Set-up

Simulations with the sea ice model are performed for the Cape Farewell area on the same mesh
(figure 3.3) and for the same period (March 17-27 1997) as used in the ocean simulations described
in sections 4.3 and 4.5. A number of sea ice simulations are performed on basically the same set-
up, but with different choices of parameters in order to make a simple sensitivity analysis, and to
investigate the importance of the different terms. The simulations are summarised in table 5.1.
The parameter values are shown in table 5.2. A comparison of the drag coefficients and the ice
strength parameter with values found in the literature are shown in table 5.3. The drag coefficients
are lower than usually used. A difference is to be expected, since the models described in the
literature are usually calibrated for large-scale simulations of the Arctic, while the simulations
presented here are performed for a limited area on a much finer scale. The drag coefficients are
discussed further in section 5.5.6.

The initial ice concentration field is extracted from the ice concentration map at March 17
(figure 3.7a). The ice thickness field is not observed, and some assumptions are made for initial
fields. Here the thickness in cm is set equal to the concentration in %. This does not imply
any relation between the two variables, but it is seen that with this assumption the thickness is
about 1 m along most of the east coast and decreases at Cape Farewell. This is in agreement with
observations performed at the vessel “M/S Kista Arctica” in July 1999.

The initial velocity is calculated using a geostrophic balance between the sea surface tilt and
the Coriolis force. The ice is a relatively thin layer with a small mass and only a small amount of
momentum is contained in the ice. Therefore it is expected that the velocity quickly adjusts to the
wind and ocean forcing and that it is sufficient to initialise with an approximation to the velocity
field calculated without a priori knowledge of the wind.
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Variable Symbol Unit Value
Density of ice ρ kg m−3 910.0
Density of air ρa kg m−3 1.3
Density of water ρw kg m−3 1025.0
Air/ice drag coefficient Cai 1 .2 · 10−4

Water/ice drag coefficient Cwi 1 .0 · 10−3

Ice strength parameter P ∗ N m−2 5 .0 · 10 3

Ice strength parameter C 20.0
Viscous parameter ∆0 s−1 2.5 · 10−3

Maximal plastic parameter ∆max s−1 4.0 · 10−9

Yield curve eccentricity ε 2
Weight for implicit scheme θ 0.5
Mesh Péclet number Pe 10 .0
Gravitation g m s−2 9.81
Earth radius R m 6.3675 · 106

Earth rotation Ω s−1 0.7292 · 10−4

Table 5.2: Physical parameters and constants used in the reference simulation S0. Values in italics
are varied in some simulations, see table 5.1.

A no-slip condition is applied at land boundary nodes where �v = 0 is specified. At the open
boundaries the shear stress is set to zero, while most of the terms in the momentum actually can be
calculated. The gradients of sea surface elevation and ice strength are based on the nearest interior
elements. Dirichlet boundary conditions are applied to the thickness and concentration fields,
using the initial values, i.e. clamped boundary conditions. This assures an inflow of ice throughout
the simulation period. At outflow these boundary conditions are reflective and improper. In any
case, in this study the open boundaries are sufficiently far away from the ice covered areas and
the period is short enough that the ice will not reach the open outflow boundaries. The boundary
conditions are therefore expected to be reasonable.

The model is forced by analysed wind fields at 6 hour intervals, and sea surface elevation and
current fields at steady state. The wind fields are extracted from HIRLAM, the weather prediction

Cai Cwi P ∗

10−3 10−3 (kN m−2)
Used here 0.12 1.0 5.0
Hibler (1979) 1.2 5.5 5.0
Riedlinger and Preller (1991) 0.8 5.5 27.5
Flato and Hibler (1992) 1.2 5.5 5.0
Tremblay and Mysak (1997) 1.2 5.5 27.5
Harder et al. (1998) 2.2 5.5 7.0
Harder and Fischer (1999) 1.6 4.5 20.0
Rasmussen et al. (1999) 1.0 20.0

Table 5.3: Drag coefficients and ice strength parameter.
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model of the Danish Meteorological Institute (section 3.3.3). The sea surface elevation and current
are obtained from the ocean simulation F0 (section 4.4).

The results are shown as concentration fields after 3 days and 10 days in figures 5.5-5.12.
These are compared with the observed ice concentrations shown in figure 3.7. Furthermore, the
rms error is calculated (see table 5.1) in order to give a more quantitative measure of the simulation
results. The error is defined as the difference of the simulated and the observed concentration field,
and the rms error is found by an integration over the total domain

rms =

√∫
(Ai − Aobs)2da∫

da
(5.28)

This is treated in elemental way as in eq. 4.24. The rms error should be regarded as an indication
of how good the results are rather than an exact score of the simulation.

5.5.2 Cavitating Fluid

The ice concentration field in best agreement with the observations is achieved with simulation S0
using the cavitating fluid rheology and with the parameter values given in table 5.2. This simula-
tion is therefore regarded as a reference simulation to which the other simulations are compared.
The results of S0 are plotted on all the figures of the ice concentration to facilitate the comparisons.
Thus the figures 5.5a, 5.7b, 5.9a, 5.11c and 5.13c are all the same, and so are 5.6a, 5.8b, 5.10a,
5.12c and 5.13d.

The simulation compares quite well with the observations. After the first 3 days the concentra-
tion field has changed little. There are still high concentrations along the east coast and a relatively
sharp ice edge. Some activity has taken place on the ice edge. It is more meandering than initially
and some small scale features have emerged. The sudden turn towards land seen in the observa-
tions at 61◦N is, to some extent, reproduced in the simulation, although slightly more to the north.
The ice cover has extended slightly further west of Cape Farewell, but the ice is not connected to
land as seen in the observations.

At March 27 the ice cover along the east coast has broadened to almost the correct distance
from land compared with the observations. However, this might be due to the diffusion discussed
in section 5.5.7. Some of the meanders of the ice edge seen in the observations are also found in
the simulation, particularly at the positions A and C marked on figure 3.7c. The ice cover west
of Cape Farewell is simulated to a lower degree of accuracy, but it is still acceptable compared to
the observations. The largest errors from a ship routing point of view are probably that the two
ice-free areas seen in the observations, one just south of Cape Farewell and the other close to the
west coast at 46◦-48◦W, are not reproduced by the simulation. Also the ice cover extends about
100 km too far to the west, reaching 50◦W. The picture changes if areas with concentration less
than 10% are disregarded in the comparison. Then the ice cover is not that far to the west, and
the area with concentrations of 10-50% is off land. However, the shape of the ice cover is still not
reproduced.

5.5.3 Free drift

The results of the free drift simulation S1 clearly show the lack of resistance to convergence in
the same way as seen in the simple tests in the previous section. In the first 3 days with mainly
on-shore wind on the east coast much of the ice is blown against the land (figure 5.5b) and the ice
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(a) S0, Cavitating fluid (b) S1, Free drift
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Figure 5.5: Ice concentration at March 20. Sensitivity of ice rheology. To be compared with figure
3.7b.

edge is much too close to land. The simulation never recovers from this lack of ice and at March
27 the ice concentration (figure 5.6b) is much too low along the east coast.

The concentration field west of Cape Farewell is similar to that of S0 showing that the ice is
freely drifting in this area. This is probably so, because the ice is free of land, and due to the low
concentrations (less than 50%) giving a relatively low ice strength and thereby small internal ice
stress with the cavitating fluid rheology.

From the comparison of S0 and S1 it is concluded that the free drift simulation gives compa-
rable results in some areas, but in general it is important with a good description of the internal
ice stress. This leads to the question if the results can be improved by using more advanced ice
rheologies, and motivates to try out the viscous and viscous-plastic rheologies.

5.5.4 Viscous and viscous-plastic fluid

Figures 5.5c,d and 5.6c,d show the results of simulations performed with the viscous and the
viscous-plastic rheology respectively described by eqs. 5.10-5.14. In the plastic state the strain
rate invariant ∆ is calculated using eq. 5.15 and the viscous state is represented by a constant
value, ∆0.

As mentioned in section 5.3.1 the implementations were made in explicit form with the strain
rate calculated from the known velocities at time level n. The results clearly demonstrate that
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Figure 5.6: Ice concentration at March 27. Sensitivity of ice rheology. To be compared with figure
3.7c.

this is not sufficient to get a stable solution with the chosen time step. There have not been any
sensitivity tests made of the time step for these two rheologies, but it is expected that to get a stable
solution, the time step needs to be so small that it is not feasible to perform the simulations.

The results found with the viscous rheology are almost stable. These were obtained by ad-
justing ∆0 that enters the calculation of the viscosity coefficients, ξ and η, in eq. 5.13 and 5.14.
Kreyscher et al. (1997) used the value ∆0 = 10−7 s−1. With such a low value the viscosity coef-
ficients become too high and the solution becomes unstable. Thus, a simple calibration of ∆0 was
performed. The solution was found to be very sensitive to the value of ∆0. Here only the results
from the simulation with the value ∆0 = 2.5 ·10−3 s−1 are shown. If the viscosity coefficients are
too low by setting ∆0 too high, the shear stresses are too low, and the result is similar to that of
the cavitating fluid. When the viscosity coefficients are increased by decreasing ∆0, the solution
becomes unstable.

The simulation S3 uses the values by Hibler (1979) and almost everybody else using the
viscous-plastic rheology. The results are unstable and do not compare well with the observa-
tions. As mentioned above this probably has to do with the implementation of the rheology and
not with the choice of parameter values. Therefore only one simulation was performed with this
rheology and it is only included here to support the conclusion.
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(a) S4, P ∗ = 1.0 · 103 (b) S0, P ∗ = 5.0 · 103
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(c) S5, P ∗ = 27.5 · 103 (d) S6, P ∗ = 50.0 · 103
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Figure 5.7: Ice concentration at March 20. Sensitivity of P ∗. To be compared with figure 3.7b.

5.5.5 Sensitivity of the ice strength

The simulations S4, S0, S5 and S6 use the cavitating fluid rheology, with different values of the
ice strength parameter P ∗. A value of 27.5 · 103 N m−2 (S5) was used by Flato and Hibler (1992)
and Kreyscher et al. (1997), for the cavitating fluid rheology, while 5.0 · 103 N m−2 (S0) was
used by Hibler (1979) for the viscous-plastic rheology. The latter seems to be the standard for this
rheology.

A simulation (S4) is performed with P ∗ set to one fifth of the value of S0. The results are
slightly sensitive to this reduction. After 3 days the concentration fields of S0 and S4 are indis-
cernible and even after 10 days the results are very similar. As P ∗ is decreased the simulation
should approach the free drift. A careful examination shows that there is slightly less ice and the
ice edge is slightly closer to the east coast with S4 than with S0.

To test an increase of P ∗ the simulation S6 is performed with P ∗ ten times the value used in
S0 and almost double of that of S5. The results are unstable with a fluctuating concentration field.
This can be rectified by decreasing the time step. A simulation was performed with the same input
parameters as in S6, but with the time step reduced by a factor of 10. The results (not shown) are
very similar to S5. This indicates that as P ∗ is increased above a certain value the results only
change slightly, but the time step needs to be decreased to keep the solution stable.
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(a) S4, P ∗ = 1.0 · 103 (b) S0, P ∗ = 5.0 · 103
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(c) S5, P ∗ = 27.5 · 103 (d) S6, P ∗ = 50.0 · 103
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Figure 5.8: Ice concentration at March 27. Sensitivity of P ∗. To be compared with figure 3.7c.

5.5.6 Sensitivity of the drag coefficients

The reference simulation S0 is performed with substantially lower drag coefficients than used
by Hibler (1979) and found elsewhere in the literature, as shown in table 5.2. These values are
calibrated for large-scale simulations with a climate perspective and it is therefore not surprising
that other values give better results in the simulations performed here. Figures 5.9 and 5.10 show
the results of simulations performed with different drag coefficients. In S8 the values by Hibler
(1979) are used for both Cai and Cwi, while in S9 and S10 the coefficients are alternately set to
the values by Hibler (1979). In S11 and S12 the coefficients are one at a time set to zero so that
the wind and the ocean current are effectively switched off.

S8 with the higher drag coefficients can partly be explained by S9 and S10. During the first 3
days with relatively calm weather the difference from S0 is small. The internal ice stress is strong
enough to resist the on-shore wind on the east coast, though the concentrations are slightly lower
in both S8, S9 and S10 than in S0, indicating that some of the ice is drifted against the land. On
the west coast there is not the same interaction of the ice with land, so that in S9, with increased
Cai, the higher wind drag has extended the ice cover further toward the west. This is not seen
in S8, because the drag from the water is also increased keeping the high accelerations of the ice
down. The wind drag is counteracted by the drag from the water. In S10 with the high water and
low air drag coefficients the westward extent is even smaller.

During the next 7 days the wind was stronger and from changing directions and the ice is
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(a) S0, “Best performance” drag coefficients (b) S8, Large scale drag coefficients
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(c) S9, High air drag, Cai = 1.2 · 10−3 (d) S10, High water drag, Cwi = 5.5 · 10−3
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(e) S11, No air drag, Cai = 0 (f) S12, No water drag, Cwi = 0
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Figure 5.9: Ice concentration at March 20. Sensitivity of drag coefficients. To be compared with
figure 3.7b.



5.5 Sea ice simulations 63

(a) S0, “Best performance” drag coefficients (b) S8, Large scale drag coefficients
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(c) S9, High air drag, Cai = 1.2 · 10−3 (d) S10, High water drag, Cwi = 5.5 · 10−3
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(e) S11, No air drag, Cai = 0 (f) S12, No water drag, Cwi = 0
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Figure 5.10: Ice concentration at March 27. Sensitivity of drag coefficients. To be compared with
figure 3.7c.
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(a) S13, Pe = 2 (b) S14, Pe = 5
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(c) S0, Pe = 10 (d) S15, Pe = 25
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Figure 5.11: Ice concentration at March 20. Sensitivity of mesh Péclet number. To be compared
with figure 3.7b.

spread over a large area in S9 with the high air drag coefficient. In particular, west of Cape
Farewell the ice cover is extended, but also on the east coast the ice cover has broadened, and the
position of maximum concentration is moved away from land. In S8 with high water drag as well,
the extension is limited, even though the ice on the east coast is spread compared with S0 and the
observations.

The results indicate that the balance between the air and water drag coefficients is very impor-
tant, and that the water drag is important to hold back the ice drift. This is further demonstrated
by S11 and S12.

S11 is performed with no wind forcing, Cai = 0. The results are relatively good, with a low
rms error and an ice extent comparable to the observation both after 3 and 10 days. The results
after 10 days are surprisingly good, with results as good as in the simulations that includes the
wind; there are several similarities between the simulated ice cover and the observations. Some
of the meanders of the ice edge seen in the observations and marked A, B and C on figure 3.7c
are also found in the simulation. This implies that these meanders are forced by the barotropic,
steady-state ocean current field F0 (section 4.3).

As the other extreme the simulation S12 is performed with no ocean forcing on the ice, Cwi =
0. After 3 days the concentration field shows an unstable behaviour and after 10 days the ice is
spread out over almost the entire domain. It is concluded that the ocean forcing is necessary to
keep the ice together, while the wind more or less is a spreading factor. The wind drag is a source
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(a) S13, Pe = 2 (b) S14, Pe = 5
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(c) S0, Pe = 10 (d) S15, Pe = 25
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Figure 5.12: Ice concentration at March 27. Sensitivity of mesh Péclet number. To be compared
with figure 3.7c.

of momentum for the ice drift, while the momentum is dissipated through the ocean. With zero
ice-ocean drag there is very little to balance the input of momentum from the wind, and the ice
accelerates in an unlimited fashion.

The main conclusion of comparing the observations with the simulations performed with dif-
ferent values of the drag coefficients is that the best result is obtained using smaller values than
used by Hibler (1979). It is expected that the wind drag coefficient should be smaller than used by
Hibler (1979), since he used an 8-day averaged geostrophic wind, while here is used 10 m wind
analysed wind fields. The fact that the peaks of the high wind disappear in the averaging procedure
justifies the use of higher drag coefficients. In addition, it is found by the comparisons that the
retarding force of the water reduces the acceleration due to the wind drag. This means that the
ratio of the drag coefficients are important and when the wind drag coefficient is decreased, the
water drag coefficient too should be decreased. This was also found by Harder et al. (1998) who
used a value of ratio of Cai/Cwi = 0.4.

5.5.7 Sensitivity of the mesh Ṕeclet number

Figures 5.11 and 5.12 show the results of simulations with different mesh Péclet numbers, i.e. with
different diffusion coefficients. The impact of the mesh Péclet number on the solution is clearly
seen. In S13 with small mesh Péclet number (Pe = 2) and accordingly high diffusion the solution



66 5 Finite element sea ice simulations

is smoothed substantially, and west of Cape Farewell the ice is spread over too large an area. As
the mesh Péclet number is increased to 5 and 10, the ice edge along the east coast becomes sharper
and more small scale features appear. In addition, the area of the ice cover west of Cape Farewell
gets smaller and the concentration higher. As the mesh Péclet number is increased further, the
concentration field becomes increasingly noisy, but the general results are changed only slightly.
The preferred value is regarded as Pe = 10, even though the solution is stable for as high a mesh
Péclet number as 25.

The cpu time is almost the same for all the simulations. As a small curiosity it is seen that S13
has a slightly smaller cpu time. This has probably to do with the time spent by the iterative solver
used in the advection routine. When the field is smoother as in S13 the development in time is
smoother and fewer iterations are needed for the solution to converge.

5.5.8 Sensitivity of time step

Simulations are performed with a small time step ∆t = 10 s (S16) and a doubled time step
∆t = 1200 s (S17). There are more small scale features, especially on the ice edge, in S16, but
generally the concentration fields (not shown) are very similar to each other and to S0 as indicated
by the values of the rms error, 0.1174, 0.1180 and 0.1233 for ∆t equal to 10 s, 600 s and 1200 s,
respectively (see table 5.1). The cpu time scales linearly with the inverse of the size of the time
step. The solution is unstable with a time step larger than about 30 minutes. Thus, to be sure to be
on the right side of the stability limit a time step of 10 minutes is used for the reference simulation
S0.

As described above (section 5.5.5) 10 minutes is too large a time step for the simulation S6
with a large P ∗. In this case, the stability problems were rectified by decreasing the time step to
1 minute (S7). Thus, the instabilities found with the viscous and viscous-plastic rheologies would
probably disappear by decreasing the time step. This has not been investigated, but it is expected
that to stabilise these rheologies requires such a small time step that this is not feasible.

5.6 Coupled ice-ocean simulations

5.6.1 Model coupling

The sea ice simulations shown in the previous section are all performed with a steady ocean circu-
lation. This means that the ocean does not respond to the wind and there is no feedback from the
ice to the ocean. In order to capture these features, the ice model is coupled to the prognostic ocean
model. This is performed through the ice-ocean stress and the sea surface tilt. In the ice model,
the actual ocean surface elevation and velocity are used in the momentum equation (eq. 5.6) to
calculate the surface tilt and the ocean stress (eq. 5.8). In the ocean model small changes are made
in the surface stress; the ice-ocean stress is included and the wind stress is only calculated for the
area of open water. The surface stress on the ocean is thus calculated as

τ = (1 − A)τwind + Aτice (5.29)

where A is the ice concentration.
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(a) SQ, Coupled ice-ocean, March 20 (b) SQ, Coupled ice-ocean, March 27
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(c) S0, Steady-state ocean, March 20 (d) S0, Steady-state ocean, March 27
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Figure 5.13: Ice concentration at March 20 and 27, coupled ice-ocean simulations and sea ice
simulations forced with an ocean at steady state. To be compared with figures 3.7b,c.

5.6.2 Set-up

One simulation is performed with the coupled ice-ocean model. It is a mixture of S0 (see table
5.1) and Q1 (see table 4.3), such that parameters with respect to the ice model are the same as in
S0 and parameters with respect to ocean model are the same as in Q1.

5.6.3 Results

Figures 5.13 and 5.14 show ice concentration, and sea surface elevation and current after 3 days
and 10 days simulated with the coupled ice-ocean model. For comparison, the ice concentration
of simulation S0 is shown on figure 5.13, as well.

The wind influences the ice drift in two ways; directly through the wind stress and indirectly

No. cpu rms error
(s) March 27

SQ 8948.1 0.1198

Table 5.4: Simulation performed with the coupled ice-ocean model for the Cape Farewell area.
Input parameters are the same as in S0 and Q1.
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through its influence on the sea surface elevation and current, which then influence the ice drift.
The latter effect is not included in S0 with the steady-state ocean forcing by F0 (see table 4.1) and
it was expected that the coupled model would perform better. This is confirmed in the literature
and almost all references on coupled ice-ocean model emphasise the importance of the coupled
system.

Nevertheless, the rms errors of S0 and SQ (table 5.1 and 5.4) indicate that the coupled model
does not perform better with respect to ice concentration than the stand-alone ice model forced
with ocean fields at steady state.

Figure 5.14 shows the sea surface elevation and current from SQ. Comparison with Q1 (figure
4.5c,d) shows that the ice cover has almost no influence on the ocean state. This is probably so,
because the ice cover is just a narrow band along the coast and a large part of the domain is open
water. This is also seen in figure 4.6. The ice damps the surface currents slightly, with the current
in SQ being slightly smaller than in Q1.

The ocean is highly influenced by the wind, with increased elevation and stronger current
along the coast compared to F0 (figure 4.2a) that is used as ocean forcing in S0. This is more
clearly seen on figure 4.6 showing the current south of Cape Farewell. The velocity in the coupled
model varies from 0.21 m/s initially up to 0.45 m/s at March 23 decreasing to 0.17 m/s at the end
of the period, while the velocity at the same position within F0 is 0.21 m/s. With that background,
the results of the ice concentration in S0 and SQ are surprisingly similar. This indicates that the
ocean stress gives a mean drag along the coast of Greenland and transports the ice southward from
the Fram Strait to the Cape Farewell area, while the wind has the main responsibility for the daily
variations in the ice drift.

In this study, the same drag coefficients are used in the two simulations. Because the prognostic
ocean model responds directly to the variable wind forcing, while the ocean at steady state does
not, it is reasonable to expect different optimal values of the coefficients in the two cases. In the
sea ice simulations with an ocean steady state, the indirect wind effect is, effectively parameterised
through the drag coefficients. It is still expected that the wind effect is simulated better with the
coupled ice-ocean model. It is probably more pronounced on larger time scales. However, other
values of the coefficients should be used. Here the same values have been used and calibrating the

(a) SQ, Coupled ice-ocean, March 20 (b) SQ, Coupled ice-ocean, March 27
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Figure 5.14: Sea surface current and elevation at March 20 and 27, coupled ice-ocean simulations.
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coupled ice-ocean model is left as a topic for future work.

5.7 Future work

5.7.1 Forecast system

One of the goals of this study is to investigate the possibilities for producing sea ice forecasts
for the Cape Farewell area. The simulations presented in the preceding sections show encouraging
results with regard to this. The simulations also show some of the deficiencies of the sea ice model.
The importance of the deficiencies depends upon the conditions that are simulated. For example,
the ice rheology is more important close to land than on open water and the drag coefficients are
obviously more important with strong wind than in calm weather.

In this section, a possible forecasting system is outlined. Once this is set up and running,
further development of the sea ice model should be performed. In the following sections a few
directions for further development are given. Some of the deficiencies of the model are discussed
and possible rectifications are proposed.

A large part of the set-up for the sea ice simulations can be reused by the forecasting system.
The result is not found to be better with the coupled ice-ocean model than with the ice model
forced by an ocean at steady state. The latter uses much less cpu time and will therefore be used.
The simulation S0 is found to have the best overall performance and the set-up and parameters of
S0 will thus be used.

Maps of ice concentration are currently produced at the Danish Meteorological Institute. They
are drawn manually based on remote sensed data. New observations are available every 2-3 days.
These maps will be used as initial field for the forecasts. As soon as a new map is ready, it shall
be digitised in a format useful for the sea ice model, and a new forecast is performed. This will be
made for a 3-4 day period, i.e. not much longer than until the next ice map is ready. The procedure
will be like this:

0. Receive new observations, and draw a new ice map.

1. Extract the concentration at each node in the mesh for use as initial value.

2. Extract wind fields for the period from the HIRLAM forecast.

3. Run the sea ice model to produce a new ice forecast.

4. Plot the result for presentation.

5. Save the results for later validation.

Only the first item has to be done manually. It is not really a part of the forecasting system, but
is the basis for producing the forecasts. Once a new map is ready, a forecast for the next 3-4 days
is produced automatically. The model is re-initialised for every new forecast and the predicted ice
cover therefore does not drift away from reality.

5.7.2 Drag coefficients

The simulations show that the value of the air-ice drag coefficient and the relation between the air-
ice drag and the water-ice drag coefficients have a large effect on the results. It is found that with
the coefficient usually used for the large scale simulations of the Arctic, the results are not good.
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A few simulations with different values for the coefficients have been performed. An obvious
way to improve the model performance is to perform a proper calibration with respect to the drag
coefficients.

5.7.3 Wind stress

As mentioned in section 4.7.1, the wind stress depends upon the stability of the atmosphere. The
wind stress is available from the HIRLAM simulations and should be used directly instead of
calculating it in the sea ice model based on the wind speed. Then the calibration of the drag
coefficients suggested in the previous section is not necessary.

The issue of the wind stress is straight-forward in the case of pure ocean simulations (section
4.7.1). Since the flux of momentum leaving the atmosphere is obtained from the weather predic-
tion model, this is simply specified on the ocean surface. Within the sea ice and coupled ice-ocean
simulations the different roughness of the sea ice and the sea surface must be taken into account
to divide the momentum correctly between the ice and the ocean.

Since HIRLAM uses climatological ice fields, a situation may occur where the climatology
specifies open water in some areas that are ice covered in the actual sea ice simulation. In such
a case the wind stress is not correct in the atmospheric simulation and a conversion is probably
necessary to get the correct wind stress on the ice.

5.7.4 Ice rheology

As mentioned in section 5.3.1 the viscous and the viscous-plastic rheologies are implemented in
explicit form. This is because the implicit form complicates the implementation, while the explicit
form is easily implemented and quickly executed. However, the results of the simulations show
that for stability reasons it is necessary to implement eqs. 5.11 and 5.12 in implicit form, with u
and v centred at time level n. This gives a problem with the complex notation of the momentum
equation (eq. 5.6) since it is not possible to formulate the internal ice stress implicitly in the
complex notation, i.e. it is not possible to reduce eqs. 5.10-5.12 to something like F̃ = ãṽn+1+b̃ṽn

with ã and b̃ to complex factors. One way to deal with this problem is to solve for u and v
separately, being implicit only for the velocity component that is solved, i.e. Fx = f(un, un+1, vn)
and Fy = f(un, vn, vn+1). But solving for u and v separately will break the coupling through the
Coriolis term, which was the argument for using the complex form of the momentum equation. In
order to keep this, it is proposed to solve the momentum equation in two steps, by

�vn+1 − �vn

∆t
=

�vn+1 − �vn+1
c

∆t
+

�vn+1
c − �vn

∆t
(5.30)

where �vc is the solution to the complex momentum equation. First step is to find �vn+1
c by solving as

much as possible of the momentum equation in complex notation, thus solving eq. 5.6, with �vn+1
c

instead of �vn+1. This gives the cavitating fluid velocity, and it is actually just what is currently
done in the model. In the second step the velocity field is updated separately for u and v by

ρh	vn+1−	vn+1
c

∆t = ∇ · σij , with σij given by the shear as in eq. 5.11.
Once this is working, it should be relatively easy to implement a routine calculating the shear

viscosity coefficients ξ and η using the Mohr-Coulomb granular rheology (Flato and Hibler, 1992;
Tremblay and Mysak, 1997).

Another rheology worth studying is the Elastic-Viscous-Plastic approach of Hunke and Dukow-
icz (1997). It reduces to the viscous-plastic at the time scales associated with the wind forcing,
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while an elastic wave equation is solved for shorter time scales (see also Hunke and Zhang, 1999).
This leads to a fully explicit numerical scheme and the above mentioned awkward solution proce-
dure is therefore not necessary. In addition, an explicit code is advantageous on vector and parallel
computers.

5.7.5 Advection

A standard Galerkin formulation of the advection equation is used in the model. The simple test
discussed in section 5.4 shows that it is necessary to include diffusion in order to get a stable
and smooth solution, but this in turn smoothes the concentration and thickness fields. After the 10
days simulation period the maximum values decrease and the ice edge becomes a smooth transition
from ice to water. In connection with sea ice forecasts, it is very important to predict the position
of the ice edge.

There are two ways to get better results. One is simply to increase the resolution. This will
make the ice edge sharper. From eq. 5.4 it is seen that for a fixed mesh Péclet number the diffusion
coefficient decreases when the mesh length scale ∆l is decreased. For this model set-up, a 10 days
simulation took less than 2 minutes and for a forecast length of 3-4 days, it is no problem to use a
much larger number of nodes.

Another way of improving the results is to implement a more advanced advection scheme.
Quoddy has problems related to the advection scheme and has difficulties preserving a sharp front
[Paul Budgell, personal communication]. The sea ice model might be useful as a test model
for more advanced advection algorithms, before they are implemented in the more complex 3
dimensional ocean model. The issue has been given no attention in this study and here only a few
possible directions for further developments will be discussed.

Lagrangian methods are attractive for the advection of sea ice. Some of the methods, for
example the particle methods, are suitable only for variables that are present in a part of the
domain, and thus not for temperature or salinity in an ocean model. Johannessen et al. (1994)
simulate ice tongues and vortex pairs in the marginal ice zone. They treat the ice as a passive
tracer represented by a number of particles on top of an ocean model. The particles are advected
by the surface ocean velocity, and the model does not include wind forcing and internal ice stress.
This is included by Flato (1993) by a Particle-In-Cell sea ice model. There the ice is represented
by a number of particles for the advection equations, while the ice momentum equation is solved
on the mesh. This is an attractive method, when only a small part of the domain is covered by ice.
The advantage with the method is the higher accuracy and the decreased diffusion. Furthermore,
it is only necessary to calculate in the ice-covered areas and not in all the ice-free areas. The
largest disadvantage of this method is related to the unstructured grid used within the finite element
method, making it an expensive search procedure to determine which element a particle is moving
into. This problem is treated by Giraldo (1997) who showed a significant speed-up using a tree
structure of the mesh.

Thompson et al. (1988) and Schulkes et al. (1998) use an adaptive mesh for the advection
equations. It is not clear, what to do if the ice cover splits into two or more areas, as is actually the
case at March 27.

5.7.6 Thermodynamics

Thermodynamics have not been discussed yet and are not included in the model. The aim of
this study is to conduct sea ice simulations for a time scale of a few days up to one week and it
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is assumed that the thermodynamics would have only a small effect. However, from people who
frequently sail in the waters around Greenland, it is reported that the ice occasionally disappears in
one day, suggesting that the ice is melting. Thus, some thermodynamics would probably improve
the results in these situations. Also, for simulations on longer time scales, for example in climate
studies, the thermodynamics are supposed to be important. In order to make the model more
complete it is therefore suggested to implement thermodynamics.

Freezing and melting of the ice are then included in the model as source and sink terms in
eqs. 5.2 and 5.3. As the issue has been given no attention in this study, no proposals on the
calculation of the sink and source terms will be given. A good starting point might be the work by
Parkinson and Washington (1979) that is based on an energy balance and seems to be the standard
method used elsewhere (e.g. Kreyscher et al., 1997; Makshtas, 1998).
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Appendix A

Introduction to discrete methods

A.1 Continuous description

Only a few ocean models use the finite element method while the finite difference method is more
commonly used. Here just a very short introduction to both methods shall be given. Important
aspects such as boundary conditions, requirements for stability etc. are not discussed. The reader
is referred to text books for a more detailed treatment, see for example Kowalik and Murty (1993)
for the finite difference method and Johnson (1987) for the finite element method.

The evolution of the ocean is described through a set of mathematical equations, usually partial
differential equations. This is called the mathematical model. For example advection in one
dimension with constant velocity u is written as

∂c

∂t
= −u

∂c

∂x
(A.1)

where c is the concentration, t is time and x is the space coordinate.
In reality, the concentration is a continuous field, having a value everywhere. It is not possible

in general to solve the mathematical model with its infinite number of degrees of freedom. With
discrete (numerical) methods the problem is reduced to a numerical model with a finite number of
unknowns.

A.2 Finite difference method

With the finite difference method the domain of interest x ∈ [0;L] is divided into a grid with grid
size ∆x (distance between two neighbouring grid points) and the concentration is calculated at the
grid points only. Thus the field c(x) is represented by a number of values ci where i is an index of
the grid point number. The differentials are approximated by differences. The spatial differential
quotient centred at grid point i is written

∂c

∂x
≈ ci+1 − ci−1

2∆x
(A.2)

The time is treated in the same manner dividing it into time steps ∆t. With n the index for time,
the expression

∂c

∂t
≈ cn+1 − cn

∆t
(A.3)
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is used in the span between time levels n and n + 1. Inserting eqs. A.2 and A.3 into eq. A.1 gives
the numerical model. This is solved as an initial value problem, i.e. knowing all values at the
initial time the values at the first time level are calculated, then the second and so forth.

In the explicit method all terms except the time derivative are calculated by known values.
Thus the model sketched here becomes

cn+1
i − cn

i

∆t
= −u

cn
i+1 − cn

i−1

2∆x
(A.4)

and the values at each grid point are calculated directly (explicitly) as

cn+1
i = cn

i − u
∆t

2∆x
(cn

i+1 − cn
i−1) (A.5)

In the implicit method the terms are calculated by values at the new time level

cn+1
i − cn

i

∆t
= −u

cn+1
i+1 − cn+1

i−1

2∆x
(A.6)

This complicates the solution since cn+1
i can not be calculated directly, but depends on the values

at the neighbour points at time level n + 1.

cn+1
i + u

∆t

2∆x
(cn+1

i+1 − cn+1
i−1 ) = cn

i (A.7)

This can conveniently be written in vector notation, with the concentration as a vector �c of dimen-
sion N , where the i’th element is equal to the concentration at the i’th point, and N is the number
of grid points. Then the model can be expressed as a N × N matrix A where

A =


1 u ∆t

2∆x 0 0
−u ∆t

2∆x 1 u ∆t
2∆x 0 . . .

0 −u ∆t
2∆x 1 u ∆t

2∆x

0 0 −u ∆t
2∆x 1

...
. . .

 (A.8)

and the implicit method involves the solution of

A�cn+1 = �cn (A.9)

A.3 Finite element method

In the finite element method one starts by defining N basis functions φj , representing the variables
in the basis

c ≈
N∑

j=1

cjφj (A.10)

There are thus N unknowns, the cj’s, that must be found. Again the domain x ∈ [0;L] is divided
into a mesh1 having N nodes with the elements in between. The ocean models and the sea ice

1It is noted that in the finite difference method it is called a grid and points. In the finite element method it is usually
called a mesh and nodes, even though it in reality is the same.
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model described in Chapter 4 and 5 use the simple basis consisting of piecewise linear functions
that are equal to 1 at one node, 0 at all the other nodes and varying linearly across the elements.
Figure A.1 is an example of the j’th basis function in the 1 dimensional case. It is seen that with
this basis cj is simply the value at the j’th node.

The time and spatial variations are split, such that the spatial variations are included in the
basis functions, while the coefficients take care of the time variations

c(x, t) ≈
N∑

j=1

cj(t)φj(x) (A.11)

The time and the spatial variations are thus treated independently, justified by the different nature
of the problems. The time variation is an initial-value problem, while the spatial variation is a
boundary-value problem. The derivatives are then approximated by

∂c

∂x
≈

N∑
j=1

cj
∂φj

∂x
(A.12)

and
∂c

∂t
≈

N∑
j=1

∂cj

∂t
φj (A.13)

The expressions A.11-A.13 are only approximations, since N is a finite number, and the basis
is said to be incomplete. Thus by inserting into eq. A.1 the left hand side will not necessarily equal
the right hand side, and there will be a residual. The equation is then solved for the coefficients
cj such that the residual is as small as possible. This is performed with the method of weighted
residual, where the equation is weighted (multiplied) by a function ϕ and integrated over the model
domain. In short notation this is written〈

∂c

∂t
ϕ

〉
= −

〈
u

∂c

∂x
ϕ

〉
(A.14)

<> indicates the integration, in the 1 dimensional case simply
∫ L
0 dx. The residual is then made

as small as possible with respect to the basis functions. This means that the residual is orthogonal
the basis functions, so the inner product of the residual and each of the basis functions is zero.

The weighting function could be any function. When the basis functions are used as weighting
functions, it is called the Galerkin method. Then〈

∂c

∂t
φi

〉
= −

〈
u

∂c

∂x
φi

〉
(A.15)

and must be valid for each basis function φi, i = 1, 2, ..., N . This gives N equations that can be
solved for the N unknown cj’s.

It is recognised that the true solution to eq. A.1 also fulfils eq. A.15, though fulfilling eq. A.15
does not necessary guarantee that the true solution is found. Thus eq. A.15 is called the weak
formulation of the advection equation A.1.

The expressions A.11-A.13 are inserted in the weak formulation to give

N∑
j=1

∂cj

∂t
〈φiφj〉 = −u

N∑
j=1

cj

〈
∂φj

∂x
φi

〉
(A.16)
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x
xj−1 xj xj+1 L

φj

1

Figure A.1: Basis function φj .

The inner product is by definition 〈φiφj〉 =
∫ L
0 φiφjdx. Due to the shape of the basis functions

the integration is easiest performed on each element. The i’th basis function is non-zero only on
two elements [xi−1;xi] and [xi; xi+1], and 〈φiφj〉 =

∫ xi

xi−1
φiφjdx +

∫ xi+1

xi
φiφjdx. By drawing

the basis functions it is seen that most of them are zero in the same two elements, and only
j = i − 1, i, i + 1 gives non-zero products.

Figure A.2 shows an element between two nodes. Only two basis functions are non-zero in
that element. The different elements are identical with regards to this, and it is usually easier to
perform the integrations in terms of local node number and local basis functions. Then

∫ x2

x1

φ1φ2dx =
∆x

6∫ x2

x1

φ1φ1dx =
∫ x2

x1

φ2φ2dx =
∆x

3

(A.17)

and ∫ x2

x1

∂φ1

∂x
φ1dx =

∫ x2

x1

∂φ1

∂x
φ2dx = −1

2∫ x2

x1

∂φ2

∂x
φ1dx =

∫ x2

x1

∂φ2

∂x
φ2dx =

1
2

(A.18)

The expressions in local numbers form the building blocks for 〈φiφj〉 and
〈

∂φj

∂x φi

〉
. The integra-

tion is thus performed element by element in terms of local node numbers and summed to give the
full inner products. This is called the assembly process.

In the general case all elements may be of different sizes. For simplicity it is assumed here

x
x1 x2

φ1 = (x2 − x)/∆x

φ2 = (x − x1)/∆x

Figure A.2: Local basis functions in an element of length ∆x.
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that all elements have the same size, ∆x. Then

〈φiφj〉 = 0, j �= i − 1, i, i + 1

〈φiφi−1〉 = 〈φi−1φi〉 =
∫ xi

xi−1

φi−1φidx =
∫ x2

x1

φ1φ2dx =
∆x

6

〈φiφi〉 =
∫ xi

xi−1

φiφidx +
∫ xi+1

xi

φiφidx =
∫ x2

x1

φ2φ2dx +
∫ x2

x1

φ1φ1dx =
2∆x

3

〈φiφi+1〉 = 〈φi+1φi〉 =
∫ xi+1

xi

φiφi+1dx =
∫ x2

x1

φ1φ2dx =
∆x

6

(A.19)

and 〈
∂φj

∂x
φi

〉
= 0, j �= i − 1, i, i + 1〈

∂φi−1

∂x
φi

〉
=

∫ x2

x1

∂φ1

∂x
φ2dx = −1

2〈
∂φi

∂x
φi

〉
=

∫ x2

x1

∂φ2

∂x
φ2dx +

∫ x2

x1

∂φ1

∂x
φ1dx = 0〈

∂φi+1

∂x
φi

〉
=

∫ x2

x1

∂φ2

∂x
φ1dx =

1
2

(A.20)

The time variation is treated with the finite difference method in the sea ice and ocean models
described in chapter 4 and 5. It will be so here as well, involving ∂cj

∂t on the left hand side of
eq. A.16. By collecting the cj’s in a vector �c the weak formulation (eq. A.16) is written in vector
notation

A�cn+1 = �b (A.21)

where the vector �b includes all terms at known time levels. The matrix A is defined by the de-
pendency of the nodes on each other. Two steps are thus needed in the model. First perform the
integrations for each i and j to get the elements in A and �b (the assembly process) and then solve
the system of linear equations.

In explicit form the right hand side of eq. A.16 is calculated at time level n to give

N∑
j=1

cn+1
j 〈φiφj〉 =

N∑
j=1

cn
j 〈φiφj〉 − u∆t

N∑
j=1

cn
j

〈
∂φj

∂x
φi

〉
(A.22)

By inserting eqs. A.19 and A.20, A and �b are found to be

A =


2/3 1/6 0 0
1/6 2/3 1/6 0 . . .
0 1/6 2/3 1/6
0 0 1/6 2/3

...
. . .

 (A.23)

and

bi =
1
6
cn
i−1 +

2
3
cn
i +

1
6
cn
i+1 − u

∆t

2∆x

(
cn
i+1 − cn

i−1

)
(A.24)

A is constant in time and therefore calculated only once.
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One of the advantages of the finite element method is the possibility of a varying resolution.
Nevertheless the example here is for constant element size ∆x, that has been divided through the
equations. The similarity to the explicit finite difference method (eq. A.5) is seen. This is so in the
case of constant element size and will be more clear below in the discussion of nodal quadrature.

In implicit form the right hand side of eq. A.16 is calculated at time level n + 1 to give

N∑
j=1

cn+1
j 〈φiφj〉 + u∆t

N∑
j=1

cn+1
j

〈
∂φj

∂x
φi

〉
=

N∑
j=1

cn
j 〈φiφj〉 (A.25)

By inserting eqs. A.19 and A.20 A and �b are found to be

A =


2/3 1/6 + u ∆t

2∆x 0 0
1/6 − u ∆t

2∆x 2/3 1/6 + u ∆t
2∆x 0 . . .

0 1/6 − u ∆t
2∆x 2/3 1/6 + u ∆t

2∆x

0 0 1/6 − u ∆t
2∆x 2/3

...
. . .

 (A.26)

and

bi =
1
6
cn
i−1 +

2
3
cn
i +

1
6
cn
i+1 (A.27)

With the finite difference method it was seen that the explicit method solves directly for cn+1
j ,

while in the implicit method cn+1
j depends on the neighbour points, and a system of linear equa-

tions must be solved. With the finite element method both the explicit and the implicit method
give a system of linear equations. In the explicit method A is usually constant in time and is only
calculated once. In the implicit method this is not the case in general, and A must be calculated
every time step. Though, the computationally most expensive part is usually solving the system of
linear equations. This work is reduced by the nodal quadrature.

The integrals in eqs. A.19 and A.20 are calculated analytically. The integration might instead
be performed numerically as a summation over some given points, this is called quadrature. When
the quadrature points coincide with the nodes, it is called nodal quadrature. It is noted that

φ1 = 1, φ2 = 0 for x = x1

φ1 = 0, φ2 = 1 for x = x2

∂φ1

∂x
= − 1

∆x
,

∂φ2

∂x
=

1
∆x

for x = x1, x2

(A.28)

Then using nodal quadrature∫ x2

x1

φ1φ2dx =
∆x

2
[φ1(x1)φ2(x1) + φ1(x2)φ2(x2)] = 0∫ x2

x1

φ1φ1dx =
∆x

2
[φ1(x1)φ1(x1) + φ1(x2)φ1(x2)] =

∆x

2∫ x2

x1

φ2φ2dx =
∆x

2
[φ2(x1)φ2(x1) + φ2(x2)φ2(x2)] =

∆x

2

(A.29)

and eq. A.19 is simplified to

〈φiφj〉 =
{

0 i �= j
∆x i = j

(A.30)
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Equation A.18 is unchanged, and so is eq. A.20. Inserting eqs. A.30 and A.20 into the explicit
weak formulation (eq. A.22) gives the advection equation in explicit form using nodal quadrature.
Then A becomes the identity matrix

A =


1 0 0 0
0 1 0 0 . . .
0 0 1 0
0 0 0 1

...
. . .

 (A.31)

and

bi = cn
i − u

∆t

2∆x

(
cn
i+1 − cn

i−1

)
(A.32)

It is seen that this is actual the same system of linear equations as found with the explicit finite
difference method (eq. A.5).

The same happens in the implicit case. Inserting eqs. A.30 and A.20 into the implicit weak
formulation (eq. A.25) gives bi = 1 and A identical to what is found in the finite difference case
(eq. A.8). Thus in this simple example with constant grid and element size in the two discrete
methods respectively, the finite element method using nodal quadrature actual leads to the same
algorithm as the finite difference method. This is explained by the fact that with nodal quadrature,
only information from the nodes are used as within the finite difference method. In contrary the full
finite element method uses the information from the entire element giving a different weighting of
the neighbour nodes.
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Appendix B

Condition number and the power
method

The condition number κ mentioned in section 4.5.3 is a measure of the efficiency of the conjugate
gradient method. The condition number for a matrix M is defined as

κ = ‖M‖ · ‖M−1‖ (B.1)

where ‖M‖ is some matrix norm. The condition number therefore varies, depending on which
matrix norm is used. The definition might not be easy to use directly. First inverting the matrix to
get M−1 and then taking the norm can be very demanding. It can be shown (e.g. Schwarz, 1989)
that the spectral norm equals the largest eigenvalue

‖M‖ = max |λ| (B.2)

Since the eigenvalues of M−1 are the reciprocals of the eigenvalues M the condition number can
be defined either as the multiplication of the largest eigenvalues of M and M−1 or as the ratio of
the largest to the smallest eigenvalue of M

κ = max |λM | · max |λM−1 | =
max |λM |
min |λM | (B.3)

The conjugate gradient method without preconditioning solves the system of linear equation
A�x = �b (see section 4.5.3). In this study A is real and symmetric, and the eigenvalues λ are
therefore real. The largest eigenvalue is calculated by the power method (see e.g. Van de Velde,
1994). This is an iterative method, where a vector chosen at random is multiplied by A a number
of times. Thus the multiplication

�xk+1 = A�xk (B.4)

is iterated, always scaling �xk to unit length due to reasons of accuracy. After a number of iterations
�xk approaches the eigenvector corresponding to the largest eigenvalue. Then λ is calculated by
exploiting that �xk+1 = A�xk = λ�xk.

The largest eigenvalue of A−1 is found through an iteration of

A�xk+1 = �xk (B.5)

instead of eq. B.4. In each iteration the system of linear equations (eq. B.5) must be solved. This
is performed with the LU method, though since A is symmetric and positive definite, this can be
performed with the conjugate gradient method as well.
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The preconditioned conjugate gradient method solves in principle C−1A�x = C−1�b, and the
condition number for the matrix product C−1A defines the efficiency of the method. C−1A is not
symmetric, and the eigenvalues may therefore be complex. Since the matrix is real the complex
eigenvalues occur in complex conjugate pairs. Here the power method is used to find the numer-
ically largest pair. After a number of iterations �xk approaches a linear combination of the two
eigenvectors corresponding to the largest pair. Thus three vectors �xk+2, �xk+1 and �xk is needed to
calculate the eigenvalues, and the matrix norm is equal to the absolute value of the eigenvalues. In
this case only the LU method is useful for eq. B.5. The conjugate gradient method is not suitable,
since (C−1A)−1 is not symmetric.
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Appendix C

Internet addresses

Except for the wind fields and the digitised ice maps, which are both produced by the Danish
Meteorological Institute, all data and models that have been used in this study are freely available
on the internet. Here is a list of links, that can be useful for students and other people, who would
like to retrieve some of them. The grid generation and all the plotting for the finite elements
simulations is made with the program Xscan/Genesis. It is, as far is known, free, but there seems
currently not to exist an official web-site. A version may be available via the Quoddy User’s
Group. The sea ice model developed in this study, is currently not on the net, but is available from
the author.

Models

Quoddy User’s Group, http://www-nml.dartmouth.edu/quoddy/QUG.html

Finite element models,http://www-nml.dartmouth.edu/Software
Source code for Quoddy, Fundy among others.

POM, http://www.aos.princeton.edu/WWWPUBLIC/htdocs.pom
Information about POM, link to source code, etc.

Data bases

Climate data library, http://ingrid.ldgo.columbia.edu
ETOPO5, Levitus climatology, and much more.

Coastline Extractor, http://crusty.er.usgs.gov/coast/getcoast.html
Different coastline databases.

Ice maps, http://www.dmi.dk/vejr/gron/index.html
Ice maps and weather forecast for Greenland (in Danish)
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ed., Helsinki University Printing House, Helsinki, Finland, vol. 1, pp. 289–304.

Martinsen, E. A., and H. Engedahl, 1987: Implementation and testing of a lateral boundary scheme
as an open boundary condition in a barotropic ocean model. Coastal Eng., 11, 603–627.

McCalpin, J. D., 1994: A comparison af second-order and fourth-order pressure gradient algo-
rithms in a σ-co-ordinate ocean model. Int. J. Numer. Methods Fluids, 18, 361–383.

McClimans, T. A., 1990: The role of laboratory experiments and models in the study of sea
straits. The Physical Oceanography of Sea Straits, L. J. Pratt, ed., Academic, San Diego, Calif.,
pp. 373–388.

McClimans, T. A., J. H. Nilsen, and B. O. Johannessen, 1996: Laboratory simulation of the ocean
circulation in the skagerrak. Tech. Rep. STF22 F96201, The Foundation of Scientific and In-
dustrial Research at the Norwegian Institute of Technology, Trondheim, Norway.

McClimans, T. A., J. D. Pietrzak, V. Huess, N. Kliem, J. H. Nilsen, and B. O. Johannessen, 2000:



86 REFERENCES

Laboratory and numerical simulation of the Skagerrak circulation. Continental Shelf Res., 20,
941–974.

McLaren, A. S., R. H. Bourke, J. E. Walsh, and R. L. Weaver, 1994: Variability in sea-ice thickness
over the North Pole from 1958 to 1992. The Polar Oceans and Their Role in Shaping the Global
Environment, O. M. Johannessen, R. D. Muench, and J. E. Overland, eds., AGU, Washington,
DC, vol. 85 of Geophysical Monograph, pp. 363–371.

Mellor, G. L., 1991: An equation of state for numerical models of ocean and estuaries. Journal of
Atmospheric and Oceanic Technology, 8, 609–611.

—, 1996: Introduction to Physical Oceanography. AIP Press, Woodbury, New York.
Mellor, G. L., T. Ezer, and L. Y. Oey, 1994: The pressure gradient conundrum of sigma coordinate

ocean models. Journal of Atmospheric and Oceanic Technology, 11, 1126–1134.
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