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Abstract

An Optimum Interpolation (OI) based data assimilation system is fur-
ther developed to include geopotential profiles retrieved from Global
Positioning System (GPS) occultation measurements. The error statis-
tics of the profiles are estimated, and then used in the system. Impor-
tant differences in the definition of geopotential height used in the GPS
retrieval algorithm and that used in the Numerical Weather Prediction
(NWP) models are addressed. An example of the impact on an analysis
from the new data is also given.

The impact of the geopotential profiles retrieved from GPS/MET
occultations on the data assimilation system is investigated. A 16-
day period is chosen to run parallel experiments with or without the
additional data included. Simple statistics are used to quantify the
impact. The impact turns out to be neutral averaged over the whole
period, but varies on daily basis.

1 Introduction

Atmospheric profiling using the radio occultation technique provides an ad-
ditional data source for climate monitoring and numerical weather forecast-
ing (see Hoeg et al., 1995 and references therein). As high quality conven-
tional profile data are still inadequate for determining the three dimensional
atmospheric state, especially over the oceans and in the southern hemi-
sphere, the GPS profile data may become one of the most important future
observing systems. Simulated occultation data have been assimilated into
NWP models indicating a great potential of the new data (Eyre, 1994; Zou
et al., 1995).

In this study we intend to explore the possibility of using real data in an
operational NWP system which is based on the OI analysis method. The
real data are the retrieved geopotential profiles from the GPS/MET oc-
cultation measurements (Syndergaard et al., 2000). The operational NWP
system used in this study is the HIgh Resolution Limited-Area Modelling
(HIRLAM) system implemented at the Danish Meteorological Institute (DMI)
(Sass et al., 1999).

Using the real data, one has to face and attack, among other things,
the problems related to data error statistics. Quality control procedures are



necessary for removing erroneous data. Interpolation of the data in space
is part of the OI scheme, but a strategy is needed for the interpolation in
time. When using the operational NWP system, one has to keep the basic
setup and only include the new component as a small addition. The impact
of the new data could be small simply because they are few.

This report gives a brief overview of the DMI-HIRLAM (section 2),
presents the approach we took in estimating the data error statistics (sec-
tion 3), and shows an example of the impact from the new data on an
analysis (section 5). Section 4 describes the observation system experiment
(OSE) setup, section 6 defines the verification measures and section 7 gives
some results from a few of the experiments.

2 DMI-HIRLAM

The data assimilation system used for the experiments is the operational
HIRLAM forecasting system at DMI. The system has been developed in a
collaborative research project between the national meteorological institutes
of Denmark, Finland, France, Iceland, Ireland, the Netherlands, Norway,
Spain, and Sweden (see e.g. Machenhauer, 1988; Gustafsson, 1993; Lynch
et al., 2000). It is an intermittent data assimilation system including an OI
analysis scheme and a forecast model. The system at DMI is documented in
Sass et al. (1999) and further details concerning the HIRLAM OI analysis
scheme can be found in Kéllén (1996) and Undén (2000).

The HIRLAM OI is a limited area version of the ECMWEF OI scheme
(Lonnberg and Shaw, 1987). The first-guess field is the 6 h forecast based
on the previous data assimilation cycle. Three-dimensional multi-variate
statistical interpolation is used for the wind, geopotential, and surface pres-
sure. Three-dimensional univariate statistical interpolation is used for rela-
tive humidity. The observation window covers a 6 h span around the time
for the analysis (0000, 0600, 1200 and 1800 UTC). A standard observation
set is used, including synoptic observations, ship observations, drifting and
moored buoys, pilot balloons, radiosonde data and aircraft data. For ra-
diosondes the Ol system uses geopotential height, wind and humidity at a
fixed number of pressure levels. Here we would like to point out that no
satellite observations have been included except GPS profiles.

The GPS geopotential profiles have been included in the analysis scheme
in the same way as for radiosondes, but with modified vertical correlations
and observation errors. While the providers of GPS derived atmospheric
profiles used WGS84 (World Geodetic System 1984) geometric heights, the
geopotential heights widely used in NWP modeling are not referred to the
WGS84 ellipsoid but to the EGM96 (Earth Gravitational Model 1996) geoid.
Therefore, we made a conversion of WGS84 geometric heights to NWP
model HIRLAM geopotential heights as described in Vedel (2000) .



3 Including GPS geopotential profiles

Optimum interpolation is also called statistical interpolation since the inter-
polation depends on knowledge of the statistical moments of the background
and observation errors (see for example Daley, 1993). To include the GPS
geopotential profiles, their error statistics in the form of an error covariance
matrix are needed.

In the following ( ) denotes the average (or expectation value) of a large
number of realizations of observations or pairs of observations. The bias is
defined as the average value of the observations minus “true value” (denoted
T here):

bia,sk = <Ok - Tk>

Here and in the following the subscripts £ and ! denote vertical levels. The
standard deviation to be used for observation errors in the OI data assimi-
lation scheme is calculated as:

o = \/((Ok — Ty, — biasy)?)

Finally the correlation is found by dividing the covariance by the two in-
volved standard deviations:
((Op — T); — biasy) (O — T; — biasy))

Ok0}

Ry, =

averaging over the pairs of vertical levels.

For the GPS statistics, the error statistics and correlation have been
calculated using ECMWF analyses or 3 hour forecasts when available and
closer in time horizontally interpolated to the actual GPS measurements
tangent point location. The interpolated values were then used as the “true
value”. This is probably the best estimate we can make for the upper limit
of the retrieval errors since ECMWF analyses and forecasts contains errors,
too, and the error estimate includes some background error. Furthermore,
we have used all available GPS/MET-profiles in the period 2 - 16 Feb 1997,
including the ones in the tropics and in the Southern Hemisphere.

A very simple quality control procedure is applied. If the “error” of a
datum is larger than a critical value, the datum is considered as erroneous
and excluded in the further applications. The results are sensitive to the
choice of the critical value. Figure 1 shows bias and standard deviations
used in the runs. When 200 m is used as the maximum height error allowed
in the quality control, the standard deviation errors are more than twice
the radiosonde height errors used in the OI analysis for pressure levels at
and below 250 hPa. Therefore, the weights from GPS profiles are somewhat
smaller than the corresponding weights for radiosonde observations. When
1000 m is used as the maximum height error allowed more data are accepted,
but the standard deviation errors as well as the absolute value of bias errors



become larger, leading to smaller weights for the GPS geopotential data.
The standard deviation increases by about 25% at 300 hPa and 400 hPa,
and by much more above 50 hPa and below 500 hPa. The number of samples
used at the different pressure levels are typically reduced to about 40 % when
reducing the error from 1000 m to 200 m in the quality control (see Figure 1
for the relevant numbers).

A typical example of the correlations for the levels used in the OT is
shown in Figure 2. For this plot all GPS/MET profiles having “errors” less
than 1000m at all levels are used. The number of GPS/MET data used
for the bias and standard deviation are less than half the numbers used for
making the correlation values shown in Figure 2. It is seen that there is a
very high degree of correlation as expected.

4 The OSE setup

A 16 day period, from 0000 UTC 1 Feb 1997 to 1800 UTC 16 Feb 1997,
is chosen for the data assimilation experiment. This period allows for one
day “spin-up” from the initial forecast starting from an ECMWF (Euro-
pean Centre for Medium-Range Weather Forecasts) analysis before the first
GPS/MET profile on 2 Feb. The last GPS/MET profile from this period
is on 16 Feb in the 1800 UTC data assimilation cycle. This period is also
part of the FASTEX (Fronts and Atlantic Storm-Track EXperiment) period
in which the radiosonde network was considerably enhanced over the North
Atlantic area.

The data assimilation system used for the experiments is the operational
HIRLAM forecasting system at DMI, documented in (Sass et al., 1999),
with two differences. One is the lateral boundaries. Instead of using the
available ECMWEF analyses and forecasts (which could be as old as a +60h
forecast) at the analysis time, we use the best possible ones, i.e. ECMWF
analyses at 0000 UTC and 1200 UTC and +6 h forecasts at 0600 UTC and
1800 UTC. By doing this we hope to reduce problems due to old lateral
boundaries (Gustafsson, 1990). Another difference is the forecast length
at 0600 UTC and 1800 UTC. While in the operational DMI-HIRLAM-G
setup only a +6 h forecast is scheduled at these times (made solely for data
assimilation purposes), in both experiments a +48h forecast is made after
every analysis to expand the data samples and to regularize the verification
statistics. In the parallel runs we used the largest of the present operational
model domains (DMI-HIRLAM-G). This model domain is the one denoted
“G” in Fig. 3. The horizontal resolution is 0.45°, the number of vertical
levels is 31, the number of grid points is 202 x 190, the time step is 240s,
and the boundary update frequency is 1/(6 h).

A substantial number of different tests have been made with small changes,
e.g., in the screening procedure. Here, we show results from 3 of the lat-
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Figure 1: Bias and standard deviation (z-axis, in m) of geopotential height
as a function of pressure (y-axis) for the levels used in the OI analysis. The
number of GPS data (number of samples) used at each level is given on the

right hand side. The smaller number is for the 200m limit and the higher
number is for the 1000 m limit.
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Figure 2: Mean vertical correlation (z-axis) of geopotential height as a
function of pressure (y-axis) for the levels used in the OI analysis. The

number of GPS data used at each level is given on the right hand side.
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Figure 3: DMI operational model areas.

est runs. The experiment termed NOG is the control run with no GPS.
The second experiment is named BIA using GPS/MET profiles that are
bias-corrected so that the average geopotential height bias at a given pres-
sure level has been removed. The last experiment is named WIG using
GPS/MET profiles without the bias correction.

5 Impact on an analysis

Figure 4 shows difference plots of analyzed 300 hPa, 500 hPa and 850 hPa
geopotential height fields from an analysis including 5 GPS/MET profiles
and an analysis without these extra profiles. The first guess fields and other
observation types were the same. The extra GPS/MET profiles may in-
fluence the analysis in two ways: either used as an extra information or
by reducing the influence from other nearby observations of other types.
The figure illustrates that the inclusion of GPS profiles give reasonable
changes to the field. The profiles were located at the following positions
defined by the position of the lowest tangent point: A (16.50°W,36.87°N),
B (132.09°W,71.03°N), C (61.93°W,54.98°N), D (9.15°W,51.98°N), and E



(21.69°W,39.41°N).

Profile A is within 3° from a radiosonde. Profile B is in between two
radiosondes, one of them is within 2.5°. Profile C at Ireland is almost
collocated with a radiosonde in the same assimilation cycle. Despite this,
they all have impact on the analysis. While the impact from profile A is
mainly at higher levels, the impact from profiles B and C extends to lower
levels.

Profiles D and E are over the ocean where profile-type data are really
needed. Although profile D seems to “add” nothing to the analysis, profile
E clearly has an impact from 500 hPa above.

The HIRLAM OI is a multi-variate analysis. Observations in geopoten-
tial also lead to analysis increments in wind through the cross-correlation of
background errors. Figure 5 shows this impact of the GPS/MET profiles on
wind analysis. The difference in wind analysis shows a cyclonic circulation
around the positive height difference due to profile A and an anti-cyclonic
circulation around the negative height differences due to profiles B, C and
E. There are also differences caused by the imbalances due to the OI box
structures, which may need further investigations.

6 Verification

The variables calculated in observation verification (obs-verification) are the
standard ones: The mean deviation (bias), u

1 &
b= — Z 5i7
s 121
the root-mean-square of the deviation, rms

n

1 8
2
n—zgw

sz 1

rms =

and the variance of the deviation, o2

1 &
i=1
where &; is the deviation

&_:{ ol =7 for |97 —¢f| <e, @)
0 for |¢¢ — ¢7| > e,

and n, is the number of accepted samples in time and space i.e., the number
of “” that satisfy |¢? — ¢¢| < e, cf. equation (2). ¢/ indicates the forecast
and ¢° the observed value of some variable ¢. ¢° indicates the computed
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Figure 6: Number of GPS/MET profiles available for assimilation.

value of the analysis for the variable ¢. Hence, if the difference between the
observation value and the analysis value is too large, the observation value
is rejected in the program. We use the standard EWGLAM values for the
“allowed” differences.

Notice, that if the samples are independent random variables as assumed
in the programs, the variance (1) can be computed using

o2 — (nizgz> e (3)

The same methods, equations (1) and (3), are used on a grid-point by
grid-point basis in field verification, except the deviation &; is calculated as

& = ¢l — 9%, (4)
where for ¢* ECMWF analyses are used.

7 Results from experiments

Figure 6 shows the number of GPS/MET profiles available within the model
area for each cycle in the data assimilation experiments. There is a large
variation from no profile to 20 profiles in one single assimilation cycle. On
average, 6.7 profiles are available per assimilation cycle. Unfortunately, the
largest numbers of GPS/MET profiles are in the 00 UTC data assimilation
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cycles in which the numbers of radiosondes are also relatively large. The
impact would potentially be larger if most of the profiles had been in the
06 UTC and 18 UTC data assimilation cycles where the numbers of radioson-
des are relatively small. It should be noted that the extra FASTEX (Fronts
and Atlantic Storm-Track EXperiment) radiosonde observations have been
excluded in the first set of runs for which obs-verification is shown here.
However, a similar set of experiments including these extra radiosonde ob-
servations show the same trends. Results from field verification is shown for
a set of experiments including the FASTEX radiosonde observations.

Figure 7 shows obs-verification scores for the full period of mean sea
level pressure (mslp), 850 hPa temperature, 500 hPa geopotential height,
and 250 hPa wind speed. The differences in rms as well as bias scores
are very small and the overall impact from GPS/MET profiles is neutral.
Marginally positive impact is seen for forecast lengths around 24 to 30 hours
and marginally negative impact is seen for 48 hours forecast except for mslp.
The same trend is found (not shown) for other parameters.

When looking at daily verification scores an impact from the GPS/MET
profiles can be seen. Figure 8 shows daily verification scores for 24 hours
mslp forecasts, Figure 9 shows daily verification scores for 24 hours 850 hPa
temperature forecasts, and Figure 10 shows daily verification scores for 24
hours 500 hPa geopotential height forecasts. For all these parameters there is
a large daily variation and also differences in which one has the best score.
Since the overall verification scores are neutral some GPS/MET profiles
must have a positive impact and some a negative impact.

Figure 11 shows differences of standard deviation of 500 hPa geopoten-
tial height and mslp between a control run, NOG, and a run including
GPS/MET data, WIG. It should be noted that it is the results from a sec-
ond set of experiments different from the ones used for the obs-verification
since no usable data were available for field verification from those experi-
ments. Furthermore, the extra FASTEX radiosondes were included in these
two runs. In some areas NOG is better and in other areas WIG is better
when using these measures.

8 Conclusions

In this report, we have described a first assimilation of the geopotential
profiles retrieved from the GPS/MET occultations with the DMI HIRLAM
OI analysis and forecasting system.

We have modified the OI analysis to include GPS profiles similar to ra-
diosonde profiles. A major work has been the estimation of the data error
statistics. There are at least two limitations in our results: 1) error due to
the selection of ECMWF analysis and forecast as “truth”; 2) representative-
ness due to the short period of available data. Re-estimations are necessary

12
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Figure 7: Obs-verification (bias and rms, extended EWGLAM station list)
results of mslp (upper left), 850 hPa temperature (lower left), 500 hPa geopo-
tential height (upper right), and 250 hPa wind speed (lower right). ECMWF
analyses have been used to reject observations. The small number in the
plot indicate the number of observations used in the verification.

whenever new data become available. Search for the “truth” or better esti-
mates of it should continue. It should also be stressed that quality control
plays an important role in the error statistics.

Although the GPS profiles are just a small addition to the existing ob-
serving systems used by the HIRLAM OI they are able to contribute sig-
nificantly to the analysis increments. This is particularly true for the data
sparse areas. These increments are likely to remain in the forecast due to
the spatial correlations for both the background error and the observation
error. The results show that the impact on forecasts are overall neutral,
however, with significant daily variations.

Finally, it is still an open question which information from GPS occul-
tation data should be assimilated into NWP models. In this study we have
chosen the retrieved geopotentials, simply because the current HIRLAM OI

13
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system uses the radiosonde geopotentials. We could also take the temper-
ature profiles produced by the same retrieval package (Syndergaard et al.,
2000). Healy (2000) has made a statistical analysis of GPS/MET temper-
ature retrievals processed at DMI instead of geopotential as done here. He
compared the GPS/MET data with temperature profiles derived from the
Met Office unified model analyses. As we are in the process of replacing
the OI based analysis by a variational data assimilation system, our future
development may be towards using refractivity or bending angle profiles.
We expect that the variational system will be able to extract temperature,
humidity and surface pressure information from such data.
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