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Conversion of WGS84 geometric heights to NWP model

HIRLAM geopotential heights.

Henrik Vedel

Danish Meteorological Institute �

Resum�e.
We discuss the problem of converting theWGS84 geometric heights used by the

providers of GPS derived atmospheric pro�les to the geopotential heights widely
used in NWP modeling and data assimilation.

Preparing data for the HIRLAM OI system this is found to be a three step
procedure,

1 Conversion from WGS84 ellipsoid to EGM96 geoid geometric heights.

2 Extraction of the model surface geometric and geopotential heights from the
model orography.

3 Conversion of the geometric geoid heights above the model surface to geopo-
tential heights.

Step twomakes the conversion model dependent. It is necessary because geopo-
tential heights in the HIRLAM model are calculated as the sum of the model sur-
face geometric height plus the di�erence of the geopotential height of the position
in question and the model surface, a feature which is probably shared with many
other NWP models.

The changes due to step one and three are found to be much larger than the
model errors. The changes due to step two are smaller by an order of magnitude,
being comparable to the model errors at higher elevations, but negligible over the
sea and low terrain { areas covering a large fraction of Earth. It is tempting,
though not directly advisable, to ignore it when preparing GPS pro�le data for
HIRLAM OI analysis.

Expressions are given for the conversion of geometric heights to geopotential
heights, both including and excluding the second step.

Even disregarding step 2 the transformation between geometric and geopoten-
tial height depends on both altitude and latitude. Neither dependence should be
neglected.

Finally we notice that in a variational data assimilation system calculation of
geopotential heights is not necessary prior to the assimilation procedure, and an
expression for an observational operator providing the geometric height as function
of pressure level is given.

�Address: Lyngbyvej 100, DK-2100 Copenhagen �, Denmark. Phone: (+45) 3915 7445.
Email: hev@dmi.dk http://www.dmi.dk

1



The problem.

The GPS meteorological data vendors provide (almost) vertical atmospheric pro-
�les of three types, namely the,

� bending angle,

� the refractivity,

� the pressure, temperature, and humidity,

as function of the geometric height relative to the WGS84ellipsoid. The degree of
processing and the number of adopted assumptions increases down the list. (For
a few more details on the GPS data-types, and their possible use in HIRLAM, see
the two last sections of this note.)

Of these data-types, only the latter can by utilised in the current HIRLAM
OI analysis system. Furthermore the OI system needs the data be provided either
in the form of the geopotential heights of a number of �xed pressure levels, or as
di�erences in geopotential height between (thicknesses of) such pressure levels.

The precision of the (pressure, temperature, humidity)-pro�le derived from
the GPS data decreases towards the ground. It is therefore preferable and most
robust to determine the geopotential heights from the geometric heights, rather
than via the more highly processed pressure, temperature, and humidity data.

The WGS84 ellipsoid ! EGM96 geoid geometric height transfor-
mation.

In the WGS84 ellipsoidal coordinate system the Earth is approximated by an
ellipsoid generated by rotation around the minor axis of an ellipse centered on the
Earth and aligned with its short axis along the geographic polar axis of the Earth.
This ellipsoid provides a good analytical approximation to the Earth surface, and
it is straight forward to transform between the Cartesian coordinate system used
in the �rst stages of the reduction of GPS derived data and the ellipsoidal system.

The Earth surface itself is, however, highly irregular. These irregularities,
which enter the NWP models in the form of the model orography and the altitude
of the observational stations, are not speci�ed nor measured relative to an ellipsoid,
but relative to the geoid. Just as the heights on a normal topo-graphic map. The
geoid is de�ned as the equipotential surface of the gravity potential at mean sea
level. The undisturbed surfaces of the oceans are approximately equipotential
surfaces, and the geoid can be described as the mean sea level surface extended
across the continents (Handbook of Geophysics and Space Environments, [8]). The
irregular surface and the density inhomogeneities inside the Earths crust make the
geoid rise and sink, it is not rotationally symmetric and need be described by a
map or a table.

The conversion from coordinates speci�ed relative to the WGS84 ellipsoid to
coordinates speci�ed relative to the geoid can be done using down-loaded software
from the National Imagery and Mapping Agency (NIMA, http://164.214.2.59/
GandG/wgs-84/geos.html). First of all such software has to include a represen-
tation of the geoid. The software available from NIMA is based on a geoid of
resolution 0.25 degrees. The map in �gure 1 shows the deviations between the
EGM96 geoid and the WGS84 ellipsoid.

It may be worth stressing that representing an equipotential surface, rather
than the matter distribution itself, the EGM96 geoid is much less structured than
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Figure 1: EGM96 geoid relative to WGS84 ellipsoid. From NIMA.

is the Earth surface; the resolution of the geoid used need not match that of the
model orography.

Geopotential heights and HIRLAM.

In the HIRLAM model the vertical coordinate is pressure (or rather a simple
function of pressure), not height. However, if one assumes the atmosphere is
hydrostatic (or nearly so, which is generally a �ne approximation), a relation
between (geometric) height and pressure is established:

�p = �g��z: (1)

Here g is the net acceleration due to gravity and non inertial forces acting on a
body at rest with respect to the surface of the earth.

Combining with an equation of state, p = �RT , we get,

RT� ln p = �g�z; (2)

which could be used to derive geometric heights from HIRLAM data.
This relationship is never used in the model, however, instead one uses geopo-

tential height, here named h, which in the model is derived using

RT� ln p = �go�h; (3)

for the increment, while the model geopotential height itself is de�ned as,

hH = hHs +
1

g0

Z ps

p
RT� ln p; (4)

with subscript H meaning HIRLAM and s surface. g0 = 9:80665m=s2 is a value
decided upon by the WMO and used by all met. o�ces.

(Indeed the variation of g with position is neglected in the NWP models, which
is acceptable as long as it is done consistently, as the e�ect is very small compared
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to other short comings of the model. One should just remember that what the
models know is the atmospheric properties as a function of pressure, not as a
function of the true height, even though one sometimes speak about heights.)

From the above we see,

hH(z) = hHs +
Z z

zHs

g

g0
dz; (5)

where hHs is the geopotential surface height in the HIRLAM model corresponding
to the geometric height of the HIRLAM surface, zHs.

The above de�nition (5) of the geopotential height is HIRLAM (or NWP
model?) speci�c. The textbook de�nition of the geopotential height is (see e.g [2]
or [6]) ,

h =
1

g0

Z z

0

g dz: (6)

The de�nitions 5 and 6 are identical if hHs in the HIRLAM model is derived
following 6. Unfortunately for the GPS ! HIRLAM data conversion that is not
the case.

The HIRLAM orography is speci�ed via the so called climate �les. In those
the orography is given in terms of the HIRLAM geopotentials of the surface grid-
points, which are deduced from geometric heights found in some data base contain-
ing Earth data. Once the geometric height of a surface grid-point is determined
from these data, the corresponding HIRLAM surface geopotential is calculated as
(Sattler [7]),

�Hs = zsgH ) hHs = zs
gH
g0

: (7)

The value used for gH in generation of the HIRLAM climate �les is 9:81 m=s2.
Thus, the surface heights being used in HIRLAM are not geopotential heights;
instead they are geometric heights (o�set by a factor gH=g0 = 1:0003416, which
over 5 vertical kilometers makes for a � 1:7 m di�erence; a forgivable amount).

Hence, using the HIRLAM geopotential height de�nition the two bits 0 ! zHs

and zHs ! z transform di�erently. To make a calculation of h, which is proper in
a HIRLAM sense, requires knowledge of zHs as seen by HIRLAM. One therefore
has either to do the transformation inside the HIRLAM system, or extract the
geopotentials from the climate �les and use those data if doing the conversion
prior to running the HIRLAM OI analysis. If doing it outside HIRLAM, one
should remember that the conversion will be model speci�c, as changing the grid-
size or structure calls for a new orography.

A third option is to simply neglect the e�ect of the di�erences in the geopo-
tential height de�nitions. That is the only way facilitating a general derivation of
the geopotential heights, for example if done by the GPS data vendor, prior to
delivery of the pro�les to the met. community. Further down we analyse the error
of doing so, but �rst we need expressions for calculation the geopotential height
in practice.

An analytical expression for geopotential height.

The acceleration g varies with position. An approximate expression for the value
of g at the geoid surface as function of latitude can be found in Handbook of
Chemistry and Physics [4],

gs � ge(1 + a1 sin
2 � + a2 sin

2 2�); (8)
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where � is the latitude, and ge = 9:780356m=s2, a1 = 5:2885 10�3, and a2 =
�5:9 10�6.

For the variation of g with height we may use,

g � gs

�
Rs

Rs + z

�2
; (9)

where Rs is the distance to the center of the earth from that point of the geoid
surface. (For the sceptical mind a demonstration of the applicability of equa-
tion 9 is included in a forthcoming note on derivation of zenith total delays from
meteorological data.) For Rs we use,

Rs �
Req

(Re=Rp)2 sin
2 � + cos2 �

; (10)

where the average equatorial radius is Re � 6378:1km and the average pole radius
is Rp � Re � 21:5km. (The numbers used are a compromise between various
results listed in Handbook of Chemistry and Physics [4].)

Adding up we have the following expression for the (textbook) geopotential
height,

h =
gs
g0

Z z

0

�
Rs

Rs + z

�2
dz =

gs
g0

z

1 + z=Rs
; (11)

while for the increment z1 ! z2 we get,

h2 � h1 =
gs
g0

z2 � z1
1 + (z2 + z1)=Rs + z1z2=R2

s

: (12)

Figures 2 and 3 show the di�erence between the geometric height and the
geopotential height, derived using equation 11, as function of geometric height at
three di�erent latitudes. Shown (in red) is also the similar di�erence derived using
tabular data for the US standard atmosphere, which is derived for � = 45 degrees
(table data from [4]). The �ne resemblance indicates that relation 11 is su�ciently
accurate for our purposes.

The o�set between textbook and HIRLAM geopotential heights.

The o�set between the \true" (i.e. textbook) geopotential height of the surface
versus the HIRLAM geopotential height of the surface is given by,

�h � hHs � h = zs

�
gH
g0
�

gs
g0

1

1 + zs=Rs

�
: (13)

�h for surface heights up to 5 km and for three di�erent latitudes is shown in
�gure 4.

Nielsen & Amstrup [5] provide obs-veri�cation results for the HIRLAM model
analyses against radiosonde data. One example, covering the month of September,
1999, is shown in �gure 5 for easy reference. Further examples may be found in
their �gures 8-10 and in older reports, the �gure included here is typical, however.
The bias of the model geopotential height is of the order a few meters at pressures
above 300 hPa (about 9 km), with a fast increase further up, whereas the rms
values increase steadily from about 5 meters at 1000 hPa to about 13 m at 300
hPa, with a slightly fast increase further up, to about 28 m at 150 hPa (about
13.5 km).
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Figure 2: Geometric minus geopotential height derived using
equation 11 and compared with US standard atmosphere data.
See text for details
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Figure 3: Enlargement of part of �gure 2

Though this type of data are not comparable one to one with the geopotential
surface height o�sets considered in this section, they do give an idea about the
precision with which HIRLAM is able to handle heights (assuming the errors in
the radiosonde geopotential heights are not a dominant source of error).

Based on this comparison we conclude that the o�sets shown in �gure 4 are
large enough that we ought to get rid of them, in order to maintain a level of
precision for the heights of the pro�le data higher than that of the model itself,
independent of geographical position.

On the other hand, the o�sets are in-signi�cant over the sea and low terrain
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geometric surface surface height, for three di�erent latitudes.
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Figure 5: Obs-veri�cation of HIRLAM geopotential heights against
radiosonde geopotential height. From Nielsen & Amstrup [5].

compared to the precision of HIRLAM, regions which cover a large fraction of the
earth as well as of the operational HIRLAM model regions. And the o�sets are
small compared to the error made in not making any conversion of geometric to
geopotential height at all, chiey �gures 2 and 3. We conclude, that if, for various
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practical reasons, it is too cumbersome to make a proper correction { incorporating
the HIRLAM o�sets, we should use an equation like 11 to convert the geometric
heights to geopotential heights, much rather than using no conversion at all.

Having realised the existence of an o�set between HIRLAM geopotential heights
and true geopotential heights it requires some pondering to assure oneself that this
does not have any negative e�ects within the current HIRLAM setup. That is be-
yond the scope of this note however.

Clearly, there are some bene�ts from the HIRLAM surface being expressed in
terms of geometric heights. For example the height of surface stations may be
easily compared with the height of the HIRLAM surface, without any g-model
dependent integration.

Neglecting the variation of gs and Rs with latitude.

When given by the equations 11, 8, and 10 the geopotential height is a function of
geometric height, latitude, and a set of empirically determined constants. Some-
times the dependence on latitude is disregarded by some, thus determining the
geopotential height as h = z=(1 + z=R), with R being some value for the average
radius of the Earth.

Figure 6 shows the impact of doing so separately for gs and Rs. In the left
�gure h was derived using gs = g0 in equation 11 for the geopotential height, while
for the right �gure h was found using Rs = Rs(� = 45) in equation 11. In both
cases the reference geopotential height, named hdef on the �gure, was derived
using equation 11 without any further assumptions.
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Figure 6: Ignoring the variation of gs (left) and Rs (right) with latitude. Notice
the di�erent ordinate scales

Clearly the major part of the variation with latitude seen in �gures 2 and 3
is due to the variation of the surface acceleration term gs. The e�ect of ignoring
the variation of Rs is much smaller, smaller than the o�set between the HIRLAM
and textbook geopotential heights discussed in the previous section.
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Conclusion: The Solution(s).

If we neglect the di�erences between the HIRLAM surface heights and the cor-
responding proper geopotential heights we may calculate the geopotential height
using 11 without any reference to HIRLAM model speci�c data. The errors from
ignoring the height o�sets are small over shallow terrain, but can be signi�cant
over mountainous terrain, up to about 15 meters as envisaged by �gure 4.

If we decide to make a proper conversion of z to HIRLAM geopotential height,
hH , we may do it as,

hH = hHs +
gs
g0

z � zHs

1 + (z + zHs)=Rs + zHs=R2
s

; (14)

where gs is given by 8, Rs is given by 10, and zHs = �Hs=gH , with �Hs be-
ing the HIRLAM model surface geopotential at the speci�c location, found by
interpolation in the orography data for the HIRLAM model in question.

Using any of the two approaches it is important not to neglect the variation of
the surface gravity, gs, with latitude. One may use Rs as a substitute for Rs(�).
However, both functionals (equations 8 and 10) are very easily handled by the
computer and do not depend on NWP model parameters.

In an experiment conducted by Amstrup & Mogensen [1] a clear improve-
ment of the �t between GPS pro�les, in the form of pressure versus height, and
ECMWF NWP model pro�les was found when including the geometric to geopo-
tential height conversion in a form based on equation 11.

Further about the GPS atmospheric pro�le data-types and their
assimilation into NWP models.

Very often scienti�c measurement data need to be processed to various degree
before being comparable to model variables or products. In general it is from a
theoretical viewpoint always bene�cial to utilise the data in the most \raw" form
possible for the model in question, if one does not have access to another, superior
model. In operational meteorology this aspect have to be balanced against other
requirements, such as timeliness and impact.

The GPS atmospheric pro�le data are (or will become) available in three forms
of potential interest to NWP modeling, namely

1 bending angle,

2 refractivity,

3 pressure, temperature, and humidity.

as functions of geometric height relative to the WGS84 ellipsoid.
All three may in principle be assimilated using a variational data assimilation

system, whereas only the latter can be utilized by the current HIRLAM optimal
interpolation system.

Of these data types the bending angles are the least processed. The GPS data
vendors derive the refractivities from the bending angles based on assumptions
about the symmetry of the problem, the (local) shape of the Earth, the horisontal
strati�cation of the atmosphere, and a few other other things. Some of the as-
sumptions may be relaxed if assimilating the bending angles directly into a NWP
model using variational data assimilation. For example the inhomogeneities asso-
ciated with the fronts of low pressure systems can be included in the meteorological
analysis and hardly by the GPS data providers.
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Assimilation of refractivities rather than bending angles is more straight for-
ward and less time consuming, not requiring any extensive horisontal integrations
of properties related to the model �eld variables. Until tests demonstrate the
NWP bene�ts of using the bending angles directly it appears reasonable to focus
on assimilation of atmospheric refractivities.

Conversion of the refractivity pro�le, N(z), to a pro�le, (p; T; q), of pressure,
temperature, and density requires further assumptions. In the neutral, dry atmo-
sphere the refractivity is a function of density only. One may therefore determine
p(z) and T (z) using the hydrostatic equation, an equation of state, and a �x-point
specifying either p or T at a certain height high up in the neutral atmosphere,
(e.g. Leroy [3]). In the wet atmosphere the refractivity becomes a function also of
humidity, and it takes further, less solid, assumptions to continue the transforma-
tion towards the surface. This is of importance typically below 5 km (with some
scatter and a general increase towards the tropics).

It would appear convenient to assimilate T (p) to circumvent the problems en-
countered in calculation of h when assimilating h(p). However, that is not possible
in the HIRLAM OI system. It will be feasible in 3&4DVar data assimilation system
under development for HIRLAM, but due to the large variations in the humidity
�eld with position and time it is much safer, and probably much better, to as-
similate refractivities directly, rather than convert them to pressure, temperature,
humidity based on assumptions prior to assimilation.

An observational operator for geometric height.

Finally we notice that in a variational data assimilation system an observational
operator can be written not only for the the refractivity, but also for the geometric
height, as shown below. This is not necessarily the way in which GPS pro�le data
will be assimilated in variational data assimilation systems in the future, many
aspects have to be considered before choosing the optimal approach. But it is
clear that it would be bene�cial to the meteorological community if the providers
of GPS pro�le data included a conversion from WGS84 to geoid heights to their
products, as it is a problem about which the GPS community possess much more
expertise than the meteorologists.

Having access to the NWP model �eld we may integrate the left-hand side of
the hydrostatic equation (2) numerically,

Z ps

pi�1=2

RT� ln p �
j=iX
j=N

RjTj ln

 
pj+1=2

pj�1=2

!
� RTPi; (15)

assuming the model grid cells are numbered i = 1; : : : ; N in the vertical, with
1 being at the top, and denoting the corresponding cell boundaries by i � 1=2
and i+ 1=2, and Rj being the proper gas-constant of the atmosphere in that cell,
taking into account the humidity of cell j.

Based on the approximation for g(z) used previously in this note we end up
with,

zi�1=2 = zHs +
RHsRTPi

RHs gHs � RTPi
: (16)

Here gHs is the surface acceleration at the (HIRLAM) model surface deduced
using equation 8 and RHs = Rs + zHs, with zHs being the geometric height of
the model surface, available from the model orography, and Rs from equation 10.
z(p) or p(z) may be found at intermediate levels by interpolation.
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In a forthcoming paper we discuss the problems of calculating zenith delays of
radio waves from NWP model data. That will include a discussion of the precision
of various ways in which to relate in practice the pressure to the geometric height,
both within in the model atmosphere and above.
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