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Abstract 
We present results of a transient climate simulation for the period 1950 to 2080 using a regional 
climate model covering Greenland and surrounding seas at a horizontal resolution of 25 km. The 
report is divided into two parts, the present dealing with aspects related to the atmospheric model, 
HIRHAM4, including the discussion of surface and sea ice properties. The second part, published 
as Climate Centre Report 07-04, describes aspects of the ocean component of the coupled model 
system. 
 
Compared to climate change simulations using global climate models with a horizontal resolution 
on the order of 150 to 200 km, the regional model projects locally much larger temperature in-
creases of up to 18°C in winter. This is related to the retreat of sea ice, in particular along the east 
coast of Greenland. Precipitation is projected to increase everywhere with respect to present-day 
conditions, and a considerably larger percentage than at present is expected to fall as rain rather 
than snow. This leads to an increase of snow depth in the northern half and a decrease in the south-
ern half of Greenland. 
 
Resumé 
Der præsenteres resultater af en transient simulation af Grønlands og omgivende havregioners klima 
for perioden 1950 til 2080. Modellen blev kørt med en horisontal opløsning af 25 km. Rapporten er 
delt op i to dele. Den foreliggende behandler den atmosfæriske del af modelsystemet og indeholder 
en diskussion af forskellige variabler ved jordoverfladen. Den anden del, publiceret som Klimacen-
terrapport 07-04, beskriver aspekter af ocean-komponenten af det koblede system. 
 
Vi finder lokalt meget større temperaturændringer (op til 18°C om vinteren) end med globale 
modeller med en typisk opløsning af 150-200 km. Dette hænger sammen med tilbagetrækningen af 
havisen, specielt ved Grønlands østkyst. Der forventes øget nedbør i forhold til i dag i dag alle 
steder. En betydelig større andel af denne nedbør vil falde som regn i stedet af sne som i dag. 
Konsekvensen er en øget snedækte i de nordlige og en reduceret snedækte i de sydlige egne af 
Grønland. 
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1. Introduction 
Paleoclimatic evidence suggests that the Arctic presently is warmer than during the last 125000 
years (Jansen et al., 2007), and it is very likely that the increase in concentration of greenhouse 
gases in the atmosphere has an effect, which is larger in the Arctic than elsewhere on the globe 
(Christensen et al., 2007a). In recent years, concerns about the stability of the Greenland Ice Sheet, 
the fate of arctic sea ice and a possible weakening of the thermohaline circulation under future 
warming conditions have led to increased research activities, including an assessment of arctic 
climate and climate change (ACIA, 2005), the fourth assessment report (AR4) of the International 
Panel on Climate Change (IPCC, 2007) and a large number of research project related to the Inter-
national Polar Year (IPY).  
 

Assessments of climate variability and change with a focus on the Arctic in general and Greenland 
in particular have to consider uncertainties related to the paucity of reliable observations and, for 
projections of future climate, the large natural variability that makes it difficult to detect an anthro-
pogenic climate signal. Further uncertainties are due to the underlying emission scenarios as well as 
model deficiencies including insufficient horizontal resolution. As the typical resolution of the AR4 
models of 150–200 km is hardly adequate to realistically simulate many arctic processes, we pre-
sent here results from a new transient simulation using a regional climate model (RCM) for 
Greenland and the surrounding seas with a horizontal resolution of 25 km.  
 

There is considerable short-term (weather) and long-term (climate) variability in the Arctic and in 
models as well as observations, the interannual variability of monthly temperatures has maximum 
values at high latitudes (Räisänen, 2002). An assessment of climate variability in the Arctic in 
general and Greenland in particular is quite complex due to numerous nonlinear interactions across 
all time scales between atmosphere, cryosphere, ocean, land surface and ecosystems. The most 
important positive feedbacks are the snow-ice albedo feedback, changes in the duration of time that 
the atmosphere is insulated from the Arctic Ocean by sea ice and the feedback between permafrost 
and methane hydrate (CH4) as well as carbon dioxide (CO2).  Furthermore, huge amounts of CH4 
are stored as methane hydrate on the ocean floor at present. The present approximate equilibrium 
might become unstable when the ocean water warms, releasing methane into the atmosphere. On 
the other hand, negative feedbacks can result from enhanced freshwater input increasing the stratifi-
cation of the upper ocean layers, from a reduction in the intensity of the thermohaline circulation 
and from a connection between vegetation and CO2, where increased vegetation results in a reduc-
tion of albedo. 
 
Rapid climate change in the Arctic is possible since snow and ice regimes are sensitive to relatively 
small temperature changes and because of the cold oceans’ sensitivity to small changes in salinity, 
but the large low-frequency variability in atmosphere and ice parameters (Polyakov et al., 2003a,b) 
makes the detection and attribution climate change in the Arctic difficult. There is evidence that 
natural multidecadal variability has played a role for the large high latitude warming around the 
1930s (Bengtsson et al., 2004; Johannessen et al., 2004) and the subsequent cooling until the 1960s. 
The sensitivity to changes in temperature and salinity can act to amplify initially small signals and 
contribute to the large climate variability in arctic regions. 
 

The nonlinearity of arctic climate and the fact that many processes still are poorly understood is a 
challenge to climate models (ACIA, 2005). A further hindrance is the fact that only few direct 
observations of arctic climate are available, which makes model evaluation a difficult task. Precipi-
tation measurements in particular are difficult in cold regions, especially under windy conditions 
(e.g. Bogdanova et al., 2002). Despite promising attempts to derive the zonation of permafrost from 
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global climate models (GCMs; Stendel and Christensen, 2002), the spatial resolution of such 
models is generally not sufficient to reliably simulate arctic climate. On the other hand, the Arctic is 
a large region so that only few attempts have been made to use regional climate models (RCMs) 
over a pan-arctic domain. When these models are driven by observed sea surface temperatures 
(SSTs) and sea ice boundaries, they show smaller biases in temperature and precipitation than 
GCMs. This may be due to biases originating from lower latitudes, which are advected into the 
model domain (e.g. Dethloff et al., 2001; Wei et al., 2002; Lynch et al., 2003; Semmler et al., 
2005) or to a more realistic representation of snow-cover in RCMs (see below). Across-model 
scatter in RCM simulations (Tjernström et al., 2005; Rinke et al., 2006) is related to differences in 
simulated sea ice cover (a reduction of ice extent leads to warming due to increased absorption of 
solar radiation at the surface). 
 
This report comes in two parts. The present one focuses on the atmospheric part of the regional 
model system. Besides land surface properties and variables at or near the surface this also includes 
sea ice as far as it is relevant in this context. The second part of the report, published as Danish 
Climate Centre Report 07-04, deals with aspects of the ocean. The present report is organized as 
follows: in chapter 2, the model configuration and the setup of the regional climate change experi-
ment are discussed. Chapter 3 deals with the validation of the model for present-day conditions, 
whereas future climate evolution is discussed in chapter 4. In chapter 5, local consequences of these 
changes are exemplified by discussing changes for the Zackenberg region in north-east Greenland. 
Finally, chapter 6 gives some conclusions. 
 

2. Model configuration and experimental setup 
There are several kinds of uncertainties related to climate projections using simulations with cou-
pled atmosphere-ocean GCMs. Apart from uncertainties in future greenhouse gas and aerosol 
emissions and their conversion to radiative forcings (which will not be discussed here), there are 
uncertainties in global and regional climate responses to these forcings due e.g. to different parame-
terisations (discussed in detail by Stocker et al., 2001). There is also large natural variability on the 
regional scale (consider, for example, the NAO), so that it is difficult to determine which part of the 
response of a model is due to anthropogenic forcing and which to natural variability (solar, volcanic, 
but also unforced). Additional uncertainties are caused by insufficient resolution of global models 
and different approaches to downscale their output to the regional scale.  
 

As discussed in e.g. Meehl et al. (2007), there are quite large differences between global models 
that simulate arctic climate and climate change. While part of this difference is due to natural 
variability, poorly understood physical processes and uncertainties in feedbacks, a substantial part is 
related to the coarse resolution and, therefore, inadequate parameterisation of physical processes in 
these models. It is therefore a common procedure to apply a dynamical downscaling procedure to 
drive a limited-area regional climate model. For practical reasons, such regional simulations have 
until now mostly been conducted as “time-slice” experiments, typically for present-day climate and 
for a period towards the end of the 21st century. In such a set-up, the forcing fields as well as sea 
surface temperatures, sea ice cover and the time-dependent concentrations of greenhouse gases are 
taken from a transient AOGCM simulation to drive the regional model. Due to the large interannual 
variability in the Arctic, these time-slices need to be long enough (on the order of 30 years at least). 
For the entire Arctic, only two such data sets exist (Dorn et al., 2003; Kiilsholm et al., 2003), both 
run with HIRHAM4 forced with data from a transient GCM simulation with ECHAM4/OPYC3 
(Stendel et al., 2002). 
 
Here, we present for the first time results of a fully transient simulation at the very high horizontal 
resolution of 25 km, covering the period 1950 to 2080. The model domain is shown in Fig. 1. Of 
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course, it would be desirable to investigate an ensemble of RCM simulations (different RCMs 
forced by different GCMs, as exemplified in the PRUDENCE project, see Christensen et al., 2007b). 
Running a large ensemble of transient simulations is far beyond present computer capacity, how-
ever, so that we had to restrict ourselves to the following configuration of one GCM and one RCM. 
 
 

 
Figure 1: Model domain of the HIRHAM 25 km simulation 
 
 
 
One of the state-of-the-art GCMs participating in the IPCC AR4 assessment is ECHAM5-
MPI/OM1 (Roeckner et al., 2003; Marsland et al., 2003; Jungclaus et al., 2006). All the forcing data 
for our Greenland simulation have been taken from a transient simulation with this model in the 
comparably high horizontal resolution of T63, i.e. approximately 1.8° by 1.8° (May, 2007a; May, 
2007b). We note that ECHAM5-MPI/OM1 no longer requires a flux correction, as opposed to its 
predecessor versions. 
 
The regional model we use here is HIRHAM4 (Christensen et al., 1996), which is based on the 
adiabatic part of the HIRLAM (High-Resolution Limited Area Model) short-range weather forecast 
model (Källén, 1996) that was jointly developed by a number of European weather services.1 For 
climate modelling purposes, the standard physical parameterisation of HIRLAM was replaced by 
that of the global climate model ECHAM4 (the predecessor of ECHAM5), so that HIRHAM4 can 
be thought of as a high resolution limited area version of ECHAM4. HIRHAM4 uses a rotated 
latitude-longitude coordinate system, where the rotated South Pole is positioned at the intersection 
of equator and Greenwich Meridian. The boundary forcing from the global model (see previous 
paragraph) is updated every six hours in a region 10 grid points wide with a simple relaxation of all 
                                                 
1 Denmark, Finland, the Netherlands, Iceland, Ireland, Norway, Sweden and (in part) France and Spain. 



 Danish Climate Centre Report 07-02 
 

www.dmi.dk/dmi/dkc07-02  page 8 of 26 

prognostic variables. HIRHAM4 has been shown to be able to simulate present-day climate realisti-
cally (Christensen et al., 1998). In general, predicted temperatures in RCMs follow the patterns of 
the driving GCMs. However, Dethloff et al. (2002) and Kiilsholm et al. (2003) show that HIR-
HAM4 shows closer agreement to observations than the forcing model (in both cases ECHAM4-
OPYC3), which is mainly due to a more realistic treatment of precipitation and snow-cover (see 
also Christensen and Kuhry, 2000) in the regional model. Both the Dethloff et al. and Kiilsholm et 
al. papers also present results of coarse resolution (50 km) time-slice climate change projections for 
Greenland.  
 
Varying concentrations of well-mixed greenhouse gases (CO2, CH4, N2O, CFC-11  and CFC-12) as 
well as ozone (O3), and sulphate aerosols (SO4) have been prescribed following observations over 
the period 1861-2000 and according to the SRES A1B scenario (Nakićenović et al., 2000) thereafter. 
In the A1B scenario, the CO2 concentration in 2100 is near 700 ppm, and the globally averaged 
warming with respect to present-day climate is 3.5°C. 
 

3. Model validation 
In this chapter, we compare the simulated present-day (1961-1990) climate over Greenland with 
observation-based data. For a region as remote as Greenland, this is not a straightforward task. A 
number of stations, run by the Danish Meteorological Institute, exist along Greenland’s coasts. For 
seven of them (Upernavik, Ilulissat/Jakobshavn, Nuuk/Godthåb, Narsarsuaq, Tasiilaq/Ammassalik, 
Ittoqqortoormiit/Scoresbysund, Danmarkshavn), observations covering the reference period 1961-
1990 exist. Due to the rugged orography, such station-based comparisons are not necessarily repre-
sentative for large regions, let alone the ice cap. One therefore has to refer to reanalysis data, which 
consists of a combination of model data and observations. Here we compare the model results to 
both reanalyses and station-based data. For convenience, an overview of observed temperature and 
precipitation over Greenland is also given. 
 
We have chosen the ECMWF (European Centre for Medium-Range Weather Forecasts) reanalysis, 
henceforth termed ERA40 (Uppala et al., 2005), which covers the period January 1958 to August 
2002. The general principle behind a reanalysis of atmospheric data is to combine observations with 
background information obtained from a short-range forecast initiated from the most recent preced-
ing analysis to produce an estimate of the state of the atmosphere at a particular time. Observations 
all have their own accuracies and (spatial and temporal) distributions. They are combined with the 
model-based background information using estimates of their error statistics by means of a varia-
tional data assimilation procedure. This means that the background forecast carries forward in time 
the information from observations used in earlier assimilation cycles. The degree of dependence on 
the particular forecast model varies with density and relative accuracy of the observations and 
therefore generally differs from place to place and from one variable to another. In regions with 
poor data coverage, such as the Arctic, the background information obviously has a relatively large 
weight. This is why we have chosen ERA40 (there are a few other reanalyses available), which is 
generally regarded to be of high quality in the Arctic. 
 
It is important to note that ERA40, even though run with a comparatively high spatial resolution 
(N80 Gaussian grid equivalent to 1.125° in latitude and longitude), has a considerably coarser 
resolution than our HIRHAM simulation. This becomes clear from Fig. 2 where we compare the 
orographies of ERA40 and HIRHAM over Greenland.2 With respect to the high resolution HIR-
HAM data, ERA40 generally overestimates elevations along the coasts, in particular the west coast, 

                                                 
2 As can be seen in Fig. 2, the maps for ERA40 and HIRHAM do not cover exactly the same geographic area. 
This is due to the different projections of the two data sets, but has no effect whatsoever on the results.  



 Danish Climate Centre Report 07-02 
 

www.dmi.dk/dmi/dkc07-02  page 9 of 26 

whereas the opposite is the case over the southern part of the ice sheet. These differences need to be 
taken into account when comparing model results and observations, since they introduce a system-
atic bias in e.g. temperatures. 

 
Figure 2: Elevations [m] in ERA40 and in the 25 km HIRHAM simulation. Contours every 500 m. 
 
 
Fig. 3 shows a comparison between simulated and reanalysed 2m temperatures for winter and 
summer. ERA40 is close to observations (where they are available) with a cold bias in the north-
west. Following a compilation by Box (2002), observed winter temperatures for the period 1961–
1990 are between –23°C in the north (Pituffik / Thule Air Base) and –5°C in the south (Qaqortoq / 
Julianehåb). Generally, summer temperatures are above freezing, with maximum mean monthly 
values near 10°C in the south (Narsarsuaq, Kangerlussuaq / Søndre Strømfjord). All stations are 
situated in coastal areas away from the ice sheet. Much colder temperatures, however, are measured 
on the ice sheet itself. At the Summit station (elevation 3208 m), the average temperature is –41°C 
in winter (based on observations from 1987 to 2001) and –15°C in summer, yielding an annual 
average temperature of –30°C. ERA40 is generally colder over the north-western part of the ice 
sheet, as also can be inferred from the difference in elevation visible in Fig. 2. While temperatures 
above the sea ice are quite similar between ERA and HIRHAM, there is a warm bias in the latter 
over open water in winter and spring (not shown). Along the coasts, temperatures are very similar in 
model and reanalysis. We note, however, that there is no a priori reason why SSTs in HIRHAM 
should be identical to those in ERA40, since the latter are observation-based, whereas the former 
come from the coupled ECHAM5/MPI-OM, i.e., they are a model product not constrained by any 
observations. Given the fact that there is no flux correction in the GCM, the biases are actually 
rather small compared with earlier versions of the model which required such a correction. 
 
As long as ice remains on sea water, the air temperature in HIRHAM is not allowed to rise above 
the freezing point, while there is no such constraint in ERA40. This explains the comparably large 
differences in summer over the northern half of the domain. Over open water as well as on the ice 
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sheet, differences are smaller. 
 
The general distribution of precipitation over Greenland (Fig. 4) is captured very well by the HIR-
HAM model. Greenland is generally rather dry (Cappelen et al., 2001). In the north and on the ice 
sheet, precipitation is smaller than 100 mm per year. It is also comparably dry along the west coast 
(Aasiat / Egedesminde: 304 mm per year). Going further south, annual precipitation increases to 
858 mm in Qaqortoq / Julianehåb (southwest coast) and even nearly 1000 mm on the southeast 
coast (Tasiilaq / Ammassalik). In the rugged terrain of the southeast coast, where strong winds 
prevail quite often, it is very difficult to estimate the amount of precipitation. Judged from the 
precipitation observations at Prins Christian Sund (2474 mm per year), there may be as much as 3 m 
of annual precipitation locally (J. Cappelen, pers. comm.). Apart from a general overestimation of 
precipitation along the eastern boundary of the integration domain discussed elsewhere (see Stendel 
et al., 2007 for a discussion of boundary effects), effects due to differences in resolution and eleva-
tion between ERA40 and HIRHAM are clearly visible. While nothing is visible of orographically 
forced precipitation in ERA40, HIRHAM covers these local precipitation maxima well and also has 
the correct magnitude.  
 
As can be seen from Fig. 4, the central and northern part of the ice sheet generally is very dry in 
present-day climate. Further south, low pressure system occasionally can cross the ice sheet. There 
is also an indication of convective activity in summer in the southernmost part of Greenland. All 
these features are simulated by the HIRHAM model. 
 
There is generally more precipitation in HIRHAM over the ice-free ocean than in ERA40. While 
this difference is well inside the range of uncertainty if one compares to other reanalyses (not 
shown), it may be related to the higher SSTs in the regional model discussed above. 
 
The distribution of sea level pressure (Fig. 5) shows the well-known quasi-permanent features, 
namely the Icelandic Low and high pressure over the interior of the ice sheet. While there is large 
similarity between HIRHAM and ERA40 throughout the year, there is always a larger pressure 
gradient in HIRHAM, presumably due to the higher resolution.  
 
We conclude that HIRHAM is able to realistically simulate present-day large- and regional-scale 
climate even over terrain as rugged as Greenland. We next validate the model by comparing time 
series of average temperature as well as mean and extreme maximum and minimum temperatures at 
DMI stations and corresponding model grid points (Fig. 6). With such an approach, we can assess 
interannual variability, which, as pointed out already by Putnins (1970) and, more recently, Cappe-
len et al. (2001), generally increases from south to north, particularly in winter.  
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Figure 3: Near-surface temperature [°C] for winter (December-February, upper panel) and summer 
(June-August, lower panel) for the period 1961-1990 in the ERA40 reanalysis and in our simulation. 
The black line represents the 0°C isotherm, white lines are shown every 8°C. 
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Figure 4: As Figure 3, for precipitation [mm/day]. Isolines at 0.5, 1, 2, 4, 8 and 12 mm/day. 
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Figure 5: As Figure 3, for sea level pressure [hPa]. Isolines every 4 hPa. 
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For Upernavik, situated in relatively flat surroundings, the agreement between reanalysis and model 
simulation is remarkably good. Even the 30 year extreme maxima and minima are captured well, 
thus further corroborating the ability of HIRHAM to simulate present-day climate and variability. 
For Ilulissat/Jakobshavn, there is also a good agreement except for the absolute minimum tempera-
ture during the winter months, which is underestimated by about 10°C. These and similar differ-
ences at the other stations (not shown) can be traced back to the fact that the grid points taken for 
the comparison are not representative for the respective station. Elevation differences between the 
stations and the pertinent model grid points have been taken into account by applying a lapse-rate 
based temperature correction (not shown). Such an analysis thus shows that it is, in principle, 
possible to simulate local temperature evolution with a reasonable degree of accuracy provided that 
the resolution is high enough. Judged from this point of view, a 25 km grid may be the coarsest 
resolution which can be used for such a kind of analysis. 
 
We also note that after the simulation had been finished, it turned out that there was a minor error in 
the procedure that interpolated orographies from the original high resolution (1 km) digital eleva-
tion model data to HIRHAM’s 25 km resolution, leading to offsets in elevation on the order of 100-
200 m (with isolated maximum values in the north-west of up to 700 m). It was decided that the 
error introduced by the incorrect heights in general is considerably smaller than the internal vari-
ability in the model (i.e., differences between two model runs started from slightly different initial 
conditions). In addition, one could apply a lapse-rate based correction for temperature (as discussed 
above), but this has not been done, since the elevation errors at the station location are rather small. 
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Figure 6: Mean and extreme 2m temperatures [°C] for the period 1961-1990 in Danmarkshavn (top 
panel) and Ilulissat/Jakobshavn (lower panel). Solid lines: ERA40, stippled lines: HIRHAM. From 
top: absolute maximum temperature (brown), mean maximum temperature (orange), mean tempera-
ture (black), mean minimum temperature (blue) and absolute minimum temperature (violet). 
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4. Future Climate Evolution 
As outlined above, the driving model for the 25 km HIRHAM simulation is a coupled atmosphere-
ocean model, i.e. the atmosphere is not forced by observed SSTs and sea ice concentrations, but 
rather by modelled ones. This implies that in order to obtain meaningful statements on variability 
and change, the considered periods need to be long enough, in particular in the Arctic owing to its 
large internal variability. This is often not possible using time slices of future climate evolution. 
Here we have chosen to compare two thirty year averages for periods in the 21st century (2021–
2050 and 2051–2080) with modelled present-day conditions (1961–1990).  
 

Figure 7 shows seasonal changes in 2 m temperature for the two future periods in Greenland. For 
2021–2050, a general temperature increase of 3°C in winter, 4°C in spring and of 2°C in summer 
and autumn is found. In winter, locally larger values up to 6°C along the west coast (between 
Sisimiut / Holsteinsborg and Upernavik) and 4°C along the east coast (between Tasiilaq / Ammas-
salik and Ittoqqortoormiit / Scoresbysund) and further northeast to Svalbard are found. These are 
adjacent to regions covered with sea ice under present-day conditions, but not in future climate. On 
the ice sheet, the model projects an increase by 2°C throughout the year. For the later period (2051–
2080), winter temperature increases accelerate considerably, reaching 7–8°C throughout the Arctic 
and 12°C along the east coast, culminating in a more than 18°C increase at Svalbard’s northeast 
coast, which is a region prone also to large recent temperature anomalies. On the ice sheet, a tem-
perature increase of 5–6°C in winter and spring and 3–4°C in summer and autumn is projected. The 
comparatively large temperature increase over the northern section of the ice sheet in spring is 
related to an increase in cloudiness and wind velocity (not shown) so that less low-level inversions 
can form. Summer temperature changes are small and more uniform as long as temperature remains 
near 0°C due to the presence of melting ice. The small temperature decrease along Greenland’s 
north coast is related to changes in lower tropospheric wind (not shown). Generally, a large de-
crease in the number of extremely cold days (with an average temperature below –20°C) is pro-
jected. 
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Figure 7  Simulated mean near surface (2 m) temperature change in HIRHAM4 for the difference 
between the two 30 year periods 2021–2050 and 1961–1990 for (a) winter (December-February), 
(b) spring (March-May), (c) summer (June-August) and (d) autumn. (e)-(h) Same as (a)-(d), for 
2051–2080 minus 1961–1990. 

(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 
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(a) 

(b) 

(c) 
 
 
Figure 8  (a) Changes in winter (left) and summer (right) sea ice cover for the periods 2021–2050 
minus 1961–1990 (left panels) and 2051–2080 minus 1961–1990 (right panels). Grey shading 
denotes areas with sea ice (i.e., ice concentration in a grid cell is greater than 0) both under present-
day and future conditions, white means no sea ice. Red shading denotes areas which have sea ice 
under present-day, but not under future conditions. No attempt is made to assess ice thickness. (b) 
Left: Linear trend (days/decade) in the number of thawing days for the period 1961–2080. A thaw-
ing day is defined as days with an average temperature above 0°C. Right: Time series 1961–2080 of 
the number of thawing days for model grid points near three selected locations: Nuuk/Godthåb 
(green line, denoted with “N”), Pituffik/Thule Air Base (blue line, denoted with “P”) and Ittoqqor-
tormiit/Scoresbysund (red line, denoted with “I”). (c) Sea ice concentration (in %) in March (blue 
curve) and September (red curve) for a grid point near Holm Land (81°N, 15°W, denoted with “H”).  
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The climate simulation projects a retreat of sea ice by about 100 km for 2021–2050 compared to 
present-day conditions and by a further 300–400 km by 2051–2080 (Figure 8a and b). Particularly 
large changes are projected along the east coast. This is further elucidated by investigating the 
annual number of thawing days (Figure 8c and d), here defined as days with positive average 
temperature. Linear trends of more than 20 days per decade are visible along most of the east coast. 
Other stations in the southwest and northwest also show increases in the number of thawing days, 
though considerably smaller. In accordance to the huge winter temperature increase near Svalbard 
discussed above, several winters with no sea ice at all are projected for this region towards the end 
of the period (not shown). 
 
Holland et al. (2006) discuss the possibility of abrupt transitions in September sea ice cover. In our 
simulation, there is a clear downward trend both for late winter (March) and late summer (Septem-
ber) ice cover. There are no indications of abrupt changes along the southern and western parts of 
Greenland’s coast. For the north-eastern part of Greenland, we find indications for transitions 
(Figure 8e), but more gradual than described in Holland et al. (2006).  
 

In agreement with findings in ACIA (2005) and Christensen et al. (2007a), most of the Arctic 
region north of about 60°N is projected to gain an increase in precipitation, especially Siberia, 
Scandinavia (not shown) and the north-eastern part of Greenland (Figure 9, top panel). For 2021–
2050, a precipitation increase by 15% over western and 40% over interior and eastern Greenland is 
projected. For 2051–2080, there is further increase by 30–40% over western and interior and about 
60% over eastern Greenland. Looking more in detail, we find that there is a distinct decrease in both 
snow-fall amount and frequency along the southern parts of Greenland’s coast, whereas more snow 
is projected on the lower parts of the ice sheet, in particular along the east coast (not shown). An 
investigation of snow-fall exceeding certain thresholds (Figure 9, lower two panels) reveals that 
there will be a modest increase in extreme snow-fall events by 2021–2050. For 2051–2080, this will 
only be the case in regions with an elevation of more than 1500 m due to the enhanced temperatures. 
In particular, there will be more extreme snow-fall events on the ice sheet according to the model 
simulation. The hydrological cycle is expected to intensify, as an increase in temperatures allows 
for a higher absolute humidity in the atmosphere. This increased humidity leads to an enhanced 
occurrence of orographic precipitation (not shown). This as well as an increased run-off contribu-
tion (roughly a third from land in the few areas with bare land points) will contribute to an enhanced 
freshwater supply in general.  
 
In the Arctic, the length of the growing season is one of the important factors impacting ecosystem 
processes. The timing of snowmelt in spring is determined by temperatures and snow depth. Even 
the most recent generation of GCMs allows only limited insight into changes in Greenland snow-
cover, since in most models the ice sheet is treated as passive. Taking ECHAM5 as an example, this 
means that snow is allowed to accumulate on the ice sheet until a predefined maximum snow-cover 
of 10 m is reached. Since no ablation takes place, this means in practice that the ice sheet is covered 
by 10 m of snow throughout the year. Similarly, no thawing from the ice cap is considered. Other 
models behave similarly. The coastal region where snow is allowed to accumulate in the models is 
rather narrow over most of Greenland, which means that present-day GCMs generally are of little 
use to assess changes in snow-cover over Greenland due to the coarse resolution. On the other hand, 
the high-resolution RCM simulation allows limited insight into the evolution of snow-cover outside 
the ice sheet (not shown). In all seasons, there is an increase of snow depth compared to the period 
1961–1990 over the northern half of Greenland, and a decrease along the south-western, southern 
and south-eastern coasts. The construction of coupled atmosphere-ice-ocean RCMs including three-
dimensional thermo-mechanically coupled ice sheet models is a recent development, which will 
allow to quantify the response of the ice sheet to climate change and feedback mechanisms. 
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Fig. 9 Top row: Change in annual precipitation, expressed as a percentage of present-day (1961–
1990) precipitation for (a) 2021–2050 and (b) 2051–2080. Bottom rows: Linear trend in the number 
of days (expressed as a percentage change per 100 years compared to present-day) with snow-fall 
exceeding thresholds of (c) 0.1, (d) 1, (e) 10 and (f) 20 mm/day, respectively. White areas over the 
ice sheet denote regions where no such precipitation events are simulated under present-day condi-
tions. 
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5. Local climate change in Greenland - the Zackenberg 
region as an example 
The Zackenberg Research Station is situated at 74.5°N and 21°W in the southern part of north-
eastern Greenland 25 km north-west of the “Daneborg” weather station. This high Arctic region is 
characterised by continental climate with very cold winters and generally dry conditions even 
though the region is located near the coast, since under present-day conditions the sea is frozen 
most of the time in a belt several 100 km wide. Changes in sea ice-cover will therefore be decisive 
for local climate changes in the Zackenberg area. Zackenberg is also located near the region where 
the largest temperature changes are projected according to Fig. 9. 
 

There has been considerable multidecadal variability in the strength of the Arctic Oscillation in 
recent times, and many models suggest an increase of the positive phase of the NAO for the 21st 
century (Christensen et al., 2007a). These changes will also affect Greenland. Positive indices of the 
NAO result in warmer, moister and windier conditions than normal over most of northern Europe 
and Northeast Greenland, whereas it is colder and drier than normal over the western part of 
Greenland. Even though the local effect of the NAO on temperatures at Zackenberg is rather small 
(see e.g. Jones et al., 2003 and Hanssen-Bauer, 2007), an increase in its strength will favour a 
northward retreat of sea ice in the Zackenberg region, so that continentality will decrease in North-
east Greenland in general and in the Zackenberg area in particular. This goes along with an increase 
in both temperature and precipitation, especially in winter. Consequently, climate conditions will 
change towards those in the Low Arctic with deeper snow-cover, lengthening of the melting season 
and increased variability including extended thaw periods during winter. 
 

Table 1 shows the monthly mean temperatures for Zackenberg for the three periods 1961-1990, 
2021-2050 and 2051-2080 as an average of the nearest two grid points, one of which is located over 
sea, whereas the other has a height of 560 m above sea level. To compare with local measurement, 
the lower tropospheric lapse rate (approximated by the quotient of temperature differences and 
geopotential differences between the pressure levels of 1000 and 850 hPa) needs to be accounted 
for. In summer, temperature typically decreases by 0.5°C/100m height change, whereas is winter 
and spring the vertical temperature decrease is small or temperature is even rising with height due to 
shallow inversions, while autumn lies in between. With the projected increase in windiness, such 
inversions will become less frequent, resulting in an additional warming of about 1°C in winter and 
spring of 2051-2080 caused by changes in the stratification of the lower troposphere. 
 

 
 
Table 1: Observed and modelled temperatures at Zackenberg for winter (DJF), spring (MAM), 
summer (JJA), autumn (SON) and the annual mean. The model data is an average of the two nearest 
points to Zackenberg. Changes in lapse rate and the different orography of model and station data 
have been taken into account. 
 

 DJF MAM JJA SON Year 
Observed -15.6 -11.4 4.4 -8.9 -7.8 
1961-90 -19.9 -11.0 4.5 -11.2 -9.4 
2021-50 -16.7 -6.4 3.9 -10.1 -7.3 
(2021-2050) – (1961-1990) 3.2 4.6 -0.6 1.1 2.1 
2051-80 -13.3 -3.6 4.5 -8.8 -5.3 
(2051-2080) – (1961-1990) 6.6 7.4 0.0 2.4 4.1 
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While only minor changes are projected in summer, Table 1 shows that largest temperature changes 
can be expected in winter and spring, in particular (not shown) in March and April. Further evi-
dence for these changes can be seen in Figure 8b, which elucidates that the annual number of 
thawing days (positive daily mean temperature) for the model grid point representing Zackenberg is 
projected to increase from about 80 for 1961–1990 to almost 250 for the period 2051–2080. Ac-
cording to these simulations, there will be more than 300 such days in individual years, so that the 
climate at the end of the 21st century even as far north as nearly 75°N hardly any longer can be 
characterized as “high-Arctic”. 
 

6. Conclusions 
Climate and climate change over the Arctic in general and Greenland in particular have recently 
attained much attention. Using the most recent (IPCC AR4) models and a rather large ensemble, 
there is growing confidence that the climate change signal can be separated from noise in the early 
21st century despite the large natural variability (Christensen et al., 2007a). Such a statement was 
not possible in ACIA (2005) due to the considerably smaller ensemble size, lack in spatial resolu-
tion and model deficiencies such as flux corrections. With few exceptions, the AR4 models project 
modest warming on the order of 2–3°C in the southern and larger warming (around 7°C) for the 
northern part of Greenland.  
 

We report results from a transient climate simulation at an (for Greenland) unprecedented horizon-
tal resolution of 25 km, which has been forced with a rather high resolution (T63, i.e. roughly 1.8 
degrees in latitude and longitude) coupled GCM. The regional model shows considerably stronger 
temperature increase in regions where sea ice retreats than the driving global model. An assessment 
of extreme events reveals considerably less cold (and warmer) days than under present-day condi-
tions. Largest changes can be expected along the east coast, in particular in the Zackenberg region, 
where days with a positive average temperature are projected to become the rule rather than the 
exception. Most of Greenland, especially the northeast, will experience more precipitation. At lower 
elevations, an increasing percentage of this precipitation can be expected to fall as rain instead of as 
snow as under present-day conditions. On the other hand, more extreme snow fall events than at 
present are projected on the ice sheet. Higher temperatures and increased precipitation will have a 
profound effect on the hydrological budget of the region.  
 

Arctic sea ice is responding sensitively to global warming (Meehl et al., 2007). Most AR4 models 
and also our regional simulation show significant, but smaller changes of sea ice in winter (at least 
to the middle of the 21st century) than in late summer, when sea ice is projected to disappear to-
wards the end of the 21st century due to the ice-albedo feedback and the advection of warmer waters 
into the Arctic. In the HIRHAM4 simulation, late summer sea ice around Greenland disappears 
everywhere except in the far north where, however, it is substantially reduced. 
 

While most models agree in a substantial decrease in sea ice cover during the 21st century, there are 
remaining uncertainties. Recently, Dethloff et al. (2006) showed that quite minor improvements in 
the parameterization of arctic sea ice and snow-cover exert a strong influence on arctic albedo and 
(via changes in mid-latitude storm tracks) on the climate of most of the Northern Hemisphere. 
These changes lead to an initial increase in sea ice for high latitudes under present-day conditions 
and therefore lower arctic temperatures. But for future conditions (Stendel and Christensen, in 
preparation), a considerably faster temperature increase and sea-ice decrease during the mid-21st 
century in the Arctic in general and around Greenland in particular is triggered compared to the 
standard ECHAM parameterization. It would therefore be highly desirable to extend the present 
investigation by including other models.  
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