
Danish Meteorological Institute
Ministry of Energy, Utilities and Climate

Copenhagen 2017

http://www.dmi.dk/fileadmin/user_upload/Rapporter/TR2017/SR17-22.pdf

DMI Report 17-22

Tuning the implementation of the radiation scheme
ACRANEB2

Jacob Weismann Poulsen and Per Berg

DMI Report 17-22

http://www.dmi.dk/fileadmin/user_upload/Rapporter/TR2017/SR17-22.pdf

Colophone

Serial title:
DMI Report 17-22

Title:
Tuning the implementation of the radiation scheme ACRANEB2

Subtitle:

Authors:
Jacob Weismann Poulsen and Per Berg

Other Contributers:

Responsible Institution:
Danish Meteorological Institute

Language:
English

Keywords:
performance, SIMD, OpenMP, OpenACC, GPU, HPC, exascale, NWP, ESCAPE, Xeon Phi, KNL,
NVIDIA P100, roofline, energy efficient computing.

Url:
http://www.dmi.dk/fileadmin/user_upload/Rapporter/TR2017/SR17-22.pdf

ISSN:

ISBN:
978-87-7478-674-0

Version:
1.0

Website:
www.dmi.dk

Copyright:
Danish Meteorological Institute

Tuning the implementation of the radiation scheme ACRANEB2

Jacob W. Poulsen and Per Berg
IT department, DMI

Copenhagen, Denmark
Email: jwp@dmi.dk, per@dmi.dk

Abstract—It is not trivial to write code that leads to efficient
performance on modern hardware and it becomes even more
involved if the performance has to beportable and competitive
across different architectures. This paper describes the work
that was done to improve the performance of the radiation
dwarf pertaining to the ESCAPE1 project embracing the
well-known IFS and ALADIN-HIRLAM numerical weather
prediction models. The overall idea is to demonstrate that the
implementation of the radiation scheme known as ACRANEB2
can indeed be refactored so that it runs with competitive per-
formance on modern throughput architectures such as the 2nd
generation Intel R© Xeon PhiTM processors (codenamed Knights
LandingTM) and accelerator architectures from NVIDIA. We
show that the refactored codes run significantly faster on KNL
and on NVIDIA P100 than they run on the strongest dual-
socket Intel R© Xeon system2 available on the market today. In
addition, the refactored code also runs significantly faster than
the original code on all the dual-socket Intel Xeon systems
used during this study. The parallelism itself is expressed
using directive based approaches, OpenMP and OpenACC,
respectively. We show that competitive performance is obtained
by completely different code bases and hence that performance
on a given target architecture comes from the source code
within the scope of the directives rather than from the directives
themselves. The performance results are presented astime-
to-solution and energy-to-solution and to be fair focus is on
comparing performance across hardware released in 2016. The
results of the refactored implementations are also relatedto
Moores law and cross-compared with the evolution of the
de-facto standard processor benchmarks HPL and Stream.
Finally, we show how one have to use phenomenological
modeling in order to apply the roofline model in cases like
this where transcendental functions are heavily used.

Keywords-Performance, SIMD, OpenMP, OpenACC, GPU,
HPC, Exascale, NWP, ESCAPE, Xeon Phi, KNL, NVIDIA
P100, roofline, Energy efficient computing.

I. I NTRODUCTION

Radiation physics is one of the most time-consuming
physics components in NWP today, cf. figure 1. It is an
interesting component of the physics due to its intensity in
floating point operations which is unusual in NWP models
which tend to be bound primarily by memory bandwidth.
There is a strong desire from a physics perspective to run ra-
diation physics at every timestep of the model instead of only

1http://www.hpc-escape.eu
2Intel Xeon E5-2699v4.

intermittently3 as dictated by the computational demands of
the current operational production, and this desire increases
with increasing resolution but the cost of doing so is simply
too high today. This is the overall motivation for choosing
the radiation as the physics component in the ESCAPE
project. There are several schemes available for radiation
today and the scheme chosen for this study is currently
used in production setups in the ALADIN4 community and
one that is planned for near-future setups locally where
HARMONIE-AROME is used, cf. [1]. The baseline version
of this dwarf consists of the upstream ACRANEB2 code
extracted from the full IFS code base as a stand-alone
application but with loop and index ordering interchanged
compared to the upstream implementation. TheSLOC of the
baseline dwarf is around 6.0005. The original ACRANEB2
scheme is described in [9] and [6]. Moreover, the upstream
data structures and loop nesting is described in the IFS
documentation, cf. [5].

The baseline implementation covers multiple radiation op-
tions of different complexity, and the original ACRANEB2
algorithm has support for selective intermittency too. This
means, that the upstream code includes segments that are
more or less frequently visited during a forecast simula-
tion and describes more or less advanced physics, cf. the
fourth bar in figure 1. For the present study, however, we
have chosen to dive into the implementation of the most
computationally expensive part, i.e. we choose the most
challenging path through the call tree as seen both from a
radiation science and a computer science perspective. This
corresponds to the third bar in figure 1.

Throughout this paper we use a 400x400x80 test case,
i.e. with 400 points in both horizontal directions and 80
layers in the vertical. This corresponds to the largest testcase
we could run with the baseline code on a single 64 GB node.
The target problem size for real operational, regional models
now and in near future has up to about 3 times as many
points in each horizontal direction and 65-80 layers; for
example, the largest operational setup locally at our institute
is 1200x1080x65 at present. The refactored code can easily

3In current HARMONIE-AROME configuration the radiation physics is
updated only every 12th timestep corresponding to 15 minutes intervals in
the model.

4http://www.umr-cnrm.fr/aladin/spip.php?article304
5as generated using David A. Wheeler’s ’SLOCCount’

Figure 1. Fractional split of compute time spend in radiation (red) and in
all remaining parts (blue) at a node count corresponding to areal production
run and with settings corresponding to a real production run. The red area
will increase as the number of nodes decreases and decrease as the number
of nodes increases. The first bar represents the current state where the
Morcrette radiation scheme (see [4]) is only called every 12th timestep
due to the computation resources required for each call. Thesecond bar
represents the split if the Morcrette radiation scheme was called at every
timestep and clearly shows why this is not feasible. The third bar represents
the split when the full ACRANEB2 scheme is run at every timestep and
finally, the fourth bar represents the split in the ACRANEB2 scheme using
the newly developed algorithm with intermittency that allows for a few
expensive timesteps and several less expensive timesteps.The total time
spend running the new ACRANEB2 with intermittency is more attractive
than running the current operational algorithm at every timestep but still
more expensive than can be afforded in production runs.

run such cases (not shown in this paper) on a regular 64 GB
node. Moreover, the problem as layed out in our approach
is embarrassingly parallel hence scaling to more nodes is
trivial and will not be considered in this paper.

The paper is organized as follows: First, we define our
perception of performance and explain the performance
improvement process in general terms in section II. In
section III we describe our initial refactoring and with a
detailed presentation of the performance model used during
the study placed in appendix A. In section IV we present
the basic data structures and the parallelization of the code.
Section V reveals the performance results obtained on the
different target architectures by codes specifically crafted
towards performance on each target, and we also describe
some further refactorization steps needed to bring the GPU
on a similar performance level as the Xeon Phi. Finally,
based on our work, we draw some conclusions in section VI
and suggest direction for future model development in
section VII. Build and run specifications used throughout is
placed in appendix B together with some system reference
numbers.

II. PERFORMANCE

It seems reasonable to define what we mean byperfor-
manceand to specify how we can measure it. In this context,
performanceis time-to-solutionT 2S, i.e. the seconds it
takes to complete a given task. That is,INPUT is fixed and
OUTPUT is fixed by the algorithm itself and the freedom
comes solely with the implementation of the algorithm in the

source languages as well as in the target ISA and its runtime
environment. Thus, we can not allow that results describing
the physics are changed as a consequence of our changes
in the implementation. Moreover, we will require that all
results, both with respect to the physics and more technical
measures like time-to-solution and energy-to-solution, are
reproducible. Needless to say, we actually ratecorrectness
and reproducibility higher than performance gain, and we
strive towards securing these properties at all times. Of
course, results might change numerically due to e.g. choices
of different math libraries, use of SIMD reduction instead
of scalar reduction, etc., but we always verify that we obtain
identical results from one code release to the next, also
across platforms, by performing ”safe math” experiments.
We also verify measurements like timings by repeating the
experiment many times.

Thus,performance tuningis a process where we tweak the
implementation and its build and run environment in ways
that allows us to benefit most from the silicon provided by
a given architecture vendor, keeping the results fixed. We
illustrate this in figure 2 where we seek an implementation
I within one of the two circles in the subset of the left
hand side that with a given set of build (b) and run-time
(r) environment will attaininfI,b,r{T 2S(r(b(I)))} for target
1 and target 2, respectively. The figure also hints that the
idea of portable performance is a contradiction in terms
and we will elaborate further on this in section V. The
real challenge, however, is that the infimum is not known
beforehand and the tuning process will consequently attempt
to take steps that will makeT 2S decrease until one runs
out of ideas or there is no more time to improve it further.
Performance modelling is very useful in setting reasonable
expectations and guiding this process, cf. appendix A.

The target architectures that we aim at in this study
have many similarities from an abstract point of view (see
e.g. [8]) and this allows for a portable strategy towards
optimization of the implementation. However, they arenot
identical and the devil is in the details. Eventually, one
path will improve performance further on one architecture
but will impair the performance on another. This is an
important fact that requires special attention when one tries
to compare performance across different platforms. The fact
that the strategy towards optimization has many similarities
makes it very tempting to approach the refactorization task
using a classical computer science approach with abstraction
layers etc. We tend to believe that this is a wrong approach
for legacy codes like the one considered here since the
restructuring required is simply too involved and there are
no easy routes but analyzing the entire implementation line
by line if the goal is to seriously improve the performance.
We tend to think of the continued improvement process
as depicted in figure 3. Imagine that you first shrink the
algorithm representation to a minimal amount of memory
transfers. Then the refactorization will attempt to organize

Figure 2. Implementation choices. The left hand side illustrates the set
of all possible implementations of a given algorithm with total freedom
in the choice of programming languages, parallelization models, etc. The
two subsets on the right hand side illustrate the generated codes for two
specific targets as a result of the implementation itself (I), the build and
link instructions (b) and the run-time environment (r). The aim is to reach
infimum; circles show that this is not attained by a unique combination.

all the loops such that parallel exposure is maximized while
keeping the temporary memory overhead in storage and
in transfers due to the implementation as low as possible.
Eventually, trading additional memory transfers requiredfor
further splitting of the loops will not out-weight the benefits
of added parallelism and the process will stop. This turning
point differs from one target architecture to the next. Hence,
the tuning process is much like the famous banana problem.

Worldwide, NWP codes are being refactored towards
performance on the modern throughput architectures, cf. [7].
Since different versions of the source codes optimized for
different target architectures are needed and when even
different generations of hardware are considered, a fair
comparison of performance results is a challenge and can
often be misleading. We will keep this issue in mind when
presenting performance results in section V.

III. R EFACTORIZATION STEPS

The initial optimization work aimed at ensuring a proper
threading of the code. We used our usual SPMD approach to
complete this, cf. [10]. This required a transition to Fortran-

Figure 3. The tuning process. The aim is reducingT2S as much
as possible. Extra memory transfers need be traded for more SIMD
vectorization. Splitting into more sub-loops implies increased temporary
storage to provide an interface between these which again implies extra
memory transfers that could have been handled in registers or at least in
short latency cache parts.

90 assumed-shape interfaces and that the stack memory
usage was trimmed considerably. The primary elements to
the refactorization process were ensuring contiguous data;
reduce overall stack pressure by turning local temporary
2D/3D variables into 1D/2D variables and even in a few
cases into scalars by aligning computations properly such
that temporary storage could be reduced or even omitted
completely; the largest stack arrays was moved to the heap;
proper NUMA-initialization of the heap arrays; collapsing
loops over the outermost horizontal index; assuring no
side effects in local functions (pure in Fortran); constant
variables declared as constants (parameter in Fortran).

Further refactorization consisted of reducing the memory
overhead and of pushing all branching out of the loops such
that choices between different physical conditions are made
from a top level of the dwarf. From the emerging more bare
implementation we began to shuffle computations around
to maximize the parallel exposure within each column,
guided by recognition of commonly occurring computational
patterns, cf. also appendix A. That is, we organized all
the vertical loops into sub-loops that had no dependencies
and those that did. Sub-loops with dependencies are those
that do conventional operations such as prefix-sums and
reductions. All sub-loops without dependencies was SIMD
vectorized6 and SIMD tuned, and the ones with depen-
dencies were vectorized if it seemed beneficial, e.g. using
OpenMP SIMD reductions. It should be mentioned that
prefix-sum operations can indeed be parallelized but the
parallel algorithms for prefix-sums do not work well for the
trip-counts of relevance to our applications and they were

6For complicated loops, this does not happen automatically and one needs
to tweak the code to allow the compiler to translate it into efficient SIMD
instructions.

left as minimized non-SIMD parallelized vertical loops.
Moreover, despite the fact that parallel prefix-sum operations
are easily expressed using threads there are currently no
directives in the OpenMP specification that allow for such
expressions so one would have to express them explicitly.
The result of these efforts are summarized in figure 4 and
figure 5.

Figure 4 shows the classification of sub-components that
resulted from our refactorization efforts. The time spend
in the full ACRANEB2 code (dark blue bar) is divided
between the thermal radiation scheme, calledtranst (yel-
low), and all the rest of the radiation physics (red). The
transt is clearly the most time-consuming part of the full
ACRANEB2 code. Diving into thetranst component in
the third bar, we separate that into three parts; a descending
part (1), an ascending part (2), and a triangular part (3).
The triangular part, which we shall denote bytranst3
in the following, is clearly the most expensive component,
corresponding to∼80% of the total ACRANEB2 compute
time on a dual-socket Xeon E5-26xxv4. The fourth bar
shows our final classification of the triangular part into a tiny
preparation loop, a relatively expensive prefix-sum loop, a
huge loop with high arithmetic intensity and referred to as
the fat loop from now on, and a collection of smaller SIMD
loops and non-SIMD loops.

Inside the fat loop, a large number of simple mathematical
operations and transcendental functions as shown in table I
are executed and 33 memory transfers of double precision
data are performed. Since it is a triangular double nested
loop the total trip count is((81 ∗ 80)/2 = 3240 in our
80 layers test case for each horizontal point so the total
FLOP-count becomes very large for this part of the code.

The cost of splitting thetranst component into these
sub-components is that the preparation loop must be re-
peated in each of the three parts (1), (2) and (3). However,
this preparation loop was straightforward to SIMD vectorize
and as a result time spend here was brought down to an
insignificant contribution in the full context as indicatedby
the very thin slice which can hardly be seen on top of the
fourth bar in figure 4. This is indeed well spent since it
serves for preparing coefficient arrays for the more involved
loops that follow, which can then concentrate on doing the
work they are meant to do.

Figure 5 shows that our general refactorization efforts
already look very promising on KNL, i.e. it was suffi-
cient to SPMD thread parallelize the computations over the
columns and SIMD vectorize over the vertical layers within
each column in order to obtain competitive performance
when running the complete dwarf on KNL. The actual
time portions of the individual sub-components are slightly
different on Xeon Phi than on Xeon: As expected, the non-
SIMD vectorizable parts become relatively more expensive
on Xeon Phi supporting AVX-512 than on Xeon supporting
AVX2, and this appears as the bluerest part that has not

Figure 4. Classification of the main loops resulting from ourinitial tuning
analysis. The bars indicates the portion of time that is spend in the respective
code fragments on Xeon. See text for explanation.

Figure 5. Time-to-solution when running the complete ACRANEB2 dwarf
on a dual-socket Xeon (72 threads; left) versus single-socket Xeon Phi (272
threads; right). There is almost∼2x difference in the overall performance
but there are individual performance differences seen in individual sub-
components.

been included in our major refactoring at all and in the
greentranst3_rest part that has been refactored but
still contains prefix-sum and reduction patterns.

The initial refactorization efforts allowed us to simplify
the dwarf and confine our focus to thetranst kernel and
the transt3 kernel with aSLOC around 1600 and 700,
respectively. These kernels have been ported and tuned to the
target throughput architectures (Intel Xeon Phi and NVIDIA

Table I
COUNT OF OPERATIONS/FUNCTIONS INSIDE THE FAT LOOP.

operation/ count
function
max 24
add 454
mul 308
div 48
sqrt 18
exp 14
log 8
pow 22

GPUs) of the ESCAPE project and have been evaluated
against various SKUs from the Intel Xeon E5-26xxv4 series
of CPUs released in 2016.

One of the most important steps during the continued
refactorization process was to reorganize the loops such that
the fat loop got a constant trip count. That is, in our 80
layers test case, for the triangular double nested loop with
80 iterations of varying trip count from 1 to 80, we paired
short and long loop lengths and thereby obtained a constant
trip count of 81 in the inner most loop but only half as many
iterations.

IV. DATA STRUCTURES AND PARALLELIZATION

Figure 6 shows the data-structure layout from the up-
stream code as documented in the IFS documentation,
cf. [5], whereas figure 7 shows the new data-structure layout
that we have mainly focused on in this paper. The upstream
IFS thread parallelization is as shown in figure 8 done
over the horizontal with a block granularity of tunable size
nproma. Our new thread parallelization, shown in figure 9,
is done over the horizontal too but with the fine granularity
of a single horizontal point. It is important to stress that
nproma=1 is not the same as a granularity of a single hori-
zontal point. Both thread parallelization approaches are done
using outlined constructs in order to minimize synchroniza-
tions costs and thus allowing the threads maximum freedom
for parallel work. The refactorization can be summarized as

• a significant reduction in the thread-local stack pressure
• a more fine grained thread parallel decomposition unit
• full exposure of yet another dimension of parallelism

in the algorithm itself
The first item allows us to run far more threads simul-

taneously without hitting stack limits; this is anecessary
condition that must be met if one wishes to scale the runs
to many threads. The second item allows a better load
balancing between the threads and the importance of this
again increases at scale. The third item which carefully
exposes the vertical parts that have no dependencies and
hence can run in parallel from those that have dependencies
is anothernecessarycondition for running on highly parallel
architectures, i.e. all parallelism inherited in the scheme must
be explicitly exposed to the compiler. Finally, the size of the
sub-chunks with dependencies have been minimized to allow
for as much parallelism as possible.

At this point it seems reasonable to consider if we could
benefit from reintroducing the blockedjlon-approach al-
lowing the non-SIMD innermost sub-loops to SIMD vector-
ize by re-interchanging the loops. Figure 10 is an attempt to
integrate our improvements with the upstream data structures
assuming that the complete interchange of array indices
is too time-consuming to do for the whole physics code
base at once and that one therefore in practise must do
the refactoring component by component. The cost of this
integrated approach compared to our proposal in figure 7 is

a more bulky thread-local stack frame. Needless to mention
this transition will come at a cost of higher thread stack
pressure so it would only work well up to a certain size.
With fewer threads this may not be an issue but as the
number of threads increases so does issues related to this
overhead, making it a competitive candidate on multi-core
architectures with relatively few threads per node but less
attractive on modern many-thread architectures. Thus, will
we benefit from trading the overhead introduced with the
added stack pressure with that of faster computations in the
small loops that cannot be SIMD vectorized with the new
data layout? This is an open question that we will address
in section V.

subroutine foo_orig(...,jup,jlow,klon,klev,...)
! arguments a*
real(kind=jprb), intent(in) :: a1(klon) ! size klon
real(kind=jprb), intent(in) :: a2(klon,klev) ! size klon*klev
real(kind=jprb), intent(inout) :: a3(klon,0:klev) ! size klon*(klev+1)
...
! local variables l*
real(kind=jprb) :: l1(klon) ! size klon
real(kind=jprb) :: l2(klon,klev) ! size klon*klev
...
! typical loop nest
do jlev=0,klev ! vertical loop with loop-carried dependencies

do jlon=jlow,jup ! no loop-carried dependencies
...
a3(jlon,jlev)= ...
...

enddo
enddo
...

end subroutine foo_orig

Figure 6. Fragment of the original ACRANEB2 code using Fortran-77
fixed-size dummy argument declarations implying that the actual arguments
must be contiguous in memory. If the actual argument is not ormight not be
contiguous, the semantics of the language will force the compiler to copy
the actual argument array to a contiguous temporary array and back upon
return. The innermostjlon-loop will be SIMD vectorizable by definition
and this holds for all physics subroutines whereas the outermost jlev-
loop often will suffer from loop carried dependencies. Notethe artificial
memory overhead for all stack variablesl1,l2,... at this point in the
call-tree and beyond imposed by this way of implementing theloop nests
within the physics.

V. PERFORMANCE RESULTS

We confine ourselves to present theperformanceat-
tained on the reducedtranst3 kernel. We have verified
(not shown here) that the results and the timings for the
transt3 component are the same if we perform measure-
ments on this reducedtranst3 kernel or on the more
involved transt kernel or on the fullacraneb2 dwarf,
so that there is no need to complicate things more than
necessary. Table II lists the architectures and SKUs used
in this study, and throughout this paper we shall use the
abbreviations shown in the first row of the table.

Table II
L IST OF ARCHITECTURES

SNB BDW KNL P100
µ-arch SandyBridge Broadwell KnightsLanding Pascal
Released 2012 2016 2016 2016
SKUs E5-2680v1 E5-2697v4 7210 P100

E5-2699v4 7250

subroutine foo_new(...,jup,jlow,klon,klev,...)
! arguments a*
real(kind=jprb), intent(in) :: a1(:) ! size klon
real(kind=jprb), intent(in) :: a2(:,:) ! size klev*klon
real(kind=jprb), intent(inout) :: a3(0:,:) ! size (klev+1)*klon
...
contiguous :: a1,a2,a3
...
! local variables l*
real(kind=jprb) :: l1 ! size 1
real(kind=jprb) :: l2(klev) ! size klev
...
! typical loop nest

!$acc parallel &
!$acc present(...)
!$acc loop gang private(...)

do jlon=jlow,jup ! no loop carried dependencies
!$acc loop vector

do jlev=0,klev ! vertical sub-loop with no loop carried dependencies
...
a3(jlev,jlon)= ...
...

enddo
!$acc loop seq

do jlev=0,klev ! vertical sub-loop with loop carried dependencies
...
a3(jlev,jlon)= ...
...

enddo
enddo
...

end subroutine foo_new

Figure 7. Fragment of our new ACRANEB2 code using Fortran-90
assumed-shape dummy argument declarations and with interchanged loop
ordering. The bulk of the computations in the innermostjlev-loop are
SIMD vectorizable but some are not as shown here. There are nocolumn
dependencies so the outermostjlon-loop is thread parallelizable by
definition and each thread will handle its own contiguous chunk of the
global loop over all columns. Note that the artificial stack overhead caused
by the original loop nest ordering is completely gone now.

program bar_old
...

!$omp parallel do schedule(dynamic,1) private (jkglo,ibl)
do jkglo=1,kgpcomp,nproma

ibl=(jkglo-1)/nproma+1
call foo_old(a1(1,1,ibl),) ! F77-style

enddo
...

end program

subroutine foo_old(a1,jlow,jup,klev,nproma...)
real(kind=jprb),intent(inout) :: a1(nproma,0:klev)
...
real(kind=jprb) :: l1(nproma) ! size nproma
real(kind=jprb) :: l2(nproma,klev) ! size nproma*klev
...
do jlev=0,klev ! vertical loop with loop carried dependencies

do jlon=jlow,jup ! innermost loop without loop carried dependencies
...

enddo
enddo
...

Figure 8. Fragment of how threading is implemented in upstream IFS and
HIRLAM-ALADIN codes. Unfortunately, the dwarf that we received for
this study did not have surrounding OpenMP loop and comparisons with
the original code beyond one core should therefore be treated with care.

A. Time-to-solution results

Figure 11 summarizes the best single node, core and
thread performance we attained on different Xeon and Xeon
Phi systems. It is seen that theweakestKNL significantly
outperforms thestrongest dual-socket BDW at the node
level with our refactored code. The fact that KNL at all
comes close to BDW even at the core level is due to the
strong SIMD parallelism that has been achieved as part of
the refactorization of the implementation. The boxes in the
same figure show the result of 4 years of Moores law by
cross-comparing a dual-socket SNB in the high end of the

program bar_new
...

!$OMP PARALLEL DEFAULT(shared)
call acraneb2_numainit(...)

!$OMP END PARALLEL
...

!$OMP PARALLEL DEFAULT(shared)
call acraneb2(....)

!$OMP END PARALLEL
...

end program

subroutine acraneb2(...)
...
call domp_get_domain(...,jlow,jup) ! get thread bounds
...
do jlon=jlow,jup ! chunk of horizontal loop handled by this thread

do jlev=0,klev ! innermost vertical loop
...

enddo
enddo
...
call acraneb_subr(jlow,jup,...) ! thread local calls to subroutines
...

end subroutine acraneb2

Figure 9. Fragment of how threading is implemented in our newcode.
Note that it is designed such that the load can be balanced among the
threads based on the local properties of ACRANEB2 (or other proper-
ties that one might wish to expose to the implementation) through the
domp_get_domain call. A straight-forward balancing would simply
distribute thejlon-iterations evenly among the threads but for some
physics component this could give rise to ill-balanced load. Thus, the design
allows for flexible hooks to balance the load.

subroutine foo_nproma(...,jup,jlow,klon,klev,...)
! arguments a*
real(kind=jprb), intent(in) :: a1(:) ! size klon
real(kind=jprb), intent(in) :: a2(:,:) ! size klon*klev
real(kind=jprb), intent(inout) :: a3(:,0:) ! size klon*(klev+1)
...
contiguous :: a1,a2,a3
...
! local variables l*
real(kind=jprb) :: l1(nproma) ! size nproma
real(kind=jprb) :: l2(nproma,klev) ! size nproma*klev
...
do j=jlow,jup,nproma ! no loop carried dependencies

iup = min(nproma,jup+1-j)
do jlev=0,klev ! vertical sub-loop with no loop carried dependencies

do i=1,iup ! no loop carried dependencies
jlon = j + i - 1
l2(i,jlev)= ...
...

enddo
enddo
do jlev=0,klev ! vertical sub-loop loop carried dependencies

do i=1,iup ! no loop carried dependencies
jlon = j + i - 1
a3(jlon,jlev)= ... l2(i,jlev)
...

enddo
enddo

enddo
...

end subroutine foo_nproma

Figure 10. Fragment of the new ACRANEB2 code using Fortran-90
assumed-shape dummy argument declarations and with all thesub-loop
rewrites fromfoo_new() but with the originalnproma-blocked loop
nest ordering inlined into the subroutine itself. All innermost loops are
now SIMD vectorizable and the bulk of the outermost loops areSIMD
vectorizable too. The block sizenproma is a tunable parameter that one
can used to tune the size of the individual stack-frames for performance.

SKUs released in 2012 with that of a dual-socket BDW and
single socket KNL which both emerged in 2016. Note that
there is a remarkable improvement as a result of Moores law
even at the core and thread level for our refactored code.

Figure 13 shows time-to-solution for two different refac-
tored codes on three platforms, BDW, KNL and P100. The
code refactored for the GPU target is not really suited for
the Xeon/Xeon Phi target, a property we shall come back to

Figure 11. Node, core and thread performance fortranst3 on different
Xeon and Xeon Phis for the refactored code. The cylinders cross-compare
the performance of thestrongest dual-socket BDW SKU aka E5-2699v4
(red) with that of theweakest KNL SKU aka KNL-7210 (yellow). The
boxes cross-compare a dual-socket SNB (blue) with that of BDW (red)
and KNL (yellow).

when discussing portable performance in section V-B.

To answer the question posed at the end of section IV we
summarize in figure 12 the result from using the refactored
code but retaining the original data-structures and original
loop structures and the corresponding tuneable parameter
nproma, cf. figure 10. All timings from this blended
approach are consistently higher than the timings we can
attain with our new codes, i.e. those shown in figure 13.
The performance loss that comes from the original data
organization is significant on KNL. The performance loss
is consistent but less significant on the more traditional
BDW for all values ofnproma7. This experiment suggests
that the traditional data structures and corresponding loop
structures in atmospheric models is up for a reconsideration
when one targets KNL and even BDW to a lesser extent,
though. It is interesting to note that while the conclusion
is clear for KNL, the conclusion for the P100 is less clear.
Figure 12 reveals a sweet spot fornproma=32 on P100.
It is still 15% slower than the version with the new data-
structures but the fact that none of the GPU alternatives
so far have shown competitive absolute performance makes
the nproma-version of the code another good candidate
for tuning for the P100. Actually, when we got stuck in
attempting to improve the performance on P100 further, we
turned our attention to thisnproma-candidate again and the
best GPU result shown in figure 15 in section V-D stems
from further GPU tuning of this implementation.

7Note that we had to increaseOMP_STACKSIZE in order to run with
the largernproma values

Figure 12. Thenproma experiment withtime-to-solutionrelative to the
time-to-solutionobtained for each of the three platforms with our refactored
data organization for varying values ofnproma. Again, timings are for
transt3. The GPU timings donot include PCI communication.

B. Portable performance

The source code used for all the targets is Fortran. The
baseline code was written in Fortran and the authors have
no reason to believe that code generation could be improved
by switching entirely to or by combining it with source code
written in another programming language. The paralleliza-
tion, on the other hand, is expressed using the OpenMP
programming model when targeting Xeon and Xeon Phi
and using the OpenACC programming model when targeting
NVIDIA GPUs. According to our experience the GPU does
not like to treat larger chunks at the same time since this
will lead to data spill, i.e. data that cannot reside in registers
will get evicted to global memory and if the corresponding
latencies can not be hidden the processor will simply idle.
So, for performance on the GPU we need to confine the
loops to treat smaller fractions one by one. Moreover, if
shared memory is used too then this will also limit the
number of thread-blocks that can run concurrently on the
device and again be a performance obstacle. All in all this
leads to a poor utilization of the available bandwidth, and the
GPU will be mostly waiting for data and overall performance
will suffer. Thus, the GPU tends to prefer more loop splitting
(assuming that the latencies from the additional memory
transfers resulting from this can be hidden behind real
work) whereas with KNL one would stop the splitting once
all SIMD potential is exposed and the caching system is
well utilized. Therefore,competitive performancecan not
be portable across very different architectures such as the
GPU and the Xeon Phi. The traditional Xeon line, on the
other hand, seems to be less sensitive to the number of loop
splits compared to Xeon Phi.

In order to treat all targets equal we have decided not to
focus on the code resulting from refactoring for the GPU
nor for the Xeon Phi solely since as revealed in figure 13
this could have led to too simple conclusions, especially
in the case where the refactoring was done for the GPU.
The figure also demonstrates that what one could refer to

as portable performancecan be quite far fromcompetitive
performanceso in weighting the importance of portability
versus performance one may sometimes have to choose
between a portable layout of the loops resulting inportable
performanceand a less performance portable layout of the
loops resulting incompetitive performanceon the primary
target platform. However, on the GPU, with a gap of∼12%
the performance of the Xeon targeted code is not too far from
that of the GPU targeted code in our case which could guide
the choice if one had to stick to a single code version due
to e.g. maintenance costs. This would imply that the GPU
target become less interesting since the GPU performance
is by no means competitive with this source code. In this
context it should be stressed that both code versions could be
improved further for their respective targets, thus certainly
enlarging the gap; this is shown later in section V-D for the
GPU target.

Figure 13. Time-to-solution for two different refactored codes that
both retain the same interface on three platforms. The left-hand side
shows the performance attained on the three platforms when the code
was refactored for the NVIDIA GPU target whereas the right-hand side
shows the performance attained on the three platforms when the code
was refactored for the Xeon Phi target. Timings are again fortranst3.
Note that section V-D investigates a faster version on the GPU where we
allowed the interface to change too. The GPU timings donot include PCI
communication.

C. Absolute performance

If we only presenttime-to-solutionin a relative context as
we did in the previous sections then we may cheat ourselves
by a poor baseline for performance. Thus, we now turn our
attention to absolute performance measures to put the results
into a proper context. We used the Intel SDE tool8 and
instrumented the code with an SDE portion surrounding the
fat loop within thetranst3 kernel.

Figure 14 shows absolute performance on KNL-7210
for the fat loop. The fat loop sustains approximately
800 GFLOP/s DP and 900 GFLOP/s DP on KNL-7210
and KNL-7250, respectively. Being an absolute measure,

8https://software.intel.com/en-us/articles/calculating-flop-using-intel-
software-development-emulator-intel-sde. It is our experience that this tool
is the most reliable tool to measure the FLOP-counts.

we can cross-compare it with other published numbers. For
instance, [11] shows that the fastest kernel out of 8 kernels
in the NERSC/Trinity benchmark sustains 506 GFLOP/s. In
appendix A we will treat the question if sustaining 41%-
46% of achievable peak (HPL performance) constitutes a
roof or if there is opportunities for improvements. The
good absolute performance on KNL translates to BDW too,
not directly one-to-one but in the sense that improvements
from refactoring for KNL also yields improved absolute
performance on BDW. This is the case for NVIDIA P100
too, i.e. efforts on improving for KNL also improved the
performance on P100 but as shown in figure 13 this did
not lead to competitive performance on P100 nor did the
further tunings efforts on this version of the code. A profile
on P100 confirmed (not shown here) that the GPU utilization
is limited by register usage and each SM is limited to execute
only 4 blocks simultaneously. Thus, in theory there is indeed
room for improvements on P100 if we can manage to split
the computations further and at the same time be able to
hide the memory latencies resulting from extra memory
transfers required to bind the smaller chunks together. For
this code, however, we were not able to improve it in
practice despite the theoretical potential. The totally different
nproma-candidate was much easier to improve for the GPU
target as revealed in section V-D.

The algorithm used in this chunk iscompute minimalin
the sense that all computations are necessary and sufficient
for defining the output. The algorithm delivers results in two
output arrays,O1 andO2, and is consequently not consid-
ered to bememory output minimal. On Xeon and Xeon Phi
there is sufficient cache memory available to benefit from
computingO1 andO2 in one go. On the GPU, on the other
hand, the fastest version shown in figure 15 consists of two
independentmemory output minimalchunks, one computing
O1 and another computingO2. As revealed above this split
is not sufficient so further splitting is needed and this will-
by definition - introduce additional overhead that has to be
compensated for, either by completely hiding this overhead
or by exceeding the sustained KNL performance in order to
become competitive with the KNL performance.

D. Best performance

As hinted in previous subsections we needed to tune the
GPU code variant further to utilize the GPU potential better
and achieve competitive performance. Thus, we departed
from thenproma-candidate and introduced more loop split-
ting to overcome the obstacles revealed above to create our
best performing code for the GPU target. We gained a further
∼1.9 times speedup such that instead of the 4.0 s for the
GPU to the left in figure 13 we achieved 2.1 s which is
faster than our best timing on the smallest KNL to the right
in figure 13. It should be stressed, that when running with
this more dedicated GPU code version on Xeon and Xeon

Figure 14. Absolute performance on KNL 7210 using differentmodes for
the MKL vector math library revealing that GFLOP/s is a poor performance
measure of performance for the fat loop in this particular kernel. Moreover,
we sustain 41%-46% of HPL performance for two of the 3 modes ofthe
MKL vector math library.

Phi the performance suffered seriously on the Xeons9 to a
degree much worse than apparent from left part of figure 13
due to severe cache pollution.

The best node performance that we attained on different
architectures released in 2016 is summarized in figure 15.
This is a direct head-to-head comparison of our implemen-
tations on architectures that one could purchase at the same
time. Note that in order to obtain a performance on the
GPU that is competitive with the performance on Xeon
and Xeon Phi (and vice versa) we need to handle different
refactored code versions, but when doing so, performance
become almost identical on the largest KNL and on the
largest GPU that were available for purchase at the same
time.

If one further as an experiment relaxes a little bit on
the restriction not to modify the mathematical functions
that come with the algorithm developed by renowned radi-
ation physicists, one can replace the power functionx**y
with the mathematically equivalent but numerically different
expressionexp(y*log(x)) (in Fortran, that is). The
replacement forces a more straightforward implementation
which avoids too high local memory usage by the compiler.
The result is a further∼1.25 times speedup on P100 which
we show as alternative (b) in figure 15. A similar gain can
not be achieved on Xeon or Xeon Phi where the compiler
and the performance math library (svml-ep) already are
doing a similar job. It should be mentioned that in the
testcase used here we obtained the same results with the
two formulations on P100, but this will generally, of course,
not be the case, maybe not even for the range of values
that occur in radiation physics, so one should be careful not
to draw conclusions too soon; it is out of the scope of the
present paper to question the mathematical formulas used in
the radiation code.

Note, there is a∼3x between the fastest and the slowest

9Timings increased to more than 1 minute on the BDW and 5 minutes
on the KNL, cf. left part of figure 18.

timings on figure 15 if one allows for both transposed
data structures and thereby changed interface as well as
changed mathematical formulation. It should, however, be
stressed that the performance attained is also a function of
the algorithm at hand and not just a function of the hardware
capabilities. A given algorithm may map better to some
architectures than to others and this does not imply that some
architectures are better than others. Thus, this figure does
not imply that best possible performance ofany algorithm
is always almost the same on KNL and GPU. It only shows
the status of our work on the various refactorizations of the
implementation of the ACRANEB2 algorithm.

Figure 15. Relative time-to-solution fortranst3 from the best perform-
ing code versions on the respective architectures, i.e. this is not portable
performance but a result of cross-comparing different versions of the source
code, each one explicitly crafted to target an individual architecture. For
P100, (a) and (b) are without and with algebraic rewrite of the power
function, respectively. The GPU timings donot include PCI communication.

E. Energy results

We will now treat performance using the measureenergy-
to-solution. We ran this test on E5-2697v4 and KNL-7250
without turbo mode using 72 and 272 threads, respectively
and we ran 500 iterations of the fat loop in order to get
sufficient samples for the power measurements10. The power
was measured using the method described in [3] using the
ISCoL tool. Table III presents the entire system character-
istics, including measured time and power consumption for
the fat loop.

The normalized node performance relative to the dual-
socket E5-2697v4 is summarized in figure 16 for our
refactored code and shows thattime-to-solutionis improved
by 2.4x by choosing the KNL over a dual-socket BDW
but energy-to-solutionis improved even more by 2.9x so
KNL is indeed delivering more performance per Watt. Thus,
our refactored code is more efficient on KNL compared
to on BDW than what would be suggested from the HPL
performance in table III (HPL ratio 1.57x and EER 2.32x,
respectively) both with respect to time and energy.

10This is system power measurements for the entire node, i.e. including
both CPU and memory system. Energy is power times time.

Table III
COMPARISON OFTRANST3 PERFORMANCE TO SYSTEM

CHARACTERISTICS. PERCENTAGES ARE RELATIVE TOBDW. HPL EER
IS THE HPL ENERGY EFFICIENCY RATIO, I .E. THE HPL PERFORMANCE

PERWATT, RELATIVE TO BDW. THE TWO LAST ROWS ARE

MEASUREMENTS ON THEFAT LOOP .

BDW KNL
SKU E5-2697v4 7250
HPL [GFLOP/s] 1236 1939
HPL [GFLOP/s/W] 2.26 5.24
HPL ratio [%] 100 157
HPL time [%] 100 64
HPL EER [%] 100 232

loop power [W], 500 iterations 4.59 3.71
loop time [s], 1 iteration 3.377 1.428

Figure 16. Node performance improvement normalized to BDW.Note
that the ratio exceeds the ratio obtained by HPL both in time and energy.

F. Scaling

The 400x400 setup exceeds Amdahl-99.95% strong scal-
ing and it also weak scales perfectly from 400x400 to
1500x1500 on KNL-7210 (not shown here). Thus, up-
scaling the timing so that we account for 100% and not just
the 80% accounted for bytranst3, we reach a first crude
estimate of the number of nodes needed for running a setup
of size 1200x1080x80 which in the horizontal corresponds
to the largest setup that we run in production today and in the
vertical exceeds the largest setup by 15 layers. This means
that 5 to 10 KNL-7210 nodes would be sufficient to run the
full ACRANEB2 on this large setup in 0.5 to 1 seconds.

VI. CONCLUSION

Our results suggest that investments in software develop-
ment and performance maintenance11 certainly pays off and
refactoring of legacy code may have a significant impact
on performance on modern hardware. There are multiple
arguments as summarized in the following.

11We consider a continued effort in refactoring the code to adjust to
trends in hardware evolution as a MUST for the daily maintenance of the
code. The surroundings are moving, new conditions are beingprescribed
and one will have to follow in order not to contribute to the technical debt
of the project.

First, we may draw the attention to the challenge we
started off with, namely that the radiation scheme is a
bottleneck in today’s operational NWP production, cf. fig-
ure 1. There is a vast potential for improving the current
implementation as revealed in this paper. Our completely
refactored implementation of the most expensive algorithm
outperforms the effects of improving it at the algorithmic
level, i.e. by adding support for intermittency. This software
re-factoring immediately pays off since it allows for doing
much more physics under the fixed constrains on time-to-
solution and on hardware investment as well as on the energy
budget.

Secondly, the importance of our software refactoring
becomes even more important on the newer architectures
as shown in figure 17. The baseline code was clearly
not suited for the modern throughput architectures. To be
able to run the baseline code at all on a NVIDIA GPU,
we had to do a significant amount of non-trivial code
preparation just to ensure the semantics ended up being
correctly understood by the compiler. The correctness of
this work was verified with the Cray compiler on an older
NVIDIA K20x. Further, with this modified baseline code
we had to use smaller testcases on the GPUs due to lag
of sufficient memory space and up-scale the timings to the
400x400x80 reference. The performance of this GPU-ported
baseline code is better when instead the PGI compiler is used
with similar performance on K20x (not shown) as on P100,
but unfortunately the initial results were also slightly off so
the initial preparation steps were apparently not sufficient
to obtain portable OpenACC behaviour. On Intel Xeon and
Xeon Phi the baseline code ran correctly out of the box.
The completely refactored codes gave correct results on all
the tested hardware and with all compilers tested across
all incarnations (testcase size, thread count, etc) and this
includes the OpenACC ports to the GPUs too.

Figure 17 shows that the two 2016 technologies Intel
KNL and NVIDIA P100 perform much worse than the 2012
technology (SNB) when we run the baseline code, and the
gap is significant with KNL-7210 being∼2 times slower and
P100 being∼4500 times slower than a dual-socket SNB
from 2012. However, running the refactored code on all
platforms reveals a very different picture. Now P100 and
KNL-7210 beat SNB by more than a factor of 6. For single
core, the baseline code on the 2016 Xeon technology (BDW)
beats the 2012 Xeon technology (SNB) by a factor of 1.7, but
with our refactored version the factor is more than doubled
to 3.8.

Figure 18 is showcasing the difference between portable
performance and competitive performance. In this figure
code bases X and G (which are also shown earlier in fig-
ure 13) are pretty much the same code except for the splitting
in G, while code base GNM is essentially a complete re-
write with modified data-structures, interface, loop order,
reformulation of power function, and on top of that a more

Figure 17. Time-to-solution relative to the baseline implementation on a
SNB node fortranst in the full acraneb2 dwarf. Note, the vertical
axis is logarithmic in order to embrace the range of performance results.
The baseline code performance on single nodes of different architectures is
shown to the left. Bars in the middle show the single node performance of
the refactored codes, and the right bars show the single coreperformance
of the refactored codes. Using the Cray compiler on NVIDIA GPU K20x
(brown) and the PGI compiler on P100 (blue), and the Intel compiler on
Intel BDW (red), KNL (yellow) and SNB (green). Single-core performance
is not sensible for the GPU.

Figure 18. Time-to-solution for the three different code bases on three
different architectures. X is the Xeon target code. G is the GPU target code
using the data structures as X, but with split into seven chunks. GNM is
the GPU target with transposed data structures as compared to X and G,
reformulated power function and even more splits (into 12 chunks).

involved splitting. Note, we had to use a log-axis to cover
the range of timings.

The obtained gains in performance should be seen in the
perspective of how much one can expect from the hardware
evolution, and to this end we compare node performance of
thetranst3 kernel with HPL and STREAM TRIAD node
performance relative to SNB in table IV. For BDW vs SNB
the ratios are∼4.2 and∼1.6, respectively, and thus with a
factor of ∼4.5 our refactored code performs slightly better
than expected from the hardware evolution alone. For the
smaller KNL-7210 the ratios are∼5.6 and∼5.6, and for
the larger KNL-7250 the ratios are∼5.7 and∼6.2, and our
refactored code with∼6.7 and∼7.8, respectively, performs
significantly out of these ranges which we attribute to the
fact that KNL has some of the transcendental functions

implemented in hardware12 and this part of the ISA is not
exercised by HPL. Thus, good SIMD vectorization in the
code therefore becomes even more important. For P100, the
performance improvement is better for our refactored code
than for STREAM TRIAD, and including the rewrite of the
power function the improvement factor is getting quite close
to the high HPL improvement factor, thus utilizing a major
portion of the potential performance boost from the SNB to
P100 evolution. Note, such improvements as demonstrated in
table IV can not be obtained with the baseline code for any
of the architechtures, only with the refactored code. Even
on the single core the refactorization pays off compared
to the baseline code on a full node; this holds for the
older SNB hardware too but even more on the newer BDW
and KNL. The improvements of the refactoring on newer
hardware compared to the older SNB is more than accounted
for by increased thread-count times clock-frequency, which
demonstrates the importance of proper utilization of SIMD
vectorization13. Thus, it is evident that our months on
refactoring of the code has orders of magnitude higher
impact on the performance for this code than 4 years of
hardware evolution. It is important to stress that this does
notprove lack of progress in evolution of hardware but rather
it emphasizes the issue with legacy code.

Table IV
NODE PERFORMANCE IMPROVEMENT FACTORS RELATIVE TOSNB. FOR

P100, (A) AND (B) ARE WITHOUT AND WITH ALGEBRAIC REWRITE OF

THE POWER FUNCTION, RESPECTIVELY.

Architecture HPL Stream Triad transt3
E5-2680v1 1.0 1.0 1.0
E5-2699v4 4.2 1.6 4.5
KNL-7210 5.6 5.6 6.7
KNL-7250 5.7 6.2 7.8
NVIDIA-P100 (a) 11.4 6.9 7.6
NVIDIA-P100 (b) 11.4 6.9 9.5

The improvement in time-to-solution due to our refactor-
ing for the entiretranst code and not only fortranst3
is summarized in table V and figure 17. It is interesting
but not surprising to observe that the refactoring has a
more significant impact on newer hardware than on older
hardware. It is important to stress that the improvements
at the node level are somewhat incomplete in the sense
that the dwarf that we received was single threaded. It
is also important to stress that we did not have time to
merge the fastest implementation oftranst3 on P10014

into thetranst code; completing this step will bring the
refactored node performance for the GPU to be fastest of all
the architectures considered in this paper, and in the last row
(italicized) in table V we have estimated the corresponding
improvement factor for the GPU target.

12ISA improvements in SQRT, DIV and AVX-512ER
13SNB has AVX with 4 SIMD lanes, BDW has AVX2 with 4 SIMD

lanes but also FMA, KNL has AVX-512 with 8 SIMD lanes and FMA.
14i.e. from the best performing code version shown in figures 15and 18.

Table V
REFACTORIZATION IMPROVEMENT FACTOR ON A SINGLE NODE AND ON

A SINGLE CORE FOR DIFFERENT ARCHITECTURES.

Architecture Core Node
E5-2680v1 3.3 50
E5-2699v4 3.7 110
KNL-7210 11.0 667
NVIDIA P100 N/A 7302
NVIDIA P100 N/A 17000

Based on our experience from working with operational
met-ocean models, we believe that the radiation dwarf
considered in the present paper serves as a typical example
with respect to refactoring potential for NWP components,
so for entire models we will expect that speed-up in orders
of magnitudes can indeed be achieved on modern hardware
by a deep refactoring of the entire code. It will, however,
take a huge and continued effort to deal with the technical
debts inherent in many of these models currently as well as
to prevent it from growing further as the hardware trends
evolve.

We have also shown that the process of tuning code
for different architectures is the same but also that it will
diverge eventually and one will end up with completely
different code bases in the end. To quantify the differences
in the two incomplete attempts of today (one for the GPU
target and one for the Xeon target), the relativeSLOC
difference is 50% and the size of thediff between the
two source files exceeds the size of each of the files. The
local variables in the two implementations have different
dimensions and the input/output used in one implementation
are transposed in the other implementation so even the
interfaces differ. In practice, one would consequently have
to maintain two code bases despite the fact that we have
confined ourselves to the use of directive based approaches.
Moreover, we have seen that the latency tuned architectures
are less sensitive to where we stop the splitting process and
also less sensitive to the choice of loop nest ordering. The
highly parallel throughput tuned architectures, on the other
hand, are very sensitive to this. Thus, from this particular
study we can conclude thatportable performanceis quite
far from competitive performanceand we need to be very
cautious when cross-comparing performance obtained on
KNL vs GPU. One could have chosen to stop refactoring
at the simplest code X in figure 18, claiming that one code
base is sufficient, sacrificing competive performance on the
GPU for increased portability and maintenance costs. There
is already some orders of magnitudes gain in performance
on both KNL and P100 using the X target code compared to
using the legacy code, cf. figure17, so it might be tempting to
stop the refactoring process here. But if performance really
matters we would have to discriminate the refactoring. We
can certainlynot expect that we can just decorate the very
same code base both with OpenMP and OpenACC directives

and then get code generated that will run efficiently on
both targets. Numerous attempts on a pure OpenMP and
OpenACC directive approach using the very same code
base have been made by the present authors and their
collaborators, and failed.

Finally, we have seen that refactoring of legacy codeis
indeed required for getting performance out of investment in
newer hardware, and with refactored code we can improve
time-to-solutionby choosing one of the new highly-parallel
and throughput tuned architectures but we have also seen
that on top of this we gain even more performance improve-
ment if the metric is energy. Thus, it seems obvious to us
that we have to prepare our entire workload such that it
will be able to embrace the future technologies. There is a
vast potential in legacy codes that will be revealed when we
start to invest in refactorization and we saywhenand notif
because the latter - to the best of our knowledge - is not a
sustainable option.

VII. F UTURE DIRECTIONS

Our refactorization plan follows a pattern that is directly
applicable to all the other physics components in IFS and
ALADIN-HIRLAM systems too, thus accounting for about
half of the total runtime in today’s operational NWP models.
As we have shown earlier in a previous study, cf. [2], it is
indeed possible to refactor the more involved dynamics too
and thereby the entire model which would require a new in-
depth analysis of the current implementation of dynamics.

It is an open question if it would pay off combining the
improved algorithm using intermittency with our improved
implementation of the expensive step and reap the harvest
from both improvements simultaneously. This will for sure
increase maintenance costs and there might not be gain in
physics results so the gain in time-to-solution should be
significant to justify such an approach.

Our present study also revealed a significant use of
transcendental functions and we demonstrated that a straight-
forward reformulation of the power function could lead
to a 20% gain. So, an obvious question would be if one
could relax on the mathematical physics formulation by
substituting the use of these functions with purpose build
Padé polynomials instead to gain even more. Finally, as the
resolution scale becomes even finer, it also seems relevant
to investigate multi-grid strategies and our colleagues have
actually pursued this idea further.

ACKNOWLEDGMENT

The authors would like to thank Ján Mašek, ONPP/CHMI,
Kristian Pagh Nielsen and Bent Hansen Sass, DMI for
not just providing us with the wrapped dwarf code, the
corresponding test cases and input for figure 1 but also for
countless discussions on radiation physics. Moreover, we
wish to express our gratitude to Karthik Raman, Ruchira
Sasanka and Michael Greenfield, Intel, Peter Messmer and

Stan Posey, NVIDIA and John Levesque, Cray for their
great support of this study. Special thanks go to Alan Gray,
NVIDIA for analysis of the register usage in thetranst3
kernel and for pointing out the advantage of reformulating
the power function for the P100. Thanks to numerous
people in the HPC and NWP communities for commenting
constructively on various early drafts of the manuscript.
Thanks to Cray for allowing us to use the Marketing Partner
Network systemswan, to Intel for allowing us to use the
Endeavour cluster and to NVIDIA for allowing us to
use theirPSG cluster to complete this study. The ESCAPE
project has received funding from the European Unions
Horizon 2020 research and innovation programme under
grant agreement No 671627.

APPENDIX

A. Roofline analysis

Roofline analysis is centered around a definition ofoper-
ational intensityand a sometimes naive throughput assump-
tion and it often serves as a valuable tool in guiding code
optimization work. For any given implementationI, one
may calculate the operational intensityJ(I) = W (I)/Q(I)
defined as the ratio between the workW to the memory
traffic Q. A common metric for work is FLOP-count and a
common metric for memory traffic is number of bytes being
moved in which case intensity will be the arithmetic intensity
denoted AI and measured in FLOP/byte. The naive roofline
model uses achievable peak bandwidthBmax sustained by
the stream triad benchmark and achievable peak performance
Pmax sustained by HPL to limit the performance ofI by
P (I) = min(Pmax, J(I) × Bmax). Measuring sustained
performance ofS(I) and cross-comparing this with the com-
putedP (I) may sometimes reveal room for improvements
for the implementationI at the platform given implicitly
by (Bmax, Pmax). In cases dealing with fat loops, the I1
instruction cache may be too small to hold the loop and if
that happens, thenPmax will be too optimistic. Moreover,
successive iterations of the loop can only overlap by a small
relative amount ifI is fat and the throughput assumption will
not hold true. Instead, the true in-core execution is dictated
by the critical path execution time and hencePmax will
again be too optimistic.

Roofline analysis is useful and reasonably accurate when
the implementation mainly contains simple operations that
translate directly to hardware instructions, e.g.ADD and
MUL. It is is less suited for comparing different implemen-
tations of different algorithms nor is it simple to use in
cases where the implementation contains many complicated
operations.

For this particular kernel, we have already revealed that
the main loop is rather packed with complicated transcen-
dental functions, cf. table I. Nevertheless we will attemptto
construct a performance model for the fat loop and use it in
the context of roofline analysis.

1) Roofline analysis to guide code refactoring:In sec-
tion III we described the initial refactoring in kind of a hand-
waving way, but one could also describe the process using
a more formal roofline-based argumentation. For example,
cf. upper part of figure 19, analysis of legacy codes will often
reveal an inner loop with a contents which is recognized as a
mixture of a non-SIMD patterns and some SIMD patterns.
In this particular case, the prefix-sum will prevent SIMD
vectorization thus spoiling performance of the entire loop.
If nf and nb denotes the number of FLOP and BYTEs,
respectively, referenced in the functionfoo, the arithmetic
intensity of the mixed loop will be(nf + 1)/(nb + 3 ∗ 8),
assuming 8 byte reals. In the refactored code, cf. lower
part of figure 19, the loop has been split into an explicit
prefix-sum loop and a SIMD vector loop for the remaining
part. The prefix-sum loop has a very low AI of only
1/(3 ∗ 8) ≈ 0.04 but will be able to run at full memory
bandwidth, or possibly even directly out of the cache. The
AI of the SIMD loop isnf/(nb + 3 ∗ 8) which is slightly
lower than the AI of the mixed loop, but this is insignificant
for performance whennf is relatively high, i.e. especially
when the SIMD loop is fat. What is important here is that
this loop will now SIMD vectorize and we can sustain much
better utilization of the hardware for the refactored code,
even when some portions are inherently non-SIMD friendly.

!- mixed-loop code with a hidden prefix-sum pattern -------
sum = 0.0_jprb
do i=1,n

sum = sum + z(i)
a(i) = foo(sum, ...)

enddo

!- refactored code w/loop split ---------------------------
!
! explicit prefix-sum:
zsum(0) = 0.0_jprb
do i=1,n

zsum(i) = zsum(i-1) + z(i)
enddo
!
! SIMD vector loop:
do i=1,n

a(i) = foo(zsum(i), ...)
enddo

Figure 19. Sketch of pattern identification and the following loop splitting
in a typical refactorization process. The loop-carried dependency in the first
loop will prevent SIMD vectorization. It is assumed that thefunction foo
has no dependencies or side-effects (pure function in Fortran) and
that it can be inlined.

2) Establishing a performance model:First, we notice
that the fat loop contains a vast number of long-latency
operations (DIV andSQRT), and of transcendental functions
(POW, EXP, LOG) with corresponding FLOP-counts being
highly implementation-, context- and argument-dependent.
So, even if we could translate each operation or function
into an equivalent FLOP-count on a given platform we
must be aware that the issues like pipelining of instructions,
latency, dependencies and argument range may obscure the
performance model, making it more crude and maybe even
less useful in practice.

Then, we created series of small stand-alone kernels, one

for each operation that is considered. We used the Craypat
tool with both the Intel compiler and with the Cray compiler
on BDW and KNL to estimate the FLOP-count for each of
these kernels on each platform and thereby we are able to
translate the results into a representative FLOP-count for
each operation. The consistency of this approach was then
tested by repeating the experiment using the Intel SDE tool
with the Intel compiler on BDW and KNL. The results of
these experiments are shown in tables VI - VII. We show
FLOP-counts for the simple operations and transcendental
functions that appear in the fat loop. In table VI the results
are from using the Intel compiler on BDW (upper part) and
KNL (lower part) and both the Craypat tool (left) and the
SDE tool (right). We have here considered the four MKL
variants, i.e. the serial libm and the three vector modes svml-
ha, svml-la and svml-ep15. In table VII the results are from
using the Cray compiler on BDW (left part) and KNL (right
part) and the Craypat tool. Also, different math translations
are considered through different choices of compiler flag,
-O0 and-O2, respectively.

As expected the obtained FLOP-count for the transcen-
dental functions varies with choice of math library. With the
Intel compiler, the results obtained with Craypat are very
consistent with the results obtained from SDE on BDW but
not on KNL; also note here that except for the simplest
operations the vector modes of MKL have relatively high
FLOP-counts on KNL even for the fast low-accuracy (la)
and extended-performance (ep) modes. Moreover, the results
with the Cray compiler are consistent with the results with
the Intel compiler on BDW (both using Craypat), but on
KNL the results differ quite a lot. Finally, it must be stated
(not shown) that the FLOP-count obtained in this way is of
course heavily dependent on the actual values of the argu-
ments to the functions, and we have here limited ourselves
to show only results obtained with some ”representative”
argument values.

Note that on KNL, theDIV operation is converted to
”MUL 1/x” with mode la and ep, and this explains the jump
from 1 FLOP to 6 FLOP in the SDE Intel runs. It is expected
that something similar but not quite the same happens with
the Craypat tool using the Intel compiler (8 FLOP for mode
la and ep).

This exercise so forth just demonstrates that it will be
necessary to operate with a different set of FLOP-count
numbers for functions from different math libraries and that
care should be taken before relying too much on these
FLOP-count numbers as a basis for code optimization like
e.g. in roofline analysis.

Assuming that partial FLOP-count numbers have been
collected for each considered operation and function, then
it is simply a matter of using these to build a performance

15https://software.intel.com/sites/products/documentation/doclib/mkl/
vm/vmdata.htm

Table VI
FLOP-COUNT EXPERIMENT USING THEINTEL COMPILER.

BDW, Craypat tool BDW, SDE tool
libm ha la ep libm ha la ep

max 1 1 1 1 1 1 1 1
add 1 1 1 1 1 1 1 1
mul 1 1 1 1 1 1 1 1
div 1 1 1 1 1 1 1 1
sqrt 1 1 1 1 1 1 1 1
exp 19 20 14 10 19 21 14 10
log 25 21 16 12 24 23 19 15
pow 55 64 47 21 55 64 49 22

KNL, Craypat tool KNL, SDE tool
libm ha la ep libm ha la ep

max 2 2 2 2 1 1 1 1
add 1 1 1 1 1 1 1 1
mul 1 1 1 1 1 1 1 1
div 2 16 8 8 1 1 6 6
sqrt 2 15 15 15 1 14 14 14
exp 88 17 16 11 19 23 22 13
log 66 29 22 21 28 34 28 19
pow 201 77 72 41 55 78 72 40

Table VII
FLOP-COUNT EXPERIMENT USING THECRAY COMPILER.

BDW, Craypat tool KNL, Craypat tool
-O0 -O2 -O0 -O2

max 1 1 4 2
add 1 1 1 1
mul 1 1 1 1
div 1 1 2 16
sqrt 1 1 19 16
exp 18 18 130 16
log 19 19 241 29
pow 190 95 1769 195

model for a loop: Add up the operations weighted by their
respective occurrence count. Divide this total FLOP-count
by the number memory transfers that you have in the loop
to obtain the AI. In our case, as shown in tables VIII - IX,
we obtain AI values from∼6 with svml-ep from Intel MKL
on BDW to a staggering∼170 using low optimization with
the Cray compiler on KNL. A typical application would
use the more safe math for precision and accuracy studies
during testing and development but jump to faster but lower
precision (e.g. svml-la reached through the compiler flag
-fimf-precision=medium for performance runs, and
in these cases the AI from our performance model is∼8-10
for the loop. Arithmetic intensities of this order is very high
compared to what is usually seen for loops in NWP models,
thus deserving its fat loop label.

3) Tool vs model:The applied tools, i.e. Craypat and
SDE, can of course be used to directly measure the FLOP-
count for the loop in question. One might even be so lucky
that tools can be applied to profile performance of smaller
fragments in a real context and obtain reliable results. But,
honestly, it is our experience that this is not always the case
and we also encourage to treat such measurements with great

Table VIII
ARITHMETIC INTENSITY (AI) AND FLOP-COUNT FOR THE FAT LOOP

USING THE INTEL COMPILER. PM IS GFLOP/SIN THE LOOP FROM OUR
PERFORMANCE MODEL, TM IS GFLOP/SMEASURED BY THE TOOL,

DEV IS DEVIATION BETWEEN PM AND TM IN %.

BDW, SDE tool BDW, Craypat tool
libm ha la ep libm ha la ep

AI 9.7 10.4 8.7 6.2 9.7 10.3 8.4 5.9
PM 41.3 44.6 37.4 26.3 41.5 44.0 36.0 25.3
TM 37.9 43.9 36.2 24.4 38.8 44.0 35.3 23.8
DEV -8.1 -1.4 -3.1 -7.2 -6.6 0.0 -1.9 -5.9

KNL, SDE tool KNL, Craypat tool
libm ha la ep libm ha la ep

AI 9.9 13.1 13.2 9.8 26.5 15.5 13.2 10.2
PM 42.2 56.1 56.3 41.7 113.3 66.2 56.4 43.6
TM 38.9 54.1 54.6 40.4 107.9 65.1 55.6 41.7
DEV -8.0 -3.6 -3.0 -3.1 -4.7 -1.6 -1.5 -4.5

Table IX
ARITHMETIC INTENSITY AND FLOP-COUNT FOR THE FAT LOOP USING

THE CRAY COMPILER. PM IS GFLOP/SIN THE LOOP FROM OUR

PERFORMANCE MODEL, TM IS GFLOP/SMEASURED BY THE TOOL,
DEV IS DEVIATION BETWEEN PM AND TM IN %.

BDW, Craypat tool KNL, Craypat tool
-O0 -O2 -O0 -O2

AI 20.6 12.7 170.5 25.3
PM 88.2 54.3 729.1 108.4
TM 89.8 51.6 729.1 121.2
DEV 1.9 -5.1 0.0 11.8

care.
The performance model described in the previous subsec-

tion is based on measuring the individual FLOP-count for
each function, and this may come handy during development
when one e.g. tries to implement a new code piece by
piece or tries to optimize legacy code, while keeping focus
on performance. We do, however, need to verify that this
approach is good enough for the specific purpose at hand.
We expect that our performance model is crude, but if we
should be able to use it in a larger context, our model must
still be sufficiently reliable under the conditions described
(i.e. system by system, library by library, argument by
argument, ...).

We have compared our performance model with results
from the tools. Tables VIII - IX show the total FLOP-count
in GFLOP/s for the loop in a semi-real context (the test case
was tuned to 500 iterations of a 1x10x80 grid configuration
in order to satisfy the tools). The overall picture is that our
performance model in this case explains pretty much all the
FLOP measured by the tools, and most of the runs using the
more optimized libraries are within∼5% (again disregarding
the model result from using Cray compiler on KNL which
is ∼12% off in the fast version).

4) Roofline analysis for the fat loop:In figure 20 we
show some selected results from roofline analysis of the
loop in full context using the performance model. The
model grid size is 400x400x80 which we were not able to

profile in a reliable way with the Craypat tool and therefore
we had to stick to our performance model. Since the test
case is supposed to mimic a realistic situation we have
used the performance library MKL svml-la, but we have
for comparison also showed one result using the serial
MKL libm. Actually, this serial result is placed higher in
the roofline diagram and therefore has a better FLOP/s
performance than the results using the vectorized library on
the same node and on a smaller BDW node, but does this
then mean that the performance number that really matters,
i.e. the time-to-solution, also is better?

Figure 20. Roofline diagram showing some selected results. Green color
is used for KNL-7250, orange is for KNL-7210, red is for E5-2699v4 and
blue is for E5-2697v4. Horizontal lines are from the HPL benchmark while
the sloping lines are from the STREAM TRIAD benchmark, cf. table X.
Markers are results obtained from the performance model using the Intel
compiler and the maximum number threads on each SKU, i.e. 272on
the KNL-7250, 256 on the KNL-7210, 88 on the larger BDW and 72 on
the smaller BDW. Results from the performance library MKL svml-la are
shown as circles using SDE and as triangles using Craypat. The square
marker indicates the result from using Craypat and the default MKL libm
library.

No, obviously not. In figure 21 we compare the time-
to-solution from using the vector MKL svml-la on all four
SKUs with that of using the serial MKL libm on the largest
BDW. From this figure it is clear that MKL libm on the 88
thread BDW is slower than the rest, a conclusion that can
not be drawn clearly from figure 20. This demonstrates that
roofline on its own can be of limited use as a performance-
measuring tool in these more involved contexts. However,
the 272 threads KNL-7250 is best performing according
to both roofline and time-to-solution. On the smaller KNL
our implementation sustains∼41% of the HPL performance
both with svml-la as shown in figure 20 and with svml-ep
as shown in figure 14. On the larger KNL it reaches∼46%.
The AI is 13.2 on the KNLs. On the two BDWs, however,
AI is 8.7 which is on the left hand side of the knee of the
roofline and thus STREAM TRIAD is the proper measure
here; our implementation sustains∼26% and∼30% of the
STREAM TRIAD performance on the smaller and larger

BDW, respectively.

Figure 21. Time to solution for four selected cases using theIntel compiler:
The circular bars are from using the performance library MKLsvml-la on
the four platforms, while the square bar is from using the default library
MKL libm on the large BDW. Color of the bars correspond to the color of
the markers in the roofline diagram in figure 20.

B. Build and Run specifications

Figure 22 summarizes the build instructions and figure 23
summarizes run instructions inBASH-syntax for Xeon/Xeon
Phi and NVIDIA, respectively. Theifort compiler
versions used was17.0.1.132 Build 20161005
whereas thepgi compiler version used was17.4-0 and
the cce compiler was version8.5.8. We usedturbo
mode on all SKUs but E5-2697v4. For the KNL systems,
this benchmark is so highly flop bound that it is neutral to
whether it runs out of DDR or MCDRAM and also neutral
to whether we run in flat or cache mode. As for KNL kernel
configurations, we found thatCONFIG_HZ_250=y gave
slightly better timings thanCONFIG_HZ_1000=y.

Finally, table X summarizes the HPL and Stream Triad
numbers used for roofline analysis and for evaluations of
the absolute performance sustained. The numbers for Intel
hardware were received from private correspondence with
Intel while the NVIDIA P100 numbers were obtained from
a Dell published study16 and from private correspondence
with NVIDIA.

The authors are strong supporters of Nature’s theme on
transparent and reproducible science and code sharing17 and
welcome anyone to contact us if they are interested in the
implementations mentioned in this paper.

REFERENCES

[1] Lisa Bengtsson, Ulf Andrae, Trygve Aspelien, Yurii Ba-
trak, Javier Calvo, Wim de Rooy, Emily Gleeson, Bent
Hansen Sass, Mariken Homleid, Mariano Hortal, Karl-Ivar

16http://en.community.dell.com/techcenter/high-performance-
computing/b/generalhpc/archive/2017/03/14/application-performance-
on-p100-pcie-gpus

17https://www.nature.com/polopolyfs/1.16232!/menu/main/topColumns/
topLeftColumn/pdf/514536a.pdf

tar -zxvf dwarf-transt3_v<version>.tar.gz
cd dwarf-transt3_v<version>

bdw/knl
BDW_TARGETF="-xCORE-AVX2"; KNL_TARGETF="-xMIC-AVX512"
TARGETF=<your_choice>
Fep="-O2 $TARGETF -ipo -fimf-precision=low -fp-model fast=2"
Fla="-O2 $TARGETF -ipo -fimf-precision=medium"
Fha="-O2 $TARGETF -ipo -fimf-precision=high"
FCFLAGS=$Fep FC=ifort ./configure --enable-openmp --host=x86_64-linux-gnu
make

p100
TAF_DEFAULT="-ta=nvidia"; TAF_MAX80REGS="-ta=nvidia,maxregcount:80"
TAF=<your_choice>
F="-mp $TAF -acc -fast -Minline=levels:3 -Mcuda=cuda8.0 -Mcuda=fastmath"
FCFLAGS=$F FC=pgf90 ./configure --enable-openmp --enable-openacc && make

Figure 22. Build instructions for reproducing the builds used in this paper.

tar -zxvf dwarf-transt3_testcase.tar.gz
cd dwarf-transt3_testcase

#bdw/knl, cray system
export OMP_NUM_THREADS=<threads>; export KMP_AFFINITY="disabled,verbose"
aprun -n1 -N1 -d<threads> -j2 -cc depth dwarf # bdw
aprun -n1 -N1 -d<threads> -j4 -cc depth dwarf # knl

#bdw/knl, non-cray system
export OMP_NUM_THREADS=<threads>; export KMP_AFFINITY="compact,verbose"
dwarf

#p100
export OMP_NUM_THREADS=1
srun dwarf

Figure 23. Run instructions.

Ivarsson, Geert Lenderink, Sami Niemelä, Kristian Pagh
Nielsen, Jeanette Onvlee, Laura Rontu, Patrick Samuels-
son, Daniel Santos Muñoz, Alvaro Subias, Sander Tijm,
Velle Toll, Xiaohua Yang, and Morten Ødegaard Køltzow.
The HARMONIE–AROME Model Configuration in the
ALADIN–HIRLAM NWP System. Monthly Weather Review,
145(5):1919–1935, 2017.

[2] Per Berg, Karthik Raman, and Jacob Weismann Poulsen.
Complete HBM model runs on Intel Xeon processors and
Intel Xeon Phi processors - part I. Technical report, DMI,
Copenhagen, 2016.

[3] W. Michael Brown, Andrey Semin, Michael Hebenstreit,
Sergey Khvostov, Karthik Raman, and Steven J. Plimpton. In-
creasing molecular dynamics simulation rates with an 8-fold
increase in electrical power efficiency. InProceedings of the
International Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’16, pages 8:1–8:14,
Piscataway, NJ, USA, 2016. IEEE Press.

[4] ECMWF. Part IV: Physical Processes. IFS Documentation.
ECMWF, 2013.

Table X
HPL AND STREAM TRIAD PERFORMANCE REFERENCE NUMBERS.

Architecture HPL Stream Triad TDP
[GFLOP/s] [Gbyte/s] (W)

E5-2680v1 343 79 260
E5-2697v4 1278 126 290
E5-2699v4 1446 127 290
KNL-7210 1933 440 215
KNL-7250 1971 490 215
NVIDIA-P100 3900 540 300

[5] ECMWF. Part VI: Technical and Computational Procedures.
IFS Documentation. ECMWF, 2016.

[6] J.-F. Geleyn, J. Mašek, R. Brožková, P. Kuma, D. Degrauwe,
G. Hello, and N. Pristov. Single interval longwave radiation
scheme based on the net exchanged rate decomposition with
bracketing. Quarterly Journal of the Royal Meteorological
Society, 143(704):1313–1335, 2017.

[7] Mark Govett, Jim Rosinski, Jacques Middlecoff, Tom Hen-
derson, Jin Lee, Alexander MacDonald, Ning Wang, Paul
Madden, Julie Schramm, and Antonio Duarte. Parallelization
and Performance of the NIM Weather Model on CPU, GPU
and MIC Processors.Accepted for Bulletin of the American
Meteorological Society, 2017.

[8] Brent Leback, Douglas Miles, and Michael Wolfe. Tesla
vs. Xeon Phi vs. Radeon - A Compiler Writer’s Perspective.
In CUG Conference Proceedings, CUG 2013, Napa Valley,
California, USA, 2013.

[9] J. Mašek, J.-F. Geleyn, R. Brožková, O. Giot, H.O. Achom,
and P. Kuma. Single interval shortwave radiation scheme
with parameterized optical saturation and spectral overlaps.
Quarterly Journal of the Royal Meteorological Society,
142(694):304–326, 2016.

[10] Jacob Weismann Poulsen, Per Berg, and Karthik Raman.
Chapter 3 - Better Concurrency and SIMD on HBM. In
James Reinders and Jim Jeffers, editors,High Performance
Parallelism Pearls: Multicore and Many-core Programming
Approaches, volume 1, pages 43 – 67. Morgan Kaufmann,
Boston, MA, USA, 2015.

[11] Antonio C. Valles, Chuck Yount, and Sundaram Chinthamani.
Chapter 25 - Trinity Workloads. In James Reinders, Jim
Jeffers, and Avinash Sodani, editors,Intel Xeon Phi Processor
High Performance Programming Knights Landing Edition,
pages 549–579. Morgan Kaufmann, Boston, MA, USA, 2016.

