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1. Introduction
The goal of physical parameterization in numerical models of the atmosphere is to ad-
equately describe the physical processes in the atmosphere. These processes occur to
a large extent on a sub-grid scale which the model cannot otherwise compute due to a
lack of model resolution.

The present report is concerned with an important and complex part of physical param-
eterization, namely the description of subgrid scale condensation of water vapor with as-
sociated phase changes, and the formulation of precipitation plus evaporation processes,
hereafter referred to as CCPE processes = (Convection -Condensation - Precipitation -
Evaporation). A specific scheme for describing these processes will be documented in
detail. This scheme is being developed in collaboration with the HIRLAM community
(Lynch et al., 2000), and a version of the scheme is used operationally at the Danish
Meteorological Institute (DMI). The scheme has novel features related to cloud param-
eterization and the treatment of precipitation release.

When decribing cloud physics in atmospheric models an important point is that the
condensation and precipitation processes are strongly dependent on both resolved scale
motions described by the model dynamics and subgrid scale motions on all scales from
the convective cloud motions over the full depth of the troposphere down to the smallest
turbulent scales. In the present context this means that the computations related to
the CCPE processes are dependent on the formulation of the model dynamics and tur-
bulence of the HIRLAM forecasting system (Sass et al., 2002; Undén et al., 2002) The
vertical transport processes are by far the most important to parameterize due to the
presence of the earth’s surface as a boundary for vertical fluxes and the large vertical
gradients of most meteorological parameters. However, when approaching the scale of
about 1 km , the socalled cloud resolving scale, the importance of the lateral subgrid
scale transports increases.

When developing a parameterization of CCPE processes several problems or questions
emerge:
It is a question how the whole range of subgrid scale transports can be adequately
described. Practically all schemes developed for atmospheric models in the past dis-
tinguish between ‘turbulence parametrization’ and ‘convection parameterization’. The
former describes the small scale transports up to a dimension of a few hundred metres
while the latter describes vertical transports extending up to the full depth of the tropo-
sphere. It is often questioned whether the turbulence scheme and the convection scheme
each describe separate scales of the subgrid transports leading to worries about possible
‘double counting’ the heat and moisture transports.

It is normally assumed that parameterization can be made from model parameters de-
fined for a given grid square or an air column vertically above a surface grid square.
However, this assumption becomes increasingly problematic as the grid size becomes
small. This problem shows up when treating deep convection since a convective cloud
sometimes move horizontally by more than one grid distance during its evolution cycle.
A similar problem occurs in relation to precipitation release from high elevations where
the precipitation particles may travel several grid distances ‘downstream’ before reach-
ing the ground. Also the assumption in many large scale models that an ensemble of
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convective clouds exist in balance with the large scale forcing breaks down as the grid
size is reduced towards the cloud scale. Hence it appears that the parameterization of
the CCPE processes in connection with convection are particularly difficult.

The condensation processes in a statically stable atmosphere inside a grid box desribed
by a ‘stratiform’ condensation scheme is also influenced by subgrid scale motions giv-
ing rise to subgrid scale condensation (partial cloud cover). As the grid size becomes
smaller, however, the amplitude of the subgrid moisture variations becomes smaller and
must decrease towards zero as the grid size goes towards zero. One may claim that the
subgrid parameterization should automatically include assumptions about the scale de-
pendency of the process description even if it is difficult to prove the validity of a specific
scale dependency. It is often difficult to validate which formulations should be preferred
by means of solid observational evidence. The results of very high resolution large-eddy
simulations might be a tool to validate proposed scale dependent formulations. The
alternative is to make specific model tuning of various parameters when changing the
model resolulion. In recent years international comparisons have been useful as a guid-
ance, e.g., the GEWEX (Global Energy and Water Cycle Experiment) cloud system
study (GCSS).

There have been many approaches during the past decades to describe the processes
connected to clouds and condensation. This is partly because of the large amount
of subjects involved in the CCPE process description. In the HIRLAM community a
revview has been written on the use of convection schemes in mesoscale models (Bister,
1998). One trend has been to apply mass flux concepts to parameterize convection. It
may be argued that a mass flux approach is more physically based than are formulations
relying on alternative approaches. However, the details of the processes governing the
evolution of mass fluxes are not well known.

For the socalled stratiform condensation process in a statically stable atmosphere the as-
sumtions on the character of the subgrid scale condensation influences the microphysics
including precipitation release.

Section 2 to section 4 contain a documentation of a research version of the operational
cloud- and condensation scheme used at DMI. The scheme is named STRACO which
stands for ‘Soft TRAnsition COndensation’ (gradual transitions between convective and
stratiform regimes).
The prognostic model variables used by the scheme comprise specific humdidity q, cloud
condensate qc, temperature T , the horizontal wind components u and v and the surface
pressure ps. In addition, a vertical velocity is used.
Section 2 is devoted to a description of the convection scheme. Section 3 is concerned
with the subgrid scale cloud parameterization and the ‘stratiform’ condensation process.
Section 4 contains a desciption of the microphysics involved, including parameterization
of phase changes and physics related to precipitation release. A brief discussion and
concluding remarks are finally provided in section 5.
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2. Parameterization of convection
Currently the operational convection scheme is based on a moisture budget closure. This
implies that the moisture source from the model’s dynamics and turbulence scheme dur-
ing a physics time step may be redistributed in a convective air column leading to heating
and moistening. For the basic redistribution to become active it is assumed that the
total vertically integrated supply of humidity should be positive. In this respect the
scheme may be viewed as a further development of ideas expressed by Kuo (1974). The
reasoning behind this type of closure is that a substantial convective activity needs a
moisture source (moisture ‘convergence’) to be sustained. In the present scheme the
treatment of the moisture convergence includes the effect of surface evaporation flux.
The vertical transports include a formulation of the vertical redistribution of cloud con-
densate since ‘prognostic cloud water’ is a feature of the scheme.
Convection can start from any level in the atmosphere provided that the onset of con-
vection is supported by the model’s cloud ascent formulation. Some convection schemes
treat only deep convection originating from the lowest model layer.
Also fluxes of moisture and heat across the interface to the stable atmosphere above
the convective entity are taken into account. Moreover, the precipitation release formu-
lation differs radically from the parameterization in schemes which do not have ‘cloud
condensate’ as a prognostic variable.

Before describing the equations connected to the convective closure the method to assess
the moist convective part(s) of the atmosphere will be described.

2.1. Determination of convective entities

The convective part of the STRACO scheme defines vertical sections of the atmosphere
which form convective ‘entities’. The vertical extent of a convective entity is determined
by adiabatic cloud ‘parcel’ lifting including latent heat release. The cloud parcel starts at
the bottom of a new part of the atmosphere to be investigated for convective instability,
using a trigger perturbation temperature and specific humidity, respectively. A weak
resolution dependence of the perturbations is suggested. The perturbations are defined
in (1) and (2). It is seen that the perturbations goes to zero as the grid size goes towards
zero which is the governing constraint.

∆Tper =
1

a1 + a2 ·
√

DT
D

(1)

∆qper = a3 · qk ·
√

D

DT
(2)

a1 = 0.6K−1 and a2 = 0.5K−1, a3 = 0.02 DT = 1.0 · 104m. D is the model grid size
(m). qk is the specific humidity at the bottom of the convective entity considered.

The convective parcel ascent is carried out by assuming that the convective air parcel
remains saturated at the saturation specific humidity of the convective air parcel tem-
perature which evolves by the adiabatic lifting process and a ‘dilution’ process. This
is a volumetric mixing fraction per unit length of vertical ascent. This environmental
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mixing process normally tends to cool the convective air parcel by evaporation of cloud
parcel cloud condensate into dry environmental air. Such process is often quite powerful
to reduce the buoyancy of the convective cloud and may strongly reduce the vertical
extent of convection which stops as the cloud buoyancy becomes negative.

A volume fractional entrainment εe per unit length of vertical parcel ascent is tentatively
described according to the equation below.

εe =
(
Kε0 +

Kε1

Ri∗

)
·
( z

(Kε3 + z)

)
· D0

D
(3)

In (3) Ri∗ is a Richardson number which enables that effects of wind shear is in-
corporated. It is argued that increasing wind shear gives rise to more mixing of the
convective cloud with the environments.

Ri∗ =
(θ

g
|∂V

∂z
|2

)−1 ·
(
Kε2 + |∂θ

∂z
|
)

In (3) Kε0 = 1.3 · 10−4m−1 , Kε1 = 7.5 · 10−4m−1.
The second brackets of (3) expresses a height dependency of the entrainment process
being dimensionless and increases from zero at the surface towards 1 at great heights.
Kε2 = 1.0 · 10−4K · m−1 and Kε3 = 500m.

convective
    cloud

lateral
mixing

   top
mixing

dmix

Dcld

lateral
mixing

cloud scale

Figure 1: Schematic picture of the mixing processes at the edges (top and sides) of a
convective cloud. The turbulent mixing scale is dmix, and the cloud scale is Dcld. For
details see text

The horizontal resolution dependence is described by the last term. Currently, the
fraction between a constant value D0 ≈ 10km) and the model grid size D is constrained
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to be no less than 1.
If it is maintained that the parameterized convection should describe effects of subgrid
scale features being 1-2 orders of magnitude smaller in areal extent than the grid square,
it is reasonable to assume that the dimension of the parameterized convective clouds
(parcels) decreases roughly proportional to the grid size. It seems reasonable to assume
that the ratio between the surface and the volume of a convective cloud increases as
the horizontal dimension of the cloud decreases. For a ball-shaped cloud the ratio goes
to infinity and is inversely proportional to the size of the convective cloud. As a con-
sequence one might expect that the dilution process is becoming more efficient at high
model resolution since the ratio Dmix/Dcld between the characteristic turbulent scale
Dmix and the size Dcld of the cloud increases (see figure 1). As a first approximation
it is therefore assumed that the volumetric dilution becomes inversely proportional to
grid size which is expressed by the last term of eq. (3). An important consequence of
the resolution dependent dilution is that the vertical extent of parameterized convection
will automatically be reduced as the model grid size is reduced. As a consequence the
parameterized ‘deep convection’ will automatically tend to be ‘switched off’.

Model experimentation confirms that there can be a pronounced and sometimes sub-
tle interaction between a model’s turbulence scheme and convection scheme. For the
present model it has been found that it is beneficial to impose a regulating criterion
which controls the depth of a convective entity for a rather weak integrated moisture
convergence. A maximum depth Dcv in Pa of a convective entity is determined by

Dcv = C1 + C2 · Q∗ (4)

In (4) Q∗ is the moisture accession, if positive (kg · kg−1 · s−1 Pa), otherwise it is
zero. More precisely , it is the average specific humidity rate of change over the convec-
tive entity times the pressure thickness of the convective entity in Pa. C1 = 1.25 · 104Pa
C2 = 4.0 · 107s · kg · kg−1 The significance of the above formula is for cases where the
vertically integrated moisture accession is small.

The level of non-buoyancy determines a transition to the stable atmosphere above. The
effect of overshooting eddies penetrating into the stable layer above the moist unstable
atmosphere is parameterized and a depth of this ‘extension zone’ is estimated (Sass,
2001). It is at least one model layer and is limited to be at most 25 hPa thick. The
convective transports of heat and moisture, including cloud condensate, across the in-
terface between the moist unstable and the stable atmosphere, is often termed ‘shallow
convection’. This effect is also parameterized when a deep moist convective atmosphere
is involved (see below).

6



2.2. Convective equations

The relevant equations describing the processes in connection with convection are de-
scribed below:(

∂q

∂t

)
ADC

=
(

∂q

∂t

)
AD

(1 − δ∗) + Q̂aβ
Fq

F̂q

δ∗ + Kcqc(qs − qe) + Sq + Epc (5)

(
∂qc

∂t

)
ADC

=
(

∂qc

∂t

)
AD

+ Q̂a(1 − β)
Fc

F̂c

δ∗ − Kcqc(qs − qe) + Sc − Gpc (6)

(
∂T

∂t

)
ADC

=
(

∂T

∂t

)
AD

+
L′

cp

(
Q̂a(1 − β)

Fh

F̂h

δ∗ − Kcqc(qs − qe)

)
+ ST − L′

cp
Epc (7)

The left hand sides of these equations express the combined effect of both dynamical
advection, turbulence and convection. ∂

∂t()AD signifies a tendency excluding convection.
Q̂a is the total moisture accession per unit mass and time in the convective cloud. L′ and
cp represent the specific latent heat of fusion or sublimation, depending on the micro-
physical conditions, and the specific heat capacity at constant pressure, respectively (see
section 4).

Fh is a function describing the vertical variation of convective heating.

Fh = Tvc − Tve + εT (8)

Fq is a function describing the vertical variation of convective moistening.

Fq = qsc − qe + εq (9)

Fc is a function describing the vertical variation of convective condensate supply.

Fc = qcc + εc (10)

In the above equations for Fh, Fq and Fc index v stands for ‘virtual’. Index e means
‘environmental’ (outside clouds). F̂ stands for a vertical average value for the convective
cloud. Finally, c-index means a value applicable to cloud and s signifies a saturation
value. The constants εT , εq, εc are currently set to zero.

The parameter β is a moistening parameter (Kuo, 1974). It represents moistening
due to convective transports, without condensation. In the present scheme, contrary
to models without prognostic cloud condensate, moistening can take place also from
evaporation of cloud condensate. As a consequence, this β-term is considered of reduced
importance in the present scheme.

β =

1 −
∑jtop

j=jbot
q
qs

∆p

pjbot − pjtop

n1

(11)

In (11) p represents ‘pressure’, and jbot and jtop are the model level numbers for the
bottom and top of convection, respectively. Currently n1 is set to a value of 2.
The parameter δ∗ is an important one, because it determines a link between convective
moisture transports on one hand and turbulence plus dynamics effects on the other.

δ∗ =
(

∆pc

p00

)n2

(12)
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In (12) ∆pc is the total depth of the convective entity considered, and p00 is a constant
cloud depth used for scaling. Currently p00 = 2 · 104 Pa, n2 = 1. δ∗ is constrained to
be no larger than 1. The effect of this formulation is that δ∗ goes to zero for extremely
shallow phenomena. A very small δ∗ means that the convection scheme is decoupled as
is reasonable in the limit of very shallow phenomena and high resolution where dynamics
and turbulence should suffice.

The third term in the main equations involving (qs − qe) is an evaporation /sublimation
term of cloud condensate. (Kc is a constant). A similar formulation, involving cloud
cover as the leading term in place of qc, has been used by others, e.g., (Tiedtke, 1993)
in the ECMWF cloud scheme. The parameterization of this term is difficult, partly
because of the problem to describe the surface area of clouds and the degree of mixing
at the edges of the clouds which are in a subsaturated environment.

The fourth term in the same equations, involving Sq, Sc and ST respectively, de-
scribes the effect of fluxes of heat and moisture across the interface between a moist
convective atmosphere and the stable atmosphere above. For example, this parameteri-
zation is needed at stratocumulus cloud tops unless the turbulence scheme is specifically
designed for computing such fluxes. We let the convection scheme describe the effect
of larger eddies in an environment where condensation takes place. The computations
make use of the cloud parcel ascent computation of the convection scheme. Physically
we may think of the heat- and moisture transports as accomplished by mainly the larger
eddies penetrating through the stable layer on the top of a cloud layer. The penetration
of these eddies into the stable layer can be estimated from the cloud parcel ascent. The
observational and modelling evidence that stratocumulus are associated with a substan-
tial entrainment of (dry) air from the stable layer into the cloud (Nicholls and Leighton,
1986; Duynkerke et al., 1995) makes it reasonable to assume that this hypothesis of
‘overshooting’ eddies as the mechanism for entrainment of dry air is a reasonable con-
cept. We denote by wb a characteristic vertical velocity of convective motions in the
cloud right below the cloud top and will estimate a distance De of penetration into the
stable layer.

This depth is estimated as follows: From dimensional analysis it has been argued that
the vertical velocity wr of an idealized thermal depends on its size r, the dimensionless
buoyancy B of the ‘bubble’ and the acceleration of gravity g (m s−2) according the
following combination (Rogers and Yau, 1989).

wr = cb

√
gBr (13)

In (13) B is the virtual temperature difference between the cloud parcel and envi-
ronment, divided by the environmental temperature. cb =1.2. Choosing r = 50 m as
representing the dimension of convective eddies near cloud top we get

wb = w0 ·
√

B

w0 =≈ 27 m s−1.
B is computed in the cloud ascent of the convection scheme (see section 2.1).

We estimate the maximum penetration depth De from the deceleration in the stable
layer. Utilizing the start velocity of wb for the deceleration we get
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De = w0

√
B · T

g|γc − γ| (14)

In (14) De is in metres, T is temperature (K), γc in K m−1 is the lapse rate associated
with moist adiabatic ascent (γc > 0) and γ in K m−1 is the ambient lapse rate in the
stable layer. It is demanded that γ < γc. A numerical security computation has been
implemented to avoid extreme behaviour if the two lapse rates become almost equal,
and the penetration is not allowed to exceed a depth corresponding to 25 hPa.

A maximum fluctuation s′ of the variable s possible at the interface between cloud and
the stable layer is estimated to be approximately equal to the increase above the value
s− at the interface on the cloudy side up to the value se at depth De into the stable
layer. The value se is estimated from the mean gradient of the variable at cloud top.
More specificly, it is assumed that the flux at the cloud top of the scalar s is a factor w̃
times s′ where w̃ is a velocity scale. It is reasonable to assume that the velocity scale w̃
is closely linked to a typical convective cloud velocity at the top of convective clouds. It
is therefore argued that a reasonable estimate is

w̃ = w1 ·
√

B (15)

In (15) w1 = 0.15m · s−1 has been determined on the basis of numerical experimen-
tation.

The sensible heat flux FH (J m−2 s−1) at the level of transition between cloud and the
stable layer is computed according to

FH = ρcp · w̃ · De · ∂θ

∂z
(16)

In (16) cp is the specific heat capacity at constant pressure. ρ is air density, θ is
potential temperature.

Similarly we get for the moisture flux of total specific humidity qt (kg · m−2 s−1) at
the transition level

Fqt = ρ · w̃ · De
∂qt

∂z
(17)

We assume that the fluxes of heat and moisture determined from the above formulas
are distributed linearly with height in the convective cloud of depth D− and in a stable
layer D+. The latter should approximately be equal to De apart from the constraints
set by vertical resolution. If De is larger than the depth of one model layer above cloud a
sufficient number of levels are included to exceed De. Currently, the specific humidity q
and cloud condensate qc are processed independently according to the method described
above, but the flux of the moist conserved variable of ‘total specific humidity’ is then
also linear, which preserves moisture structures in a well mixed cloud.

A semi-implicit treatment of the scheme has been introduced to reduce the risk of noise
or instability when computing updates of the prognostic variables. It involves partial
derivatives of the fluxes described above, as well as the associated layer depths.
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Finally, the terms involving Gpc and Epc concern generation and evaporation of convec-
tive precipitation, respectively (see section 4).

The equations above are applied in the layers of the convective entities while the strat-
iform condensation applies to the remaining parts of the atmosphere.

3. Cloud cover and subgrid scale condensation
In the previous section the equations governing the subgrid scale vertical convective
transports of heat, humidity and cloud condensate have been described. While these
equations describe the evolution of temperature (T ), specific humidity (q) and cloud
condensate (qc) in a grid box for the convective part of the atmosphere the distribution
of humidity within the grid box has not yet been treated. It is natural to describe
the humidity variation by a statistical probability distribution function (PDF) which
will define both saturated and unsaturated portions of the grid box. By definition, the
fractional cloud cover is the saturated fraction of the grid box with cloud condensate in
some concentration. Hence cloud cover will be defined by the PDF which needs to be
defined not only for the convective parts of the atmosphere, but also for the stratiform
parts. There are substantial differences between the convectively unstable and the stable
stratiform regimes as will be described below:

We first consider the problem of defining convective cloud cover. For clarity an ‘overline’
symbol is used in this section for grid box average values, q for specific humidity, qc for
specific cloud condensate and qt = q + qc for total specific humidity. The prognostic
moisture variables q and qc have known values at a given time step of a model run. Fur-
thermore, the relevant saturation specific humidity to describe supersaturation is qs(Tc),
which is the saturation specific humidity valid for the convective cloud temperature Tc.
This temperature is available from the convective cloud ascent model. One may argue
that a probability function describing the variation of total specific humidity around the
grid box average value defines the supersaturation in the grid box. In the convective
situation the challenge is that the distribution of total specific humidity can vary a lot
across the grid box, and the moisture distribution may be quite asymmetric. This is
because moisture is exchanged over large depths in the atmosphere. Also temperature
varies to some extent. A true description of supersaturation taking into account both
temperature and moisture variations is therefore very complex. The extreme situation
where cloud cover becomes 100 % may then be a combination of saturated fractions of
the grid box with different temperatures. In the present description we have already
introduced the convective cloud temperature Tc which is generally higher than the grid
box mean value T . However, in order to simplify cloud cover computations near grid
box saturation, and in order to avoid a too high level of complexity, it is demanded
that the convective cloud temperature goes towards the grid box mean value T when
q goes towards qs(T ). This means that the preliminary convective cloud temperature
Tc is corrected close to grid box saturation conditions. This is done when the relative
humidity exceeds 1 − Ast where Ast is defined later in this section in the context of
stratiform condensation.

T ′
c = Tc +

( q

qs(T )
+ Ast − 1

Ast

)2 · (T − Tc) (18)
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In (18) T ′
c is the corrected convective cloud temperature.

After this simplification we try to describe the probability function defining the variation
of total specific humidity by means of a piecewise rectangular probability density func-
tion. The most simple formulation involves 2 rectangular boxes which allows for a simple
asymmetric PDF. This type of formulation has been used in the past. The formulation
below, however, represents an enhancement consisting of 3 boxes when qt < qs(Tc). The
application of 3 boxes in a rather dry atmosphere is consistent with a simple conceptual
picture of convective clouds with a large specific humidity embedded in an environment
with a fairly homogeneous humidity. Under these conditions a double-peaked PDF may
be expected which fits with a 3-box structure (see figure 2).

The 3 boxes have amplitudes ψ1, ψ∗ and ψ2, respectively (figure 2). The amplitudes are
yet unknown, but may be determined by solving the equations (21), (22) and (23) for
the situation that qt < qs(Tc). These equations have a solid basis. Eq.(21) defines that
the total integral of the PDF equals 1 when integration is done over the entire humidity
spectrum. Eq.(22) expresses that the average value of qt as determined from the PDF
should be equal to the grid box total specific humidity. Eq.(23) is a computation of the
grid box mean cloud condensate from the PDF. The integration limits qmin and qmax

have so far not been defined.

The strategy is to parameterize qmin which appears as a free parameter. Based on
experimentation qmin is currently defined as follows:

qmin =

{
qmin1 if qt < qs · (1 − Ast)
qmin1 · (1 − y) + qmin2 · y if qs · (1 − Ast) ≤ qt ≤ qs

y =
( qt

qs(Tc)
+ Ast − 1

Ast

)2

qmin1 = qt(1 − Cw1
qc

qs(Tc)
− Cw2) (19)

qmin2 = qs(Tc) − Cw1 · qc (20)

In (19) and (20) Cw1 = 4 and Cw2 = 0.02
The interpolation formulas for qmin makes it possible to obtain a symmetric PDF at

qt = qs(Tc). The associated range of variability at this point is qt − qmin = 4qc. This
result may be shown by integration of the equation for cloud condensate (23) below.

Then the equations (21),(22) and (23) constitue a system of 3 equations with 4 unknowns
namely the amplitudes ψ1,ψ∗, ψ2 and the integration limit qmax. By formally solving
the system of 3 equations it is possible to express qmax by means of ψ∗ and the other
known parameters. This solution is specified in (25). At this stage it is possible to
specify the amplitude ψ∗ with some freedom as a tuning parameter under the restriction
that qmax is larger than qs. This leads to a limit ψ∗l on ψ∗ according to eq.(26). It is
noted that the convective cloud cover fcv is obtained by integrating ψ2 which operates
over the saturated part of the grid box.
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∫ qt

qmin

ψ1dqt +
∫ qs

qt

ψ∗dqt +
∫ qmax

qs

ψ2dqt = 1 (21)

∫ qt

qmin

ψ1 · qt · dqt +
∫ qs

qt

ψ∗ · qt · dqt +
∫ qmax

qs

ψ2 · qt · dqt = qt (22)

∫ qmax

qs

ψ2 · (qt − qs)dqt = qc (23)

fcv =
2qc

qmax − qs
(24)

qmax = (b1 + b2ψ∗)/(b3 + b4ψ∗) (25)

b1 = (qt − qmin) · (qs + 2qc) − 2qs · (qt + qc)

b2 = qs · (qs − qt) · (qs + qmin + 2qt)

b3 = qt + qmin − 2q

b4 = (qs − qt) · (qs − qmin)

The limit ψ∗l of ψ∗ is

ψ∗l = (b3qs − b1)/(b2 − b4qs) (26)

Hence the applicable values of ψ∗ may be written as

ψ∗ = δψ · ψ∗l

It may be determined whether δψ must be chosen larger than or smaller than 1 by
differentiating with respect to ψ∗

∂(qmax − qt)
∂ψ∗

in the point ψ∗l. In this way it may be concluded that δψ should be smaller than 1
(first case) if

b2(b3 + b4ψ∗l) − b4(b1 + b2ψ∗l) < 0 (27)

On the other hand, δψ should be larger than 1 if the sign of the expression in
(27) is positive (second case). Tentatively the values δψ = 0.07 (first case) and 1.07
(second case) have been set which appear to give reasonable results. The selection of
optimal values, which may be determined from a more involved computation, requires
experimentation with a given model.
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Hence it may be concluded that the above solution allows for some freedom regarding
the choice of qmin and ψ∗. Having made an appropriate choice the unknowns are then
ψ1, ψ2 and qmax, and the cloud cover fcv may be computed from (24) and (25).

For humid conditions qt > qs(Tc) it is assumed that the PDF is symmetric and that the
humidity variation covers at least the range from qs(Tc) to qt. Integrating the equation
for cloud condensate (23) then gives for the range Ac defined from qmin = qt · (1 − Ac)

Ac =
−b6 +

√
b2
6 − 4b5b7

2b5
(28)

In (28)

b5 =
1
2
q2
t

b6 = qt · (qt − qs − 2qc)

b7 =
1
2
(qt − qs)2

The cloud cover fcv becomes

fcv = Min
((qt − qs)

2Acqt

, 1
)

(29)

In the stratiform regime we need to define both cloud cover and the stratiform condensa-
tion process. The generally smaller vertical scales and larger horizontal scales associated
with stratiform condensation makes it reasonable to assume a smaller spatial variation
and a symmetric PDF of qt as an approximation to the true PDF. The PDF, which is
rectangular, is shown schematically in figure 2 (to the right). qs is now equal to the grid
box saturation value qs(T ). Again the temperature variation in the grid box is neglected.
The assumption is also made that clouds extend vertically from the bottom to the top
of a model layer. These assumptions are quite common among modellers (Sundqvist
et al., 1989; P.J.Rasch and J.E.Kristjansson, 1997). The amplitude ψ is evidently given
by (30)

ψ =
1

2 · (qmax − qt)
(30)

The maximum value qmax of total specific humidity in the stratiform case is formally
written

qmax = qt · (1 + Ast) (31)

The dimensionless amplitude Ast is determined from a time dependent equation to
be described below (see equation 35).
At first it is noted that, for a given value of Ast, the equilibrium cloud condensate value
qceq as determined from the PDF, may change from the current value qc as a result of
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changing temperature and specific humidity during the run. The system of equations
(32) and (33) defines the condensation process to establish an equilibrium among the
model variables by a first order adjustment. Higher accuracy can be obtained if (32)
and (33) are applied several times in an iterative fashion. In practice, it has been chosen
to apply a relaxation towards the equilibrium using a small relaxation time period. At
least half of the supersaturation is removed per time step. However, full adjustment in
a time step is done in the case of grid box supersaturation.

∆qst =
(qc − qceq)

1 + f · L′
cp

(
∂qs

∂T

) (32)

qceq = 0.5 · ψ̃ · q̃2
s + ψ̃ · q̃max · (0.5q̃max − q̃s) (33)

In (32) ∆qst refers to the change of specific humidity during the adjustment process.
f is the current value of the fractional cloud cover. L

′
is the specific latent heat as a

function of temperature (to be defined in the next section). In (33) the˜symbol applies
to preliminary model variables to be adjusted during the condensation process.

In this case the cloud cover fst associated with the equilibrium density function is:

fst =
1 + Ast − qs(T )

qt

2Ast
(34)

In general, the dimensionless amplitude Ast describing the variation of total specific
humidity is not constant, but is a function of model resolution, space and time. A
tentative time dependent formulation of Ast is expressed in (35) which is intended to

ψ

 

q
min

q q q 
t s max

q q q
min t max

ψ

q
s

Figure 2: Two examples of piecewise rectangular probability density functions of total
specific humidity. The dark dotted regions describe supersaturated cloudy parts. The
left figure applies to convective conditions and the figure to the right to stratiform con-
ditions. qmin is the minimum value of total specific humidity with non-zero probability
and qmax is the maximum value. qt is the grid box value of total specific humidity and
qs is the saturation value for cloud computations. See text for details
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describe at least qualitatively the effect of model resolution, elevation above the surface,
stationary forcing effects, unsteady flow effects and the effect of precipitation release.
The reasoning behind each term of the equation is described below:

∂Ast

∂t
= −K1 · (Ast−Acli)+

K2

qt
· |∂qt|

∂t
· (Amax−Ast)+

K3

qt
·Min(

∂qc

∂t prc
, 0.) · (Ast−Amin)

(35)
In (35)

Amax =
α1 + α2 · (1 − ( p

ps
)3)

(α1 + α2) · (1 +
√

α3
D )

(36)

Currently α1 = 2 , α2 = 9, Amin = 0.005 α3 = 3.6 · 105m K1=4.63 · 10−5 · s−1 K2 =
3, K3 = 9. The maximum allowed value Amax of Ast in (35) describes effects of elevation
above surface and of model grid size. In (36) p and ps are model level pressure and surface
pressure, respectively. The term involving p/ps describes a significant reduction of Ast

towards the surface. A similar effect have been included by others (Sundqvist et al.,
1989). The term involving grid size D in the denominator of (36) implies that Ast goes
towards zero for the grid size going to zero. Obviously this is reasonable in a continuous
formulation. Results from the litterature (Redelsperger and Sommeria, 1986) emphasize
the virtues of having a subgrid scale parameterization of condensation even at horizontal
resolutions of a few kilometres grid size. This is consistent with results from large eddy
simulations in recent years, indicating that subgrid scale variability is well pronounced
at a grid size of few kilometres. The square root in the denominator is used in order to
incorporate the effect that subgrid scale variations are significant already at a grid size
of a few kilometres.

The second term of (35) is a crude parameterization of nonstationary flow effects. The
term expresses that the change of Ast towards the maximum allowed value is proportional
(dimensionless factor K2) to the relative rate of change of total specific humidity. Such
a formulation is reasonable to the extent that resolved scale advections are reflected also
in a subgrid scale variation, that is, augmented and reduced advections compared to
grid box mean value exist inside the grid box.

The first term describes a relaxation towards the value Acli which stands for a ‘climatic’
type of stationary forcing. Currently the value of Acli is a fixed fraction of Amax (Acli =
0.75 · Amax). A more refined treatment could take into account local stationary forcing
effects, e.g., due to varying topography. The relaxation factor corresponds to an e-
folding time og 6 hours. The formulation inplies that, in the absence of non-stationarity
and precipitation release the amplitude Ast approaches Acli exponentially with the given
e-folding time.

Finally the last term which is qualitatively similar in appearance to the second term,
expreses always a reduction of Ast towards a minimum value Amin. (∂qc/∂t)prc expresses
the reduction rate of cloud condensate due to precipitation release in the grid box.
The reasoning behind this term is the following: Consider a saturated grid box with
cloud condensate in spatially varying amount consistent with a given positive value
of Ast. It is then possible that the cloud condensate will fall out if the precipitation
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release parameterization is active, e.g. through a collission and coallescence process
associated with precipitation particles entering the grid box from higher altitudes. This
‘sweepout’ process increases with increasing precipitation flux. The third term describes
that it is possible to reduce cloud condensate substantially during precipitation release
(‘cloud thinning’) without substantial compensating condensation. Physically the cloud
thinning process due to precipitation ‘sweepout’ seems realistic.

Finally, the non-stationary conditions as regards q, qc and T will sometimes lead to
the onset of stratiform condensation after convective conditions or vice-versa. After
convection is no more supported, the convective cloud may exist in a subsaturated
environment which is sufficiently dry such that subgrid scale stratiform condensation is
not supported. In this situation the evaporation terms, that is, the 3rd terms of (5), (6)
and (7) describe also the evaporation of cloud condensate after convection.
To describe the actual transitions the cloud cover f is made time dependent by relaxing
towards the equilibrium cloud cover feq which may be either a stratiform (fst) or a
convective equilibrium (fcv).

∂f

∂t
= −Kf (f − feq) (37)

Currently K−1
f = 900 s.

4. Microphysics
The model’s micro-physics concerns a parameterization of processes related to the for-
mation/decay and fallout of precipitation particles. The microphysics represent the
smallest scales down to molecular processes in the atmosphere. An overview of central
topics in cloud physics can be found in the litterature, see for example Rogers and Yau
(1989).

Some of the equations described so far, e.g., (5), (6) and (7) already contain the effects of
microphysics. The terms Gpc and Epc describing precipitation release and evaporation of
precipitation in the convective case need to be specified for these equations. The similar
terms should be formulated in stratiform conditions. Also the effect of melting/freezing
of precipitation needs to be specified. These effects are described below. The treatment
follows closely the formulations by Sundqvist (1989) and Sundqvist (1993) except for
some extensions and few exceptions.

The potential advantage of having cloud condensate as a prognostic variable is that
condensation and latent heating may occur without automatically giving rise to pre-
cipitation release. For the present scheme this statement applies also to convective
condensation. As described in section 2 the present treatment of convection allows for
several convective layers or entities in a vertical air column. Stratiform condensation
may also occur in parts of an air column, and the cloudiness can be partial. This makes
the precipitation release parameterization and an associated description of evaporation
of precipitation very complicated.
Technically, this scheme separates between convective precipitation and stratiform pre-
cipitation. Both may be present at the same time in a vertical column. A possible mutual
interaction between stratiform and convective precipitation fluxes is strongly restricted
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in the current formulation. This is a common feature of most precipitation schemes used
in atmospheric models. The precipitation release formulas described below are basically
the same for stratiform and convective precipitation release. The differences involve
mainly different constants in the formulas. The precipitation flux from individual layers
of the atmosphere are added down to the surface to produce surface precipitation rate.
However, evaporation of precipitation is accounted for in this process. Also a treatment
of the transitions between water and ice phases makes it possible to distinguish between
rain and snow.

We first describe the stratiform precipitation release. The rate of precipitation release
kg · kg−1s−1 is given by (38)

Gp = Φ · qc ·
(
1 − exp(− qc

f · µ)2
)

(38)

In (38) f is the fractional cloud cover and qc is specific cloud condensate as in pre-
vious sections. Φ is a rather complex function with unit s−1 and describes an inverse
time scale associated with the precipitation release formulation.

Φ = Φ1 · Φ2 · Φ3

The first term Φ1 represents an inverse time scale depending on the dynamical model
state represented by the vertical velocity ω in the pressure system. Φ1 decreases in
proportion to −ω. The values of Φ decreases for non-positive ω and is constant (φst) for
subsidence conditions. It is limited to be no less than φ00. The term simulates the effect
of precipitation particles being carried with the updraft velocity in the precipitating
clouds while it is advected also horizontally. The model resolved vertical velocity adds
(subtracts) to the fall velocity, and therefore a longer time scale is associated with the
precipitation fallout under conditions of a sufficiently high vertical velocity. The term
is novel and simulates the same effect as a prognostic precipitation field which may be
advected with the air flow while falling towards the surface with a characteristic velocity.
This effect will get increasingly important at a high model resolution since, on average,
larger vertical velocities will then be simulated.

Φ1 = φst + Kφ1ω∗(φst − φ00) (39)

ω∗ =

{
0 if ω > 0
ω if ω ≤ 0

ω = dp
dt is the vertical velocity in pressure coordinates. Kφ1 = 0.02Pa−1 · s, φ00 =

1.0 · 10−5s−1, φst = 1.0 · 10−4s−1.

Φ2 = 1 +

√
Pco

KB1

+ KB2δBF (40)

In (40) KB1 = 1.0 · 10−4kg · m−2 · s−1, KB2 = 4. The term involving KB1 describes
the effect of the collection process (collision and coalescence) on the precipitation release
(Rogers and Yau, 1989). Pco is the precipitation intensity (kg · m−2 · s−1) per grid square
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divided by the maximum of the fractional cloud covers present above the vertical level
considered. Hence Pco is an estimation of the precipitation flux per unit area entering
the cloud at the local level considered.
The second term, proportional to KB2 , describes the Bergeron-Findeisen effect (Berg-
eron, 1935; Findeisen, 1938). This process enhances the precipitation release as ice
crystals become present in a water cloud. The coefficient function δBF has been param-
eterized according to Sundqvist (1993) and is given by (41) and (42).

δBF = δ̃ice · (1 − δice)∆Ẽwi (41)

δ̃ice = δice + (1 − δice) · Pice

Ptot
(42)

In (41) and (42) δice is a basic function for the probability of ice crystals in clouds
(Sundqvist, 1993). This formulation describing an increasing probability of ice crystals in
the interval between 273 K and 232 K is based on extensive statistics on the occurrence of
ice crystals in clouds (L.T.Matveev, 1984). The functional form is given in the appendix.
This function is also used to describe specific latent L′(T ) as a function of temperature,
appearing in previous equations.

L′(T ) = Lv + δice · Li (43)

In (43) Lv is the specific latent heat of evaporation and Li is the specific latent heat
of frezing/melting.

The ∆Ẽwi function is the difference in satuation vapor pressure over water and ice,
divided by its own maximum value. Hence this function is dimensionless and has its
largest values between -10◦ C and -20◦ C. In is seen that the Bergeron-Findeisen term
describes an enhanced precipitation release only if the ice fraction is less than 100 %
and if precipitation as snow (ice) entering the layer is positive.
The equation (42) describes a modified ice fraction when computing precipitation re-
lease. The fraction of precipitation release from the layer being snow or ice will then
be modified from δice to δ̃ice. A latent heating due to freezing associated with the mod-
ified ice fraction is taken into account in the temperature equation. It is noted that
this modelling of ice fraction increase as a result of the total precipitation flux from
above (stratiform +convective) represents a weak coupling between the two precipita-
tion streams, stratiform and convective precipitation, respectively. In all other aspects
the two precipitation streams are currently described independently.

Finally, the term Φ is modelled as a dimensionless function. It has been introduced in
order to make precipitation release sufficiently efficient at very low temperatures below
238 K (Källén, 1996).

Φ3 =


1 if T > 238
1 + 238−T

2 if T ∈ [230, 238]
5 if T < 230

(44)

Looking back on on the precipitation release formula (38) the function in the brackets
implies that the precipitation release becomes efficient as the specific cloud condensate
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inside cloud (qc/f) reaches a magnitude of µ which is the second important function in
the description of precipitation release. This function is specified in (45), (49) and (47):

µ =
µ1 · µ2

Φ2
(45)

µ1 = µst + Kµ1 · ω∗(µst − µcv) (46)

µ2 = (1 − δice)2 + δice · ξ(T ) (47)

In (46) Kµ1 = Kφ1 and the functional form is similar to Φ1 except for the constants,
that is, µst is a threshold value of cloud condensate in the case of ω∗ = 0. The maximum
value allowed (µcv) equals the value normally used for the convection scheme for the case
of ω∗=0 (see 49). Currently µst = 5.0 · 10−4, µcv = 3.0 · 10−3.

The functions µ2 and Φ2 have been adopted from a previous formulation (Sundqvist
et al., 1989; Källén, 1996). The function of temperature µ2 has been found necessary
to describe a realistical amount of cloud condensate at low temperatures. The function
ξ(T ) is given in the appendix.

For convective precipitation release similar formulas are used, except for some difference
described in (48) and (49).

Φ1cv = φcv + Kφ1 · ω∗(φcv − φ00) (48)

µ1cv = µst + Kµ3 · (µcv − µst) (49)

Kµ3 = Min(−Kµ1ω∗ + Kµ2B, 1)

In these equtions index ‘cv’ indicates use for convective conditions. In (48) the
currently used value of φcv is 2.5 · 10−4s−1. The value of Kµ3 is constrained to be no
larger than 1. Kµ2 =250. The term involving buoyancy B as defined in section 2 is
included to provide a continuous formulation between a stratiform and a convective
regime. In most situations µ1cv = µcv.

The formulations of melting and of evaporation of precipitation are rather uncertain.
Several formulations have been used in numerical models. Since less energy is involved
with melting compared with evaporation or sublimation a very simple formulation is
used for the melting process. As precipitation falls through a layer with temperature
above 273 K while the precipitation as snow (ice) is present, the rate of melting M is
described according to the following equation (50)

M = Kml · cp

Li
(T − Tml) (50)

Kml = 4.0 · 10−4 · s−1 The formulation defined by (50) describes in most situations com-
plete melting in a layer of a thickness no more than a few hundred metres.
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Finally, evaporation of precipitation takes place in subsaturated model layers. As
noted by Tiedtke (1993) parameterizations of this process in operational numerical mod-
els may be considered rather uncertain at present. This is reflected in various approaches
giving different results. Most formulations apply a formulation Ep (kg · kg−1 · s−1) pro-
portional to the square root of precipitation intensity, e.g. Sundqvist (1989). Further,
the evaporation should in some way depend on the atmospheric subsaturation. Some
models use subsaturation qs − q as a basic parameter (Tiedtke, 1993), others relative
humidity (Sundqvist et al., 1989). Precise computations, using the basic physics, require
integrations over droplet spectra, utilizing fall velocities and detailed computations of
the diffusion process at the surface of the droplets, taking into account features such
as ventilation effects (Rogers and Yau, 1989). Currently (51) is used which depends on
the subsaturation qs − q and obeys a square root dependency on precipitation intensity
at moderate to high precipitation fluxes, but allows for some increase of evaporation
rate at low precipitation intensities. Curently Ke1 = 1.0 · 10−3, Ke2 = 1.0 · 103 and
Ke3 = 6.0 · 109. Optimal values of these coefficients are not well known at present.

Ep = Ke1 ·
(qs − q)

(1 + L′
cp

∂qs

∂T )
·
(√

P +
Ke2P

(1 + Ke3P
2)

)
(51)
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5. Discussion and conclusions
It is clear from the presentation so far that that parameterization of CCPE processes in
numerical models used for weather forecasting is complicated, for the following reasons:

There are still some general uncertainties on how to construct atmosphetic models in an
optimal way for a given set of applications. Apart from the numerical challenge it is still
not known how to describe most accurately the subgrid scale fluxes of heat, moisture
and momentum. A key problem is to describe all scales in a realistic way for models of a
coarser resolution than the cloud resolving models. The turbulence formulation remains
a problem even in the cloud resolving models.

The complexity of the CCPE processes and the need to apply parameterizations which
are sufficently efficient from a computational point of view sets rather strong limita-
tions on the methods which can be used. As a consequence, this often leads to the
development of efficient parameterizations with rather many tuning constants as is the
case for the present scheme. Optimal values of tuning constants will depend on other
components of the meteorological model including the model dynamics.

For the present forecast model tuning of some parameters is likely to give more optimal
results, in particular as regards the formulations of cloud cover and precipitation release
which include new features. In addition, the turbulence scheme does currently not di-
agnose moist unstable conditions in cloudy regions. This implies that the turbulence
intensity inside clouds is underestimated and is compensated for by the shallow con-
vection parameterization of the convection scheme. In case that the turbulence scheme
is upgraded to an adequate scheme for cloudy conditions some associated tuning must
be expected with regard to the shallow convection parameterization. At a very high
resolution also the amplitude of the moisture fluctuations described by the subgrid scale
condensation scheme should be made consistent with the moisture variation described
by the turbulence scheme.

In view of the difficulties involving tuning it is important to decide on a strategy which
facilitates real progress in terms of more accurate parameterizations. It seems natural to
choose a strategy which splits up the CCPE processes in parts which can be studied more
theoretically in order to check, tune and possibly modify existing parameterizations.
As an example, the significant spread of the results with different parameterizations
for evaporation of precipitation calls for comparisons with detailed theoretical compu-
tations based on size distributions of precipitation particles. This treatment should
include varying fall velocity of cloud particles and a theoretically advanced treatment
of the diffusion proceses at the surface of precipitation particles, including ventilation
effects.

Another challenging problem is the forecasting of cirrus clouds. A correct determina-
tion of these clouds seems to require that the water phase and the ice phase are stored
separately in the model. This means that ‘prognostic cloud condensate’ should be split
up into ‘prognostic cloud water’ and ‘prognostic cloud ice’. Ideally, a knowledge of the
presence of freezing nuclei is also necessary. Progress in this area may require a refined
aerosole treatment. The present scheme does not have such features and can be expected
to overestimate the occurrence of cirrus in some situations.
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It is also relevant to carry out experiments where the performance of a turbulence scheme
combined with the description of the CCPE processes can be compared with detailed
measurements, e.g. through the design of 1-dimensional column experiments with speci-
fied forcing determined from large field experiments. Related results obtained with very
high resolution large eddy simulation models are often very important as a part of this
experimental framework.

Experiments along these lines have already been undertaken with the present param-
eterization package, e.g. using international data sets prepared from field experiments
such as BOMEX, ASTEX and experiments designed in projects such as the European
Project on Cloud Systems (EUROCS). In order to penetrate into all aspects of the pa-
rameterizations many different studies should be carried out. Results obtained so far are
promising as regards the realism of the cloud parameterization described in section 3.
However, these results are outside the scope of the present report and will be presented
elsewhere.
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Appendix A. Functions in microphysics
The probability δice is according to Matveev (1984):

δice∗ = 1 − Aice · (1 − exp(−χ2))

δice =


0 if T ≥273
δice∗ T ∈ [232, 273[
1 if T ≤232

Aice =
1

1 − exp
[
−

(
(T1−Tci)

(T2−Tci)
√

2

)2]
T1 = 273K, T2 = 299K, Tci = 232K

χ =
T − Tci

(T2 − Tci)
√

2

The function ξ(T ) used to compute a reduced cloud condensate at subfreezing temper-
atures follows from (Sundqvist et al., 1989; Källén, 1996)

ξ(T ) =


4
3 · exp

(
− [(T − 273) 2

30 ]2
)

if T ≥250

0.075 ·
(
1.07 + y

1+y

)
T ∈ [232, 250[

0.075 ·
(
1.07 − y

1+y

)
if T <232

y = x + x2 +
4
3
x3

x =
|T − 232|

18
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