
DANISH METEOROLOGICAL INSTITUTE 

————— SCIENTIFIC REPORT ————— 

03-08 
 

Limitations on regression analysis due to serially 
correlated residuals:  Application to climate 

reconstruction from proxies 
 
 
 

Peter Thejll and Torben Schmith 

 

 

 
COPENHAGEN  2003



 

ISSN Nr. 0905-3263 (printed) 
ISSN Nr. 1399-1949 (online) 

ISBN-Nr. 87-7478-481 
 



Submitted to Journal of Climate

Limitations on regression analysis due to

serially correlated residuals: Application to

climate reconstruction from proxies.

Peter Thejll and Torben Schmith

Climate Division, Danish Meteorological Institute,

Copenhagen, Denmark∗

June 3, 2003

Abstract

The effects of serially correlated residuals on the accuracy of linear

regression are considered, and remedies suggested. The Cochrane-

Orcutt method specifically remedies the effects of serially correlated

residuals and yields more accurate regression coefficients than does
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ordinary least squares. We illustrate the effects of serially correlated

residuals, explain the application of the CO method, and evaluate the

gains to be achieved in its use. We apply the method to an example

from climate reconstruction, and show that the effects of serial cor-

relation in residuals are present, and show the significantly improved

result.

1 Introduction

Linear regression is central to most areas of quantitative science, and applied

widely. In its simplest form two time series xt and yt, called the predictor and

predictand respectively, are supposed to be related by the linear relationship

yt = α + βxt + ut, where ut is the error term. The parameters α and β

are not known but must be estimated from the predictor and predictand

series. This estimation procedure is often considered as being synonymous

with the technique of ’ordinary least squares’ (OLS), where the parameters

in the regression model are estimated by minimizing the sum of the squared

’residuals’ (observed error terms).

However, this is not a fruitful approach under all circumstances. There

are conditions to be met, in order for the OLS estimate to the ’best’ estimate

of the model parameters. This is well known and described in statistical

text books (e.g. [von Storch and Zwiers, 1999]), but in applications these

conditions are not always met, or even considered.
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Central to this is the Gauss-Markov theorem, which states that: if the er-

ror term time series is stationary and has no serial correlation, then the OLS

parameter estimate is the Best Linear Unbiased Estimate (BLUE), meaning

that all other linear unbiased estimates will have a larger variance. The

Gauss-Markov theorem thus points to the error term and not the time series

themselves as being important to consider. Next, it states, that under these

conditions, the OLS estimate has two nice properties, namely it is unbiased

and has the smallest possible variance among the linear estimates.

The premise in the Gauss-Markov theorem essentially states that the error

term must have no structure – for instance, the level of the residuals must

not have a trend and the variance must be constant through time. There is

no a priori reason to trust that residuals should be without structure – there

are at least two ways in which it could happen. First, there is the effect

of missing variables. Any factor that a model fails to incorporate, either

by being unrecognized or by being unknown, will turn up in the residues.

Therefore the nature of the residuals depends on the factors omitted. Some of

these factors may be serially correlated and thus give rise to serially correlated

residuals. Second, there is the effect of mixing variables with different levels

of serial correlation. Because the residuals are a linear combination of the

predictors and predictand it is possible that the residuals will be serially

correlated if one of the dependent or independent variables also is.

When the error term in the regression does not fulfill the premise in the
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Gauss-Markov theorem, OLS is still unbiased – however, it is not BLUE, i.e.

OLS does not exploit the data at hand to give the most efficient estimate

of the parameters in the model. In this situation, a strategy would be to

transform the problem (i.e. the variables and their regression relationship)

so that the error term in the transformed problem has no structure. This

strategy will be adopted in the following section ending up in the procedure

known as the Cochrane-Orcutt algorithm. Subsequently, we will illustrate

this algorithm within the field of climate reconstruction by proxies. Here

multi-regression techniques are widely applied in the ’standard OLS form’,

but the conditions for the Gauss-Markov theorem are usually not tested for.

For example, in the past five volumes of Journal of Climate, four papers on

climate reconstructions are published, but the serial correlation of residuals

is considered in just one of them only.

2 The Cochrane-Orcutt algorithm

Consider a multiple regression model

yt = α +
K∑

k=1

βkxt,k + ut, (1)

where the error term ut follows an AR(1) process with the autocorrelation

at lag 1 being ρ (whose value is unknown at this stage):
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ut = ρut−1 + εt, (2)

where ε is a series of serially independent numbers with mean zero and con-

stant variance.

If ρ is not zero then, as we have seen, OLS is not an efficient estimator

of model parameters and other methods are called for. One such method is

that suggested by Cochrane and Orcutt (1949), which modifies equation 1 by

rewriting it for t− 1 instead of t, multiplying all terms by ρ, subtracting the

result from equation 1, using equation 2, and rearranging terms to obtain:

(yt − ρyt−1) = α(1− ρ) +
K∑

k=1

βk(xt,k − ρxt−1,k) + εt, (3)

for t=2,...,N.

Equation 3 is a regression equation with modified variables, coefficients,

and an error term that satisfies the Gauss Markov theorem. We have, how-

ever, introduced one new parameter, namely ρ which prevents us from ap-

plying OLS directly.

We can solve the problem iteratively by first estimating (using OLS) α and

the β’s from equation 3 for an initial guess of ρ. Then, using the values of α, β

just determined a new value for ρ is found (using equations 1 and 2), which

is then held fixed and used to find new values for the α, β’s, and so on, until
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convergence occurs (see Ramanathan (2002) p. 393, for a detailed description

of the algorithm). Discussions have appeared as to whether this technique

guarantees convergence to a good solution (e.g. [Dufour, et al., 1980]) - the

outcome of the discussion seems to be that a grid search through parameter

space almost always reveals that the iterated solution is the best one.

The Cochrane-Orcutt method is well known in the econometrics litera-

ture, but has, it seems, not been widely appreciated outside this field. In

the following sections we will show that there is reason to take notice of the

method in geophysics, as it offers advantages in realistic situations where

OLS is commonly applied without being wholly appropriate.

3 Illustrating the Cochrane-Orcutt algorithm

by applying it to artificial series with known

properties

3.1 Variables without serial or inter-correlation

We next show the results of applying the CO algorithm to artificial problems.

We generate suitable regression problems from the following model

yt = α + β1x
(1)
t + β2x

(2)
t + ut, (4)
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where x
(1,2)
t are two predictor vectors generated from uniformly distributed

random numbers, furthermore

ut = ρut−1 + εt, (5)

is the noise, where ε is normally distributed white noise. Use of this gen-

eration technique (equation 5) for u requires care with ’spin-up’ problems

- a long sequence of numbers should be generated for the choices of ρ and

starting value u0 before a segment of the required length is selected.

After generating random vectors x(1,2) we generate T by picking values

of α, β1, β2, and the auto-correlated series is generated by picking a value for

ρ and generating the series u. We estimate α, β1, β2 using OLS and the CO

method. Below, in Figure 1 we show the results of 1000 simulations of this

procedure for ρ = 0.87.

First we note that the disturbance u causes a spread in the estimates of

the coefficients, but that these are centered on the correct solutions - hence,

there is no evidence of a bias on average, in accordance with theory. Next,

we see (Figure 1) that in OLS the values found for β1, β2 have a larger spread

than the CO values, while the OLS value for the constant term α appears

less spread out than the CO value.

For a smaller value of the parameter determining the auto-correlation of

the additive noise (ρ = 0.57) Figure 2 shows the results, which are that the

constant term α is now almost equally well-determined with OLS and CO
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while the larger spread in the regression coefficients β1, β2 for OLS compared

to CO is still evident.

For a range of values of ρ Figure 3 summarizes the results. In general

one sees that the spread in OLS determinations of regression constant and

coefficients does not depend on the character of the added noise. However,

the CO algorithm is highly sensitive to this and produces increasingly better

regression coefficients for increasing ρ – the spread in the regression constant

grows with ρ, however. It would appear that for these particular experiments

there is much to gain by using CO, up to values of ρ just below 0.75, if one

wants accurate regression constant as well as coefficients, because β1, β2 are

much better determined in CO compared to OLS while the α’s are about

equally well determined.

For small ρ (in this example, for values less than 0.4, say) there is only

a little to gain by using CO instead of OLS although CO is still the best

method. For large ρ better regression coefficients are bought at the cost of less

well determined regression constant. This means that in applications where

accurate regression coefficients are sought, but the value of the regression

constant, α, is not so important, CO will outperform OLS.

We end this experiment by reminding the reader that the variables used

here - the predictors - are generated as normally distributed random num-

bers. They therefore have a ’white’ spectrum and are probably, in the sta-

tistical sense, independent, given the length of series used here. In reality,
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one is often left to perform regressions on variables that are neither ’white’

nor independent of one another. The consequences of this situation will be

discussed in the next section.

In summary, we have tested the performance of OLS versus the CO

method in trials with independent and ’white’ predictors with auto-correlated

additive noise. We have shown that if residuals have structure - in the sense

of having a serial correlation different from 0 - then the CO method will out-

perform OLS in determining regression coefficients more the larger ρ is. The

regression constant’s accuracy suffers in the CO method, however. But as

regression coefficients (providing rate information) are generally of greater

interest than the model offset, this is of little concern in some cases.

3.2 Variables that are independent but serially corre-

lated

In the previous section we investigated how well CO does compared to OLS

when the predictors in the problem are independent and white-noise like.

What will happen if they are more realistic and, for instance, have their own

serial correlation or when they are related to each other through correlation?

We will separate these problems and first consider the case of auto-correlated

variables that are not inter-correlated.
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We will generate the variables x(1,2), in equation 4 iteratively, by

xt = α1xt−1 + εt. (6)

For simplicity we shall choose the same value for the autocorrelation at

lag one, α1, for both series. In order to avoid mix-up with the case treated in

next section, we shall expressly test whether x(1) and x(2) are correlated and

reject series that are. The likelihood that they are correlated by chance rises

with α1 because the number of independent points in the series decreases.

We choose α1 in equation 6 to be 0.6 and repeat the exercises above. We

accept series that are no more correlated to each other than R = 0.1, where

R is the Pearson linear correlation coefficient. We perform a series of exper-

iments similar to the previous section and show in Figure 4 a summary of

results for autocorrelated but mutually un-correlated predictors. The results

indicate that CO is always better for the regression coefficients than OLS,

for values of ρ greater than about 0.4. For the regression constant there is

the trade-off already seen above. One difference with the result using white

noise series is that OLS gradually deteriorates as ρ increases - before it held

constant. Therefore, not only does CO do better as ρ rises, but OLS does

worse and worse. This seems a strong indication that CO is the preferable

choice when series are auto-correlated and mutually un-correlated. Again,

we note that results are centered on the correct values, so in the mean there

is no coefficient bias in either OLS or CO.
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3.3 Correlated and auto-correlated variables

We now consider what happens when the variables are not only auto-correlated

but also correlate with one another. We proceed as above but this time ac-

cept only those sets of series that are more strongly correlated than R = 0.3.

Figure 5 summarizes results from several runs. The results are very similar

to Figure 4.

The final experiment in this section increases the mutual correlation sub-

stantially, to R ≥ 0.7, and the results are summarized in Figure 6. We see in

general that the predictor’s correlations affect the result, but that for very

large residual correlation CO wins out over OLS while following the patterns

seen above.

We summarize this set of experiments by noting that correlation between

the predictors, in the presence of auto-correlated noise in the model, has an

increasing importance as the additive noise becomes more and more auto-

correlated, and that for the largest values of serial noise correlation all regres-

sion coefficients are best determined with the CO method. Careful analysis of

predictor’s inter-correlations, and the level of residual auto-correlation thus

plays a central role in the application of regression methods (OLS or CO).

A final note is due on the subject of the quality of the model fit vs. the

quality of the parameter estimations. OLS will always give the best model

fit to the data at hand whether residuals are autocorrelated or not, but CO

will offer the most accurate estimates of regression coefficient values.
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4 Application of the CO method to climate

reconstruction using proxies

Instrumental climate series are not as long as are the ’proxy’ series that

can be developed from natural records, such as tree ring data, ice cores,

lake varves, coral rings, and so on. These natural observables may reflect

environmental conditions to some extent, and by calibrating these against

instrumental series we can obtain climate information back in time, before

instrumental records began. The calibration of the proxy can in its simplest

form be performed by a regression, and the present discussion about how

well regression methods perform is relevant.

One early attempt to calibrate temperature proxies against instrumental

data was that of Landsberg and Groveman [Landsberg et al, 1978; Groveman

and Landsberg, 1979], who utilized a technique whereby supposed proxies

for global mean temperatures were related to an instrumental temperature

curve, using multivariate linear regression. Although the data available to

Landsberg and Groveman were limited compared to the much larger data-

collections now used in climate-reconstructions, and the method, in the form

chosen by those authors, is not now commonly used, we chose the example

in order to show the need for CO instead of OLS for the calibration. The

illustrative powers of the example are undiminished by the choice of data

and the details of the method of that work.
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Very briefly, the Landsberg and Groveman method consists of scaling

or calibrating climate proxies against a constructed global- or hemispheric-

mean instrumental record with multivariate regression. Not all proxies have

the same length, so in the application of Landsberg and Groveman proxies

were chosen that all ended near the end of the instrumental record but which

started at different times from 1579 AD and forward in time. Sets of proxy

time series were chosen on the basis of the years in which they overlapped.

In this way a final reconstruction was patched together from many segments,

each of which are the results of a calibration during the instrumental period,

but being used only for a specific time interval before this era.

We first reconstructed the method of Landsberg and Groveman from

the data published [Groveman, 1979]. The residuals were tested for auto-

correlation using the Bartlett cumulated periodogram test [Bartlett, 1966] -

the residuals are significantly auto-correlated for some choices of proxy data.

This conclusion was also obtained using another test for serial correlation in

time series - the Durbin Watson test [Draper and Smith, 1981]. The Durbin

Watson test is a test of a statistic d against some null hypothesis. The

statistic d is formed from the residuals e1, e2, ..., en:

d =

∑n
t=1(et − et−1)

2

∑n
t=1 e2

t

. (7)

The value of d obtained from the residuals is compared to critical values

(e.g. the tables in Draper and Smith (1981)). If d is less than a lower

limit then the null hypothesis of no serial correlation in the residuals can
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be rejected, whereas if d is above an upper limit the hypothesis cannot be

rejected. Values in between are indeterminate. A look at equation 7 shows

that strongly autocorrelated series will give a small d statistic, while the

opposite happens if the series are not serially correlated, going in the limit

of long series to d = 2.

The DW test gave similar results to the Bartlett test - namely, that

the residuals, in the instrumental calibration range, are serially correlated

for those cases when a few proxy time series are used - notably the first

period from 1579-1658 AD (at the 99% significance level). Values of the d

statistic close to the lower limit, but inside the ’indeterminate range’ were

obtained for other early intervals, notably 1706-1764 and 1817-1820. There is

therefore support for recalculating the temperature reconstruction with CO

substituted for OLS, with the expectation that significantly different results

could be obtained for the early years of the reconstruction.

We therefore replaced the OLS regressions used in the method, by the CO

algorithm and derived a new reconstructed temperature curve. The original

and the new curve are shown in Figure 7. The difference between the two

results is shown in Figure 8. We see that there are considerable differences

between the reconstructions in the early years (e.g. 0.4 degrees C near 1600

AD), and a tendency for a systematic upward slope in the difference towards

nearly zero difference for years near to the instrumental record.
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5 Summary and Discussion

We have by example shown how important the effects of serially correlated

residuals can be for the results of regressions, and offered a remedy for sit-

uations when regression must be performed in the presence of such auto-

correlated residuals, namely the Cochrane-Orcutt method.

In a climatological application we have shown the extent of the effects

of using CO instead of OLS in a proxy reconstruction. Although the chosen

proxy-based temperature reconstruction may no longer be current, the use of

proxy-based reconstruction methods to build a description of past climate is

growing. Most of these applications of proxy-scaling are potentially sensitive

to the problems we have discussed in this paper, and most of them tend to

use fewer proxies at the start of the time interval of reconstruction - furthest

from the instrumental data scaled against. These are conditions under which

OLS and CO will tend to give different results, and we therefore suggest

that reconsideration of some climate reconstructions using regressions could

profitably be undertaken.

We have highlighted the impact of CO on just one example chosen from

a specific field. A whole family of analysis methods rely at heart on mini-

mization of residuals, but are often performed without testing for compliance

with the appropriate equivalent of the Gauss-Markov theorem. Such meth-

ods as Empirical Orthogonal Analysis, Canonical Correlation Analysis, the

Empirical Mode Decomposition Method [Huang, N.E., 1998], Redundancy
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Analysis (e.g. [Tyler, 1982]), and others, seem to be based on conditions

that may as easily be violated as is the case for simple regression, and a

revision of such methods in view of the potential impacts we have illustrated

here, may prove profitable.
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Figure 1: Results of simulations of OLS and CO regression on 1000 simulated

data sets. From lower left to upper right, the cloud of points are the results

for the constant term α and the regression coefficients β1 and β2 - these were

assigned the values 0.3, 0.6 and 0.9 in the model, respectively (the dotted

lines). Time series of length 100 points were used. The noise added to the

model is auto-correlated, with ρ=0.87. There is clearly a larger spread in the

OLS regression coefficients, while the OLS constant term is less spread out

than the CO value. Bias in the estimate seems low - the clouds of points are

centered on the model values.
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Figure 2: As in Figure 1, but for a lower value of the parameter describing

the auto-correlation of the added noise. ρ=0.57.
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Figure 3: Results of several experimental trials comparing OLS and CO re-

sults, for selected values of the parameter controlling the serial correlation of

the residuals, ρ, with variables that themselves are neither auto-correlated

nor mutually correlated. The experiments are as in Figure 1. The ordinate

gives the standard deviation in the OLS or CO determination of the regres-

sion constant and coefficients over 1000 trials. Solid lines connect CO results,

dashed OLS.
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Figure 4: As Figure 3, a summary of results for the regression constant and

coefficients, in 1000 trials of series 100 points long, using now series that

each are auto-correlated (α1=0.6) but mutually un-correlated - i.e. each set

of series are selected for being not correlated above the level of R = 0.1.
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Figure 5: As Figure 3, a summary of results for the regression constant and

coefficients, in 1000 trials of series 100 points long, using now series that

each are auto-correlated (α1=0.6) but also mutually correlated at least by

R = 0.3.
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Figure 6: As Figure 5, a summary of results for the regression constant and

coefficients, in 1000 trials of series 100 points long, using now series that

each are auto-correlated (α1=0.6) but also mutually correlated at least by

R = 0.7.
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Figure 7: Proxy scaling example.
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Figure 8: Proxy scaling example - Residuals (TOLS-TCO). The figure shows

the difference (in degrees C) between the reconstruction in Landsberg and

Groveman’s method using OLS and CO.
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